Cirrhotic Cardiomyopathy: Bridging Hepatic and Cardiac Pathophysiology in the Modern Era
Abstract
1. Introduction
- Increased cardiac output at rest with altered ventricular contractile response to various stimuli;
- Systolic and diastolic dysfunction;
- Absence of standalone ventricular dysfunction at rest;
2. Established Pathophysiological Mechanisms of Cirrhotic Cardiomyopathy
2.1. Vascular Changes
2.2. Cardiac Changes
- Changes in cardiomyocyte membrane structure;
- Changes at the level of myocardial receptors;
- Alterations in ion channel function;
- Molecular mediators.
2.2.1. Changes in Cardiomyocyte Membrane Structure:
2.2.2. Changes at the Level of Myocardial Receptors
Alteration of Beta-Adrenergic Receptor Density and Function
Changes in Muscarinic Receptor Function
2.2.3. Alterations in Ion Channels’ Function
Changes in Potassium Channels
Changes in L-Type Calcium Channels
Alteration of Normal Functioning of the Sodium-Calcium Exchanger
2.2.4. Molecular Mediators
Carbon Monoxide
Endocannabinoids
Nitric Oxide
Role of Apoptosis in Alteration of Cardiac Function in Patients with Cirrhotic Heart Disease
3. Emerging and Novel Mechanisms in Cirrhotic Cardiomyopathy
Selection Process of State-of-the-Art Original Articles
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A2AR | Adenosine A2 receptor |
ATP | Adenosine triphosphate |
BNP | Brain natriuretic peptide |
cAMP | Cyclic adenosine monophosphate |
CCM | Cirrhotic cardiomyopathy |
CCC | Cirrhotic Cardiomyopathy Consortium |
cGMP | Cyclic guanosine monophosphate |
CO | Carbon monoxide |
ELISA | Enzyme-linked immunosorbent assays |
GAL-3 | Galectin-3 |
GLS | Global Longitudinal Strain |
HC | Hepatic cirrhosis |
IL 1β | Interleukin 1 beta |
IL-6 | Interleukin 6 |
LVDD | Left ventricular diastolic dysfunction |
MAPK | Mitogen-activated protein kinases |
MSC | Mesenchymal stem cells |
NO | Nitric oxide |
NOS | Nitric oxide synthase |
RAAS | Renin-angiotensin-aldosterone system |
SNS | Sympathetic nervous system |
TNFα | Tumor necrosis factor alpha |
References
- Lunseth, J.H.; Olmstead, E.G.; Abboud, F. A Study of Heart Disease in One Hundred Eight Hospitalized Patients Dying with Portal Cirrhosis. AMA Arch. Intern. Med. 1958, 102, 405–413. [Google Scholar] [CrossRef]
- Lee, S.S. Cardiac Abnormalities in Liver Cirrhosis. West. J. Med. 1989, 151, 530–535. [Google Scholar] [PubMed]
- Grose, R.D.; Nolan, J.; Dillon, J.F.; Errington, M.; Hannan, W.J.; Bouchier, I.A.; Hayes, P.C. Exercise-Induced Left Ventricular Dysfunction in Alcoholic and Non-Alcoholic Cirrhosis. J. Hepatol. 1995, 22, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Gassanov, N.; Caglayan, E.; Semmo, N.; Massenkeil, G.; Er, F. Cirrhotic Cardiomyopathy: A Cardiologist’s Perspective. World J. Gastroenterol. 2014, 20, 15492–15498. [Google Scholar] [CrossRef]
- Lyssy, L.A.; Soos, M.P. Cirrhotic Cardiomyopathy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Kaur, H.; Premkumar, M. Diagnosis and Management of Cirrhotic Cardiomyopathy. J. Clin. Exp. Hepatol. 2022, 12, 186–199. [Google Scholar] [CrossRef]
- Chahal, D.; Liu, H.; Shamatutu, C.; Sidhu, H.; Lee, S.S.; Marquez, V. Review Article: Comprehensive Analysis of Cirrhotic Cardiomyopathy. Aliment. Pharmacol. Ther. 2021, 53, 985–998. [Google Scholar] [CrossRef]
