Association of Shift Work, Health Behaviors, and Socioeconomic Status with Diabesity in over 53,000 Spanish Employees
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Inclusion and Exclusion Criteria
- Active workers aged between 18 and 69 years;
- Undergoing a routine occupational medical examination;
- Availability of complete data for calculating anthropometric and metabolic indices (BMI, CUN-BAE, glucose, lipids, etc.).
- Age under 18 or over 69 years;
- Refusal to participate;
- Incomplete data on any of the variables needed to compute diabesity-related scales.
2.3. Anthropometric and Clinical Measurements
2.4. Assessment of Lifestyle and Occupational Variables
2.5. Definition of Diabesity
2.6. Statistical Analysis
3. Results
4. Discussion
5. Strengths
- Large, representative occupational cohort: Inclusion of 53,053 workers across diverse sectors and geographic regions yields high statistical power and external validity for employed Spanish adults.
- Use of multiple adiposity definitions: Comparing BMI and CUN-BAE allows for demonstration of differential sensitivity in diabesity detection and reinforces the utility of adiposity estimators beyond traditional measures.
- Rigorous adjustment for confounders: Multivariate models controlled for important sociodemographic (age, sex, and social class), behavioral (diet, activity, smoking, and alcohol), and occupational (shift work) variables, reducing residual confounding.
- Sex-stratified analyses: Sex-stratified analyses permitted the elucidation of sex differences in diabesity prevalence and shift-work associations.
- Validated measurement instruments: MEDAS, IPAQ, UBEs, and CNAE-11 classifications ensured standardized, comparable data collection across participants.
6. Limitations
- Cross-sectional design: The cross-sectional design prevents causal inference and temporal relationships, limiting the ability to establish that shift work precedes diabesity onset. Reverse causation or residual confounding remains possible.
- Self-reported behavioral data: Measures such as diet adherence (MEDAS), physical activity (IPAQ), and alcohol consumption (UBEs) rely on self-report and may be subject to recall or social-desirability bias.
- Lack of biochemical confirmation of diabetes: Glycemic status was defined based on fasting glucose ≥100 mg/dL or prior diagnosis; no oral glucose tolerance testing or HbA1c was systematically performed.
- Absence of objective sleep/circadian data: Quantitative measures such as shift duration, chronotype, objectively assessed sleep quality, and melatonin profiles were not included; occupational exposure was broadly defined via ILO criteria.
- Potential selection bias: Participants recruited during employer-mandated health examinations may not represent unemployed individuals or those not covered by occupational screening, limiting generalizability beyond the selected working population.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AJHS | Academic Journal of Health Sciences |
AVAI | Abdominal Volume Adiposity Index |
BAI | Body Adiposity Index |
BMI | Body Mass Index |
BP | Blood Pressure |
CEI-IB | Ethics and Research Committee of the Balearic Islands (Comité de Ética de la Investigación de las Islas Baleares) |
CI | Confidence Interval |
CNAE-11 | National Classification of Economic Activities, 2011 (Spain) |