- Almeida, F.; Sousa, A. Cirrhotic Cardiomyopathy: Pathogenesis, Clinical Features, Diagnosis, Treatment and Prognosis. Rev. Port. Cardiol. 2024, 43, 203–212. [Google Scholar] [CrossRef]
- Hwang, J.; Hwang, H.; Shin, H.; Kim, B.H.; Kang, S.H.; Yoo, J.-J.; Choi, M.Y.; Lee, D.E.; Jun, D.W.; Cho, Y. Bariatric Intervention Improves Metabolic Dysfunction-Associated Steatohepatitis in Patients with Obesity: A Systematic Review and Meta-Analysis. Clin. Mol. Hepatol. 2024, 30, 561–576. [Google Scholar] [CrossRef]
- Yoon, K.T.; Liu, H.; Lee, S.S. β-Blockers in Advanced Cirrhosis: More Friend than Enemy. Clin. Mol. Hepatol. 2021, 27, 425–436. [Google Scholar] [CrossRef]
- Shahvaran, S.A.; Menyhárt, O.; Csedrik, L.; Patai, Á.V. Diagnosis and Prevalence of Cirrhotic Cardiomyopathy: A Systematic Review and Meta-Analysis. Curr. Probl. Cardiol. 2021, 46, 100821. [Google Scholar] [CrossRef]
- Razpotnik, M.; Bota, S.; Wimmer, P.; Hackl, M.; Lesnik, G.; Alber, H.; Peck-Radosavljevic, M. The Prevalence of Cirrhotic Cardiomyopathy According to Different Diagnostic Criteria. Liver Int. 2021, 41, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Frigo, A.C.; Piano, S.; Angeli, P. Prevalence and Prognostic Value of Cirrhotic Cardiomyopathy as Defined According to the Proposed New Classification. Clin. Exp. Hepatol. 2021, 7, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Karagiannakis, D.S.; Stefanaki, K.; Anastasiadis, G.; Voulgaris, T.; Vlachogiannakos, J. Prevalence of Cirrhotic Cardiomyopathy According to Different Diagnostic Criteria: Alterations in Ultrasonographic Parameters of Both Left and Right Ventricles before and after Stress. Ann. Gastroenterol. 2023, 36, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Iwakiri, Y.; Shah, V.; Rockey, D.C. Vascular Pathobiology in Chronic Liver Disease and Cirrhosis—Current Status and Future Directions. J. Hepatol. 2014, 61, 912–924. [Google Scholar] [CrossRef]
- Kim, M.Y.; Baik, S.K.; Lee, S.S. Hemodynamic Alterations in Cirrhosis and Portal Hypertension. Korean J. Hepatol. 2010, 16, 347–352. [Google Scholar] [CrossRef]
- Wong, F.; Sniderman, K.; Blendis, L. The Renal Sympathetic and Renin-Angiotensin Response to Lower Body Negative Pressure in Well-Compensated Cirrhosis. Gastroenterology 1998, 115, 397–405. [Google Scholar] [CrossRef]
- Chang, S.W.; Ohara, N. Chronic Biliary Obstruction Induces Pulmonary Intravascular Phagocytosis and Endotoxin Sensitivity in Rats. J. Clin. Investig. 1994, 94, 2009–2019. [Google Scholar] [CrossRef]
- Carter, E.P.; Hartsfield, C.L.; Miyazono, M.; Jakkula, M.; Morris, K.G.; McMurtry, I.F. Regulation of Heme Oxygenase-1 by Nitric Oxide during Hepatopulmonary Syndrome. Am. J. Physiol. Lung Cell Mol. Physiol. 2002, 283, L346–L353. [Google Scholar] [CrossRef]
- Bode, C.; Kugler, V.; Bode, J.C. Endotoxemia in Patients with Alcoholic and Non-Alcoholic Cirrhosis and in Subjects with No Evidence of Chronic Liver Disease Following Acute Alcohol Excess. J. Hepatol. 1987, 4, 8–14. [Google Scholar] [CrossRef]
- García-Tsao, G. Bacterial Translocation: Cause or Consequence of Decompensation in Cirrhosis? J. Hepatol. 2001, 34, 150–155. [Google Scholar] [CrossRef]
- Lopez-Talavera, J.C.; Merrill, W.W.; Groszmann, R.J. Tumor Necrosis Factor Alpha: A Major Contributor to the Hyperdynamic Circulation in Prehepatic Portal-Hypertensive Rats. Gastroenterology 1995, 108, 761–767. [Google Scholar] [CrossRef]
- Lopez-Talavera, J.C.; Cadelina, G.; Olchowski, J.; Merrill, W.; Groszmann, R.J. Thalidomide Inhibits Tumor Necrosis Factor Alpha, Decreases Nitric Oxide Synthesis, and Ameliorates the Hyperdynamic Circulatory Syndrome in Portal-Hypertensive Rats. Hepatology 1996, 23, 1616–1621. [Google Scholar] [CrossRef]
- Niederberger, M.; Martin, P.Y.; Ginès, P.; Morris, K.; Tsai, P.; Xu, D.L.; McMurtry, I.; Schrier, R.W. Normalization of Nitric Oxide Production Corrects Arterial Vasodilation and Hyperdynamic Circulation in Cirrhotic Rats. Gastroenterology 1995, 109, 1624–1630. [Google Scholar] [CrossRef]
- Ferguson, J.W.; Dover, A.R.; Chia, S.; Cruden, N.L.M.; Hayes, P.C.; Newby, D.E. Inducible Nitric Oxide Synthase Activity Contributes to the Regulation of Peripheral Vascular Tone in Patients with Cirrhosis and Ascites. Gut 2006, 55, 542–546. [Google Scholar] [CrossRef]
- Wiest, R.; Shah, V.; Sessa, W.C.; Groszmann, R.J. NO Overproduction by eNOS Precedes Hyperdynamic Splanchnic Circulation in Portal Hypertensive Rats. Am. J. Physiol. 1999, 276, G1043–G1051. [Google Scholar] [CrossRef]
- Hennenberg, M.; Trebicka, J.; Sauerbruch, T.; Heller, J. Mechanisms of Extrahepatic Vasodilation in Portal Hypertension. Gut 2008, 57, 1300–1314. [Google Scholar] [CrossRef]
- Bátkai, S.; Járai, Z.; Wagner, J.A.; Goparaju, S.K.; Varga, K.; Liu, J.; Wang, L.; Mirshahi, F.; Khanolkar, A.D.; Makriyannis, A.; et al. Endocannabinoids Acting at Vascular CB1 Receptors Mediate the Vasodilated State in Advanced Liver Cirrhosis. Nat. Med. 2001, 7, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Meddings, J.B.; Lee, S.S. Membrane Physical Properties Determine Cardiac Beta-Adrenergic Receptor Function in Cirrhotic Rats. Am. J. Physiol. 1994, 267, G87–G93. [Google Scholar] [CrossRef] [PubMed]
- Gazawi, H.; Ljubuncic, P.; Cogan, U.; Hochgraff, E.; Ben-Shachar, D.; Bomzon, A. The Effects of Bile Acids on Beta-Adrenoceptors, Fluidity, and the Extent of Lipid Peroxidation in Rat Cardiac Membranes. Biochem. Pharmacol. 2000, 59, 1623–1628. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Lee, S.S.; Meddings, J.B. Effects of Altered Cardiac Membrane Fluidity on Beta-Adrenergic Receptor Signalling in Rats with Cirrhotic Cardiomyopathy. J. Hepatol. 1997, 26, 904–912. [Google Scholar] [CrossRef]
- Brodde, O.E.; Bruck, H.; Leineweber, K.; Seyfarth, T. Presence, Distribution and Physiological Function of Adrenergic and Muscarinic Receptor Subtypes in the Human Heart. Basic Res. Cardiol. 2001, 96, 528–538. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, H.; Wang, H. Functional M3 Muscarinic Acetylcholine Receptors in Mammalian Hearts. Br. J. Pharmacol. 2004, 142, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, M.P. Muscarinic Receptors—Characterization, Coupling and Function. Pharmacol. Ther. 1993, 58, 319–379. [Google Scholar] [CrossRef] [PubMed]