CUN-BAE | Clínica Universidad de Navarra-Body Adiposity Estimator |
DAI | Dysfunctional Adiposity Index |
DM2/T2DM | Type 2 Diabetes Mellitus |
ER | Endoplasmic Reticulum (contextual to ER stress) |
GDPR | General Data Protection Regulation |
GLP-1 | Glucagon-Like Peptide-1 |
HDL | High-Density Lipoprotein |
HR | Hazard Ratio |
IDF | International Diabetes Federation |
ILO | International Labour Organization |
IPAQ | International Physical Activity Questionnaire |
IAPP | Islet Amyloid Polypeptide |
IR | Insulin Resistance |
JCM | Journal of Clinical Medicine |
LDL | Low-Density Lipoprotein |
MAFLD | Metabolic Dysfunction-Associated Fatty Liver Disease (previously NAFLD) |
MASLD | Metabolic Dysfunction-Associated Steatotic Liver Disease |
MEDAS | Mediterranean Diet Adherence Screener |
METS-IR | Metabolic Score for Insulin Resistance |
NAFLD | Non-Alcoholic Fatty Liver Disease |
OR | Odds Ratio |
PMCID | PubMed Central Identifier |
PMID | PubMed Identifier |
Q1 | Quartile 1 (Top 25% in Journal Rankings) |
SD | Standard Deviation |
SPISE-IR | Single-Point Insulin Sensitivity Estimator for IR |
T2DM | Type 2 Diabetes Mellitus |
TNF-α | Tumor Necrosis Factor Alpha |
UBEs | Standard Drink Units (Spanish: Unidades de Bebida Estándar) |
VAI | Visceral Adiposity Index |
VIF | Variance Inflation Factor |
WC | Waist Circumference |
WHtR | Waist-to-Height Ratio |
References
- Magliano, D.J.; Boyko, E.J.; IDF Diabetes Atlas 10th Edition Scientific Committee. IDF DIABETES ATLAS [Internet], 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119, Erratum in Diabetes Res. Clin. Pract. 2023, 204, 110945. https://doi.org/10.1016/j.diabres.2023.110945. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aranceta-Bartrina, J.; Pérez-Rodrigo, C.; Alberdi-Aresti, G.; Ramos-Carrera, N.; Lázaro-Masedo, S. Prevalence of General Obesity and Abdominal Obesity in the Spanish Adult Population (Aged 25–64 Years) 2014–2015: The ENPE Study. Rev. Española De Cardiol. 2016, 69, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Mestre-Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Tomás-Gil, P.; Paublini, H.; López-González, A.A. Influence of sociodemographic variables and healthy habits on the values of overweight and obesity scales in 386,924 Spanish workers. Acad. J. Health Sci. 2024, 39, 27–35. [Google Scholar] [CrossRef]
- Rojo-Martínez, G.; Valdés, S.; Soriguer, F.; Vendrell, J.; Urrutia, I.; Pérez, V.; Ortega, E.; Ocón, P.; Montanya, E.; Menéndez, E.; et al. Incidence of diabetes mellitus in Spain as results of the nation-wide cohort di@bet.es study. Sci. Rep. 2020, 10, 2765. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef]
- Angelini, G.; Russo, S.; Mingrone, G. Incretin hormones, obesity and gut microbiota. Peptides 2024, 178, 171216. [Google Scholar] [CrossRef] [PubMed]
- Benito-Vicente, A.; Jebari-Benslaiman, S.; Galicia-Garcia, U.; Larrea-Sebal, A.; Uribe, K.B.; Martin, C. Molecular mechanisms of lipotoxicity-induced pancreatic β-cell dysfunction. Int. Rev. Cell Mol. Biol. 2021, 359, 357–402. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Müller, T.D. Incretin hormones and type 2 diabetes. Diabetologia 2023, 66, 1780–1795. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Del Prato, S.; Gallwitz, B.; Holst, J.J.; Meier, J.J. The incretin/glucagon system as a target for pharmacotherapy of obesity. Obes. Rev. 2022, 23, e13372. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ng, M.; Gakidou, E.; Lo, J.; Abate, Y.H.; Abbafati, C.; Abbas, N.; Abbasian, M.; ElHafeez, S.A.; Abdel-Rahman, W.M.; Abd-Elsalam, S.; et al. Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: A forecasting study for the Global Burden of Disease Study 2021. Lancet 2025, 405, 813–838. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ng, A.C.T.; Delgado, V.; Borlaug, B.A.; Bax, J.J. Diabesity: The combined burden of obesity and diabetes on heart disease and the role of imaging. Nat. Rev. Cardiol. 2021, 18, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Sindhwani, R.; Bora, K.S.; Hazra, S. The dual challenge of diabesity: Pathophysiology, management, and future directions. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025, 398, 4891–4912. [Google Scholar] [CrossRef] [PubMed]
- S, U.K.; Rajan, B.; D, T.K.; V, A.P.; Abunada, T.; Younes, S.; Okashah, S.; Ethiraj, S.; C, G.P.D.; Zayed, H. Involvement of Essential Signaling Cascades and Analysis of Gene Networks in Diabesity. Genes 2020, 11, 1256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruze, R.; Liu, T.; Zou, X.; Song, J.; Chen, Y.; Xu, R.; Yin, X.; Xu, Q. Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments. Front. Endocrinol. 2023, 14, 1161521. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- López-González, A.; Manent, J.R.; Vicente-Herrero, M.; Ruiz, E.G.; Blanco, M.A.; Safont, N.L. Prevalence of diabesity in the Spanish working population: Influence of sociodemographic variables and tobacco consumption. An. del Sist. Sanit. de Navar. 2022, 45, e0977. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garrido Sepúlveda, L.; Vicente-Herrero, M.T.; Garrido, J.A.; López-González, A.A. Prevalencia de los índices de adiposidad corporal (BAI) y volumen abdominal (AVI). Según características metabólicas y factores de riesgo. Acad. J. Health Sci. 2024, 39, 93–100. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Sayón-Orea, C.; Gea, A.; Toledo-Atucha, E.; Bes-Rastrollo, M.; Barbagallo, M.; Martínez-González, M.A. CUN-BAE adiposity index prediction of incident type 2 diabetes: The Seguimiento Universidad de Navarra prospective cohort. J. Nutr. Health Aging 2025, 29, 100545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, Q.; Feng, Z.; Cai, Z.; Liu, D.; Zhong, J.; Zhao, H.; Zhang, X.; Chen, W. The relationship between the CUN-BAE body fatness index and incident diabetes: A longitudinal retrospective study. Lipids Health Dis. 2023, 22, 21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pavlidou, E.; Papadopoulou, S.K.; Fasoulas, A.; Papaliagkas, V.; Alexatou, O.; Chatzidimitriou, M.; Mentzelou, M.; Giaginis, C. Diabesity and Dietary Interventions: Evaluating the Impact of Mediterranean Diet and Other Types of Diets on Obesity and Type 2 Diabetes Management. Nutrients 2023, 16, 34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef] [PubMed]
- León-Muñoz, L.M.; Guallar-Castillón, P.; Graciani, A.; López-García, E.; Mesas, A.E.; Aguilera, M.T.; Banegas, J.R.; Rodríguez-Artalejo, F. Adherence to the Mediterranean diet pattern has declined in Spanish adults. J. Nutr. 2012, 142, 1843–1850. [Google Scholar] [CrossRef] [PubMed]