- Jaue, D.N.; Ma, Z.; Lee, S.S. Cardiac Muscarinic Receptor Function in Rats with Cirrhotic Cardiomyopathy. Hepatology 1997, 25, 1361–1365. [Google Scholar] [CrossRef] [PubMed]
- Zavecz, J.H.; Bueno, O.; Maloney, R.E.; O’Donnell, J.M.; Roerig, S.C.; Battarbee, H.D. Cardiac Excitation-Contraction Coupling in the Portal Hypertensive Rat. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 279, G28–G39. [Google Scholar] [CrossRef]
- Ward, C.A.; Ma, Z.; Lee, S.S.; Giles, W.R. Potassium Currents in Atrial and Ventricular Myocytes from a Rat Model of Cirrhosis. Am. J. Physiol. 1997, 273, G537–G544. [Google Scholar] [CrossRef]
- Noma, A. ATP-Regulated K+ Channels in Cardiac Muscle. Nature 1983, 305, 147–148. [Google Scholar] [CrossRef]
- Nichols, C.G.; Makhina, E.N.; Pearson, W.L.; Sha, Q.; Lopatin, A.N. Inward Rectification and Implications for Cardiac Excitability. Circ. Res. 1996, 78, 1–7. [Google Scholar] [CrossRef]
- Ai, X.; Curran, J.W.; Shannon, T.R.; Bers, D.M.; Pogwizd, S.M. Ca2+/Calmodulin-Dependent Protein Kinase Modulates Cardiac Ryanodine Receptor Phosphorylation and Sarcoplasmic Reticulum Ca2+ Leak in Heart Failure. Circ. Res. 2005, 97, 1314–1322. [Google Scholar] [CrossRef]
- Ward, C.A.; Liu, H.; Lee, S.S. Altered Cellular Calcium Regulatory Systems in a Rat Model of Cirrhotic Cardiomyopathy. Gastroenterology 2001, 121, 1209–1218. [Google Scholar] [CrossRef]
- The Relationship Between Charge Movements Associated with ICa and INa-Ca in Cardiac Myocytes—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/2158147/ (accessed on 29 July 2025).
- Chen, X.; Zhang, X.; Kubo, H.; Harris, D.M.; Mills, G.D.; Moyer, J.; Berretta, R.; Potts, S.T.; Marsh, J.D.; Houser, S.R. Ca2+ Influx-Induced Sarcoplasmic Reticulum Ca2+ Overload Causes Mitochondrial-Dependent Apoptosis in Ventricular Myocytes. Circ. Res. 2005, 97, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Song, D.; Lee, S.S. Role of Heme Oxygenase-Carbon Monoxide Pathway in Pathogenesis of Cirrhotic Cardiomyopathy in the Rat. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 280, G68–G74. [Google Scholar] [CrossRef] [PubMed]
- Petrocellis, L.D.; Cascio, M.G.; Marzo, V.D. The Endocannabinoid System: A General View and Latest Additions. Br. J. Pharmacol. 2004, 141, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Gaskari, S.A.; Liu, H.; Moezi, L.; Li, Y.; Baik, S.K.; Lee, S.S. Role of Endocannabinoids in the Pathogenesis of Cirrhotic Cardiomyopathy in Bile Duct-Ligated Rats. Br. J. Pharmacol. 2005, 146, 315–323. [Google Scholar] [CrossRef]
- Bátkai, S.; Mukhopadhyay, P.; Harvey-White, J.; Kechrid, R.; Pacher, P.; Kunos, G. Endocannabinoids Acting at CB1 Receptors Mediate the Cardiac Contractile Dysfunction in Vivo in Cirrhotic Rats. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H1689–H1695. [Google Scholar] [CrossRef]
- Xu, K.Y.; Huso, D.L.; Dawson, T.M.; Bredt, D.S.; Becker, L.C. Nitric Oxide Synthase in Cardiac Sarcoplasmic Reticulum. Proc. Natl. Acad. Sci. USA 1999, 96, 657–662. [Google Scholar] [CrossRef]
- Kim, Y.M.; Bombeck, C.A.; Billiar, T.R. Nitric Oxide as a Bifunctional Regulator of Apoptosis. Circ. Res. 1999, 84, 253–256. [Google Scholar] [CrossRef]