- Sotos-Prieto, M.; Ortolá, R.; López-García, E.; Rodríguez-Artalejo, F.; García-Esquinas, E.; Newman, A.B. Adherence to the Mediterranean Diet and Physical Resilience in Older Adults: The Seniors-ENRICA Cohort. J. Gerontol. Ser. A Biol. Sci Med. Sci. 2021, 76, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvadó, J.; Bulló, M.; Babio, N.; Martínez-González, M.Á.; Ibarrola-Jurado, N.; Basora, J.; Estruch, R.; Covas, M.I.; Corella, D.; Arós, F.; et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 2011, 34, 14–19, Erratum in Diabetes Care 2018, 41, 2259–2260. https://doi.org/10.2337/dc18-er10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naghizadeh, M.; Maskouni, S.J.; Mortazavi, Z.; Ahmadi, M.; Shokri, S. The Impact of Fast Food Consumption on the Development of General and Central Obesity. Acad. J. Health Sci. 2024, 39, 44–48. [Google Scholar] [CrossRef]
- Montero-Sandiego, E.; Ruiz-Robledillo, N.; Ferrer-Cascales, R.; Clement-Carbonell, V.; Alcocer-Bruno, C.; Albaladejo-Blázquez, N. Spanish validation of the simple lifestyle indicator questionnaire: Validity and reliability analysis. Front. Public Health 2024, 11, 1146010. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vieira, L.M.; Gottschall, C.B.; Vinholes, D.B.; Martinez-Gonzalez, M.A.; Marcadenti, A. Translation and cross-cultural adaptation of 14-item Mediterranean Diet Adherence Screener and low-fat diet adherence questionnaire. Clin. Nutr. ESPEN 2020, 39, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Obrador de Hevia, J.; López-González, Á.A.; Ramírez-Manent, J.I.; Paublini Oliveira, H.; Tárraga López, P.J.; Riutord-Sbert, P. Relationship between alcohol consumption and other variables with the values of different cardiovascular risk factors in 139634 Spanish workers. Acad. J. Health Sci. 2024, 39, 132–141. [Google Scholar] [CrossRef]
- Domingo-Salvany, A.; Bacigalupe, A.; Carrasco, J.M.; Espelt, A.; Ferrando, J.; Borrell, C.; from the Social Determinants Group of the Spanish Society of Epidemiology. Neo-Weberian and Neo-Marxist Social Class Proposals Based on the 2011 National Classification of Occupations. Gac. Sanit. 2013, 27, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Givens, M.L.; Malecki, K.C.; Peppard, P.E.; Palta, M.; Said, A.; Engelman, C.D.; Walsh, M.C.; Nieto, F.J. Shiftwork, Sleep Habits, and Metabolic Disparities: Results from the Survey of the Health of Wisconsin. Sleep Health 2015, 1, 115–120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kong, L.; Ye, C.; Wang, Y.; Dou, C.; Zheng, J.; Wang, S.; Lin, H.; Zhao, Z.; Li, M.; Xu, Y.; et al. Diabesity phenotype in relation to the incidence and resolution of nonalcoholic fatty liver disease: A prospective cohort study. J. Diabetes 2024, 16, e13459. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tosoratto, J.; López, P.J.T.; López-González, Á.A.; Busquets-Cortes, C.; de Hevia, J.O.; Ramirez-Manent, J.I. Associations Between Shift Work and Insulin Resistance Markers in 53,053 Spanish Workers: A Sex-Stratified Cross Sectional Analysis Using TyG, TyG BMI, METS-IR and SPISE-IR Indices. J. Clin. Med. 2025, 14, 4604. [Google Scholar] [CrossRef]
- Ramírez-Manent, J.I.; Altisench Jané, B.; Tomás Salvà, M.; Arroyo Bote, S.; González San Miguel, H.M.; López-González, Á.A. Influence of Educational Level and Healthy Habits on the Prevalence of Diabesity in a Spanish Working Population. Nutrients 2022, 14, 4101. [Google Scholar] [CrossRef]