- Seddon, M.; Shah, A.M.; Casadei, B. Cardiomyocytes as Effectors of Nitric Oxide Signalling. Cardiovasc. Res. 2007, 75, 315–326. [Google Scholar] [CrossRef]
- Fernández-Muñoz, D.; Caramelo, C.; Santos, J.C.; Blanchart, A.; Hernando, L.; López-Novoa, J.M. Systemic and Splanchnic Hemodynamic Disturbances in Conscious Rats with Experimental Liver Cirrhosis without Ascites. Am. J. Physiol. 1985, 249, G316–G320. [Google Scholar] [CrossRef]
- Van der Linden, P.; Le Moine, O.; Ghysels, M.; Ortinez, M.; Devière, J. Pulmonary Hypertension after Transjugular Intrahepatic Portosystemic Shunt: Effects on Right Ventricular Function. Hepatology 1996, 23, 982–987. [Google Scholar] [CrossRef]
- van Obbergh, L.; Vallieres, Y.; Blaise, G. Cardiac Modifications Occurring in the Ascitic Rat with Biliary Cirrhosis Are Nitric Oxide Related. J. Hepatol. 1996, 24, 747–752. [Google Scholar] [CrossRef]
- Liu, H.; Ma, Z.; Lee, S.S. Contribution of Nitric Oxide to the Pathogenesis of Cirrhotic Cardiomyopathy in Bile Duct-Ligated Rats. Gastroenterology 2000, 118, 937–944. [Google Scholar] [CrossRef]
- Herring, N.; Danson, E.J.F.; Paterson, D.J. Cholinergic Control of Heart Rate by Nitric Oxide Is Site Specific. Physiology 2002, 17, 202–206. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, L.; Puttagunta, L.; Martinez-Cuesta, M.A.; Kneteman, N.; Mayers, I.; Moqbel, R.; Hamid, Q.; Radomski, M.W. Distribution of Nitric Oxide Synthase in Normal and Cirrhotic Human Liver. Proc. Natl. Acad. Sci. USA 2002, 99, 17161–17166. [Google Scholar] [CrossRef] [PubMed]
- Mani, A.R.; Ippolito, S.; Ollosson, R.; Moore, K.P. Nitration of Cardiac Proteins Is Associated with Abnormal Cardiac Chronotropic Responses in Rats with Biliary Cirrhosis. Hepatology 2006, 43, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Anselmi, A.; Gaudino, M.; Baldi, A.; Vetrovec, G.W.; Bussani, R.; Possati, G.; Abbate, A. Role of Apoptosis in Pressure-Overload Cardiomyopathy. J. Cardiovasc. Med. 2008, 9, 227–232. [Google Scholar] [CrossRef]
- Kerkela, R.; Force, T. P38 Mitogen-Activated Protein Kinase: A Future Target for Heart Failure Therapy? J. Am. Coll. Cardiol. 2006, 48, 556–558. [Google Scholar] [CrossRef]
- Parsons, C.J.; Takashima, M.; Rippe, R.A. Molecular Mechanisms of Hepatic Fibrogenesis. J. Gastroenterol. Hepatol. 2007, 22 (Suppl. S1), S79–S84. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, S.; Kovacs, A.; Wang, Y.; Muslin, A.J. Role of P38α MAPK in Cardiac Apoptosis and Remodeling after Myocardial Infarction. J. Mol. Cell. Cardiol. 2005, 38, 617–623. [Google Scholar] [CrossRef]
- Sabio, G.; Arthur, J.S.C.; Kuma, Y.; Peggie, M.; Carr, J.; Murray-Tait, V.; Centeno, F.; Goedert, M.; Morrice, N.A.; Cuenda, A. P38γ Regulates the Localisation of SAP97 in the Cytoskeleton by Modulating Its Interaction with GKAP. EMBO J. 2005, 24, 1134–1145. [Google Scholar] [CrossRef]
- Saurin, A.T.; Martin, J.L.; Heads, R.J.; Foley, C.; Mockridge, J.W.; Wright, M.J.; Wang, Y.; Marber, M.S. The Role of Differential Activation of P38-Mitogen-Activated Protein Kinase in Preconditioned Ventricular Myocytes. FASEB J. 2000, 14, 2237–2246. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Song, K.; Zhou, Z.-Y.; Tu, B.; Zhou, Y.; Lin, L.-C.; Liu, Z.-Y.; Liu, Z.-Y.; Sha, J.-M.; Shi, Y.; et al. Cirrhosis Promotes Cardiac Fibrosis Development by Inhibiting Notch1 in Cardiac Fibroblasts. JACC Basic. Transl. Sci. 2025, 10, 612–631. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Ding, X.; Zhou, Y.; Zhou, J.; Luo, Y.; Wu, D.; Dai, Y.; Qian, L.; Wang, R.; Yu, Z. The Role and Mechanism of P2X7R in Cirrhotic Cardiomyopathy. Mol. Immunol. 2024, 176, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Shao, Z.; Xia, G.; Liu, H.; Zhang, L.; Zhao, X.; Dang, S.; Qian, L.; Xu, W.; Yu, Z.; et al. Protective Role of the CD73-A2AR Axis in Cirrhotic Cardiomyopathy through Negative Feedback Regulation of the NF-κB Pathway. Front. Immunol. 2024, 15, 1428551. [Google Scholar] [CrossRef]
- Yoon, K.T.; Liu, H.; Zhang, J.; Han, S.; Lee, S.S. Galectin-3 Inhibits Cardiac Contractility via a Tumor Necrosis Factor Alpha-Dependent Mechanism in Cirrhotic Rats. Clin. Mol. Hepatol. 2022, 28, 232–241. [Google Scholar] [CrossRef]
- Bayat, G.; Mazloom, R.; Hashemi, S.A.; Pourkhalili, K.; Fallah, P.; Shams, A.; Esmaeili, P.; Khalili, A. Silymarin Administration Attenuates Cirrhotic-Induced Cardiac Abnormality in the Rats: A Possible Role of β1-Adrenergic Receptors and L-Type Voltage-Dependent Calcium Channels. Iran. J. Med. Sci. 2022, 47, 367–378. [Google Scholar] [CrossRef]
- Gregolin, C.S.; do Nascimento, M.; de Souza, S.L.B.; Ferreira Mota, G.A.; Bomfim, G.F.; Luvizotto, R.d.A.M.; Sugizaki, M.M.; Zanati Bazan, S.G.; de Campos, D.H.S.; Dias, M.C.; et al. Myocardial Dysfunction in Cirrhotic Cardiomyopathy Is Associated with Alterations of Phospholamban Phosphorylation and IL-6 Levels. Arch. Med. Res. 2021, 52, 284–293. [Google Scholar] [CrossRef]
- Yu, S.; Sun, L.; Wang, H.; Jiang, J.; Zhou, Q. Autonomic Regulation of Imbalance-Induced Myocardial Fibrosis and Its Mechanism in Rats with Cirrhosis. Exp. Ther. Med. 2021, 22, 1040. [Google Scholar] [CrossRef]
- Honar, H.; Liu, H.; Zhang, M.L.; Glenn, T.K.; Ter Keurs, H.E.D.J.; Lee, S.S. Impaired Myosin Isoform Shift and Calcium Transients Contribute to Cellular Pathogenesis of Rat Cirrhotic Cardiomyopathy. Liver Int. 2020, 40, 2808–2819. [Google Scholar] [CrossRef]
- Matyas, C.; Erdelyi, K.; Trojnar, E.; Zhao, S.; Varga, Z.V.; Paloczi, J.; Mukhopadhyay, P.; Nemeth, B.T.; Haskó, G.; Cinar, R.; et al. Interplay of Liver-Heart Inflammatory Axis and Cannabinoid 2 Receptor Signalling in an Experimental Model of Hepatic Cardiomyopathy. Hepatology 2020, 71, 1391–1407. [Google Scholar] [CrossRef]
- Ma, L.; Liu, X.; Wu, Q.; Hu, X.; Liu, H.; Zhang, J.; Lee, S.S. Role of Anti-Beta-1-Adrenergic Receptor Antibodies in Cardiac Dysfunction in Patients with Cirrhotic Cardiomyopathy. J. Cardiovasc. Transl. Res. 2022, 15, 381–390. [Google Scholar] [CrossRef]
- Stoess, C.; Choi, Y.-K.; Onyuru, J.; Friess, H.; Hoffman, H.M.; Hartmann, D.; Feldstein, A.E. Cell Death in Liver Disease and Liver Surgery. Biomedicines 2024, 12, 559. [Google Scholar] [CrossRef]
- Monguió-Tortajada, M.; Roura, S.; Gálvez-Montón, C.; Franquesa, M.; Bayes-Genis, A.; Borràs, F.E. Mesenchymal Stem Cells Induce Expression of CD73 in Human Monocytes In Vitro and in a Swine Model of Myocardial Infarction In Vivo. Front. Immunol. 2017, 8, 1577. [Google Scholar] [CrossRef]