- Hemmer, A.; Mareschal, J.; Dibner, C.; Pralong, J.A.; Dorribo, V.; Perrig, S.; Genton, L.; Pichard, C.; Collet, T.-H. The Effects of Shift Work on Cardio-Metabolic Diseases and Eating Patterns. Nutrients 2021, 13, 4178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Q.; Chair, S.Y.; Lo, S.H.S.; Chau, J.P.-C.; Schwade, M.; Zhao, X. Association between shift work and obesity among nurses: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2020, 112, 103757. [Google Scholar] [CrossRef] [PubMed]
- Sooriyaarachchi, P.; Jayawardena, R.; Pavey, T.; King, N.A. Shift work and the risk for metabolic syndrome among healthcare workers: A systematic review and meta-analysis. Obes. Rev. 2022, 23, e13489. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, F.; Hu, K.; Fu, R.; Zhang, Y.; Xiao, K.; Tu, J. Association between night shift work and the risk of type 2 diabetes mellitus: A cohort-based meta-analysis. BMC Endocr. Disord. 2024, 24, 268. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martyn, Y.; McElvenny, D. Role of shift work in dietary changes among Danish nurses. Occup. Med. 2022, 72, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Jakubiak, G.K.; Chwalba, A.; Basek, A.; Cieślar, G.; Pawlas, N. Glycated Hemoglobin and Cardiovascular Disease in Patients without Diabetes. J. Clin. Med. 2024, 14, 53. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, Y.; Lee, W. Shift work and non-alcoholic fatty liver disease in young, healthy workers. Sci Rep. 2024, 14, 19367, Erratum in: Sci Rep. 2024, 14, 24149. https://doi.org/10.1038/s41598-024-76009-5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Tan, S. Sleep factors were associated with a higher risk of MAFLD and significant fibrosis. Sleep Breath. 2024, 28, 1381–1391. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, Z.; Xie, J.; Xu, C. Association between night shift work and NAFLD: A prospective analysis of 281,280 UK Biobank participants. BMC Public Health 2023, 23, 1282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chaput, J.-P.; McHill, A.W.; Cox, R.C.; Broussard, J.L.; Dutil, C.; da Costa, B.G.G.; Sampasa-Kanyinga, H.; Wright, K.P. The role of insufficient sleep and circadian misalignment in obesity. Nat. Rev. Endocrinol. 2023, 19, 82–97. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tiwari, A.; Rathor, P.; Trivedi, P.K.; Ch, R. Multi-Omics Reveal Interplay between Circadian Dysfunction and Type2 Diabetes. Biology 2023, 12, 301. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Non-Shift Work | Shift Work | p-Value | Non-Shift Work | Shift Work | p-Value | |
---|---|---|---|---|---|---|
Men n = 14,226 | Men n = 17,527 | Women n = 10,019 | Women n = 11,281 | |||
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |||
Age (years) | 41.2 (10.9) | 41.3 (10.5) | 0.089 | 40.0 (10.5) | 40.2 (10.3) | 0.199 |
Height (cm) | 173.8 (7.1) | 173.7 (7.1) | 0.219 | 161.0 (6.6) | 161.2 (6.6) | 0.015 |
Weight (kg) | 81.5 (14.6) | 84.5 (14.4) | <0.001 | 63.6 (12.8) | 68.6 (12.8) | <0.001 |
Waist (cm) | 89.5 (10.5) | 90.8 (10.2) | <0.001 | 74.7 (9.7) | 77.6 (10.9) | <0.001 |
Systolic BP (mmHg) | 125.3 (15.7) | 126.9 (16.0) | <0.001 | 114.8 (15.5) | 116.1 (15.6) | <0.001 |
Diastolic BP (mmHg) | 75.9 (10.7) | 77.2 (11.0) | <0.001 | 70.3 (10.6) | 71.6 (10.8) | <0.001 |
Total cholesterol (mg(dL) | 197.3 (38.4) | 201.2 (38.6) | <0.001 | 192.3 (36.6) | 196.9 (37.3) | <0.001 |
HDL cholesterol (mg/dL) | 50.4 (7.8) | 49.7 (7.7) | <0.001 | 55.0 (9.1) | 54.5 (9.2) | <0.001 |