- Borg, N.; Alter, C.; Görldt, N.; Jacoby, C.; Ding, Z.; Steckel, B.; Quast, C.; Bönner, F.; Friebe, D.; Temme, S.; et al. CD73 on T Cells Orchestrates Cardiac Wound Healing After Myocardial Infarction by Purinergic Metabolic Reprogramming. Circulation 2017, 136, 297–313. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Alvarez, E.; Limon-de la Rosa, N.; Vilatoba, M.; Pérez-Monter, C.; Hurtado-Gomez, S.; Martinez-Cabrera, C.; Argemi, J.; Alatorre-Arenas, E.; Yarza-Regalado, S.; Tejeda-Dominguez, F.; et al. Galectin-3 Is Overexpressed in Advanced Cirrhosis and Predicts Post-Liver Transplant Infectious Complications. Liver Int. 2022, 42, 2260–2273. [Google Scholar] [CrossRef]
- Ryu, D.G.; Yu, F.; Yoon, K.T.; Liu, H.; Lee, S.S. The Cardiomyocyte in Cirrhosis: Pathogenic Mechanisms Underlying Cirrhotic Cardiomyopathy. Rev. Cardiovasc. Med. 2024, 25, 457. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Nguyen, H.H.; Yoon, K.T.; Lee, S.S. Pathogenic Mechanisms Underlying Cirrhotic Cardiomyopathy. Front. Netw. Physiol. 2022, 2, 849253. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.S. Mechanistic Insights into the Pathophysiology of Cirrhotic Cardiomyopathy. Anal. Biochem. 2022, 636, 114388. [Google Scholar] [CrossRef]
- Møller, S.; Henriksen, J.H. Cirrhotic Cardiomyopathy. J. Hepatol. 2010, 53, 179–190. [Google Scholar] [CrossRef]
- Trebicka, J.; Amoros, A.; Pitarch, C.; Titos, E.; Alcaraz-Quiles, J.; Schierwagen, R.; Deulofeu, C.; Fernandez-Gomez, J.; Piano, S.; Caraceni, P.; et al. Addressing Profiles of Systemic Inflammation Across the Different Clinical Phenotypes of Acutely Decompensated Cirrhosis. Front. Immunol. 2019, 10, 476. [Google Scholar] [CrossRef]
Clinical Study and Authors | Year/Number of Subjects | Authors | Conclusions |
---|---|---|---|
Studies on Humans | |||
Cirrhosis Promotes Cardiac Fibrosis Development by Inhibiting Notch1 in Cardiac Fibroblasts | 2025/n = 90 | Sun et al. [64] | Cirrhosis-induced high levels of circulating TGF-β1 increase the progression of cardiac fibrosis through the inhibition of Notch1 in a DNA methylation-dependent mechanism. These findings provide insights into the development of preventative measures for cirrhosis-induced cardiac fibrosis risk |
Role of Anti-Beta-1-Adrenergic Receptor Antibodies in Cardiac Dysfunction in Patients with Cirrhotic Cardiomyopathy | 2021/n = 352 | Ma et al. [29] |
Anti-β1-AR levels in the CCM group were significantly higher than those in the non-CCM group
Anti-β1-AR is a useful predictive biomarker for the presence of CCM and eventually may also have therapeutic implications |
Studies on animals—mice/rats | |||
The role and mechanism of P2X7R in cirrhotic cardiomyopathy | 2024/mice (n = N/A) | Shao et al. [65] | Targeting and inhibiting the expression of P2X7R not only alleviated myocardial inflammation and apoptosis but also enhanced cardiac performance |
Protective role of the CD73 (5’-nucleotidase, ecto-5’-nucleotidase)/A2AR3 axis in cirrhotic cardiomyopathy through negative feedback regulation of the NF-κB pathway | 2024/mice (n = N/A) | Zhao et al. [66] | CD73 (5’-nucleotidase, ecto-5’-nucleotidase)/A2AR signaling axis mitigates myocardial inflammation and apoptosis induced by cirrhosis |
Galectin-3 inhibits cardiac contractility via a tumor necrosis factor alpha-dependent mechanism in cirrhotic rats | 2022/rats (n = 24) | Yoon et al. [67] | Increased Galectin-3 in the cirrhotic heart significantly inhibited cardiac contractility |
Silymarin Administration Attenuates Cirrhotic-induced Cardiac Abnormality in the Rats: A Possible Role of β1-adrenergic Receptors and L-type Voltage-Dependent Calcium Channels | 2022/rats (n = 32) | Bayat et al. [68] |
Significant up-regulation of ventricular β1-AR and L-VDCC
Cardiac expression of the β1-AR and L-VDCC was down-regulated toward normal values by either higher or lower doses of the silymarin extract |
Myocardial Dysfunction in Cirrhotic Cardiomyopathy is Associated with Alterations of Phospholamban Phosphorylation and IL-6 Levels | 2021/rats (n = 30) | Gregolin et al. [69] | CCM is associated with decreased cardiac contractility with alteration of phospholamban phosphorylation in association with higher cardiac pro-inflammatory IL-6 levels |
Autonomic regulation of imbalance-induced myocardial fibrosis and its mechanism in rats with cirrhosis | 2021/rats (n = 40) | Yu et al. [70] | The levels of pro-inflammatory factor IL-6 were increased, whilst the expression of β1-AR protein and muscarinic M2 receptor was decreased in rats with cirrhosis, suggesting that abnormal inflammatory reaction, autonomic regulation, and other mechanisms may be involved in cirrhosis-related damage to the myocardium and accelerate ventricular remodeling |
Impaired myosin isoform shift and calcium transients contribute to cellular pathogenesis of rat cirrhotic cardiomyopathy | 2020/rats (n = N/A) | Honar et al. [71] | Impaired myosin isoform shift and calcium transients are important contributory mechanisms underlying the pathogenesis of the heart failure phenotype seen in cirrhosis. |
Interplay of Liver-Heart Inflammatory Axis and Cannabinoid 2 Receptor Signaling in an Experimental Model of Hepatic Cardiomyopathy | 2020/mice (n = N/A) | Matyas et al. [72] | Treatment of cirrhotic mice with a selective cannabinoid-2 receptor (CB2-R) agonist attenuated inflammation and fibrosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupu, D.; Scârneciu, C.C.; Țînț, D.; Tudoran, C. Cirrhotic Cardiomyopathy: Bridging Hepatic and Cardiac Pathophysiology in the Modern Era. J. Clin. Med. 2025, 14, 5993. https://doi.org/10.3390/jcm14175993
Lupu D, Scârneciu CC, Țînț D, Tudoran C. Cirrhotic Cardiomyopathy: Bridging Hepatic and Cardiac Pathophysiology in the Modern Era. Journal of Clinical Medicine. 2025; 14(17):5993. https://doi.org/10.3390/jcm14175993
Chicago/Turabian StyleLupu, Dragoș, Camelia Cornelia Scârneciu, Diana Țînț, and Cristina Tudoran. 2025. "Cirrhotic Cardiomyopathy: Bridging Hepatic and Cardiac Pathophysiology in the Modern Era" Journal of Clinical Medicine 14, no. 17: 5993. https://doi.org/10.3390/jcm14175993
APA StyleLupu, D., Scârneciu, C. C., Țînț, D., & Tudoran, C. (2025). Cirrhotic Cardiomyopathy: Bridging Hepatic and Cardiac Pathophysiology in the Modern Era. Journal of Clinical Medicine, 14(17), 5993. https://doi.org/10.3390/jcm14175993