LDL cholesterol (mg/dL) | 120.9 (37.3) | 123.8 (37.6) | <0.001 | 119.6 (36.9) | 123.5 (37.5) | <0.001 |
Triglycerides (mmHg) | 129.3 (93.7) | 136.8 (95.5) | <0.001 | 87.5 (46.8) | 93.6 (51.7) | <0.001 |
Glucose (mg/dL) | 91.9 (26.4) | 93.3 (26.4) | <0.001 | 86.6 (19.0) | 87.8 (17.6) | <0.001 |
% | % | p-Value | % | % | p-Value | |
18–29 years | 16.4 | 13.8 | <0.001 | 18.6 | 17.5 | 0.135 |
30–39 years | 29.3 | 29.8 | 31.0 | 31.3 | ||
40–49 years | 29.0 | 31.3 | 29.6 | 30.6 | ||
50–59 years | 20.9 | 20.9 | 17.9 | 17.5 | ||
60–69 years | 4.4 | 4.2 | 2.9 | 3.1 | ||
Social class I | 6.8 | 8.2 | <0.001 | 11.6 | 14.6 | <0.001 |
Social class II | 20.7 | 26.6 | 27.6 | 37.0 | ||
Social class III | 72.5 | 65.2 | 60.8 | 48.4 | ||
Elementary school | 69.5 | 63.8 | <0.001 | 53.7 | 43.2 | <0.001 |
High school | 24.4 | 28.9 | 36.2 | 44.2 | ||
University | 6.1 | 7.3 | 10.1 | 12.6 | ||
Non-smokers | 67.9 | 66.0 | <0.001 | 66.3 | 69.1 | <0.001 |
Smokers | 32.1 | 34.0 | 33.7 | 30.9 | ||
Non-physical activity | 55.2 | 67.9 | <0.001 | 40.8 | 60.7 | <0.001 |
Yes physical activity | 44.8 | 32.1 | 59.2 | 39.3 | ||
Non-Mediterranean diet | 58.2 | 71.5 | 42.0 | 63.1 | ||
Yes Mediterranean diet | 41.8 | 28.5 | 58.0 | 36.9 | ||
Non-alcohol consumption | 70.4 | 63.2 | <0.001 | 85.3 | 83.5 | <0.001 |
Yes alcohol consumption | 29.6 | 36.8 | 14.7 | 16.5 |
Non-Shift Work | Shift Work | |||||
---|---|---|---|---|---|---|
Diabesity BMI | Diabesity CUN-BAE | Diabesity BMI | Diabesity CUN-BAE | |||
Men | n | % | % | n | % | % |
18–29 years | 2329 | 0.3 | 0.6 | 2425 | 0.5 | 0.8 |
30–39 years | 4174 | 1.0 | 1.7 | 5228 | 1.3 | 1.9 |
40–49 years | 4130 | 2.4 | 4.6 | 5477 | 3.1 | 5.8 |
50–59 years | 2972 | 6.2 | 11.1 | 3666 | 7.4 | 14.1 |
60–69 years | 621 | 9.2 | 20.4 | 731 | 10.1 | 22.2 |
Social class I | 972 | 2.1 | 3.6 | 1438 | 2.7 | 5.9 |
Social class II | 2942 | 2.4 | 3.9 | 4669 | 3.2 | 6.1 |
Social class III | 10,312 | 2.9 | 5.8 | 11,420 | 3.5 | 6.3 |
Elementary school | 9874 | 2.9 | 5.7 | 11,169 | 3.6 | 6.4 |
High school | 3478 | 2.5 | 4.0 | 5070 | 3.3 | 6.2 |
University | 874 | 2.0 | 3.5 | 1288 | 2.6 | 5.7 |
Non-smokers | 9656 | 2.8 | 4.4 | 11,567 | 3.5 | 5.5 |
Smokers | 4570 | 2.9 | 5.4 | 5960 | 3.7 | 6.6 |
Non-physical activity | 7851 | 4.1 | 6.9 | 11,899 | 5.9 | 10.2 |
Yes physical activity | 6375 | 0.4 | 1.2 | 5628 | 0.7 | 1.4 |
Non-Mediterranean diet | 8275 | 3.9 | 6.0 | 12,536 | 5.5 | 8.8 |
Yes Mediterranean diet | 5951 | 0.8 | 1.9 | 4991 | 1.2 | 2.6 |
Non-alcohol consumption | 8996 | 1.1 | 5.5 | 12,332 | 1.4 | 7.9 |
Yes alcohol consumption | 5230 | 3.5 | 2.2 | 5195 | 4.8 | 3.3 |
Non-Shift Work | Shift Work | |||||
---|---|---|---|---|---|---|
Diabesity BMI | Diabesity CUN-BAE | Diabesity BMI | Diabesity CUN-BAE | |||
Women | n | % | % | n | % | % |
18–29 years | 1869 | 0.2 | 0.1 | 1975 | 0.4 | 0.2 |
30–39 years | 3103 | 0.6 | 0.8 | 3530 | 0.8 | 0.9 |
40–49 years | 2965 | 1.2 | 2.4 | 3450 | 1.5 | 2.7 |
50–59 years | 1791 | 3.1 | 6.6 | 1974 | 4.3 | 7.1 |
60–69 years | 291 | 4 | 10.5 | 352 | 5.8 | 13.4 |
Social class I | 1164 | 0.2 | 0.9 | 1644 | 0.3 | 1.1 |
Social class II | 2763 | 1.0 | 1.4 | 4175 | 1.3 | 2.0 |
Social class III | 6092 | 2.0 | 3.4 | 5462 | 2.5 | 4.0 |
Elementary school | 5377 | 2.1 | 3.3 | 4871 | 2.4 | 3.9 |
High school | 3628 | 1.0 | 1.6 | 4984 | 1.3 | 2.2 |
University | 1014 | 0.9 | 0.7 | 1426 | 0.3 | 1.0 |
Non-smokers | 6638 | 1.3 | 2.8 | 7794 | 1.6 | 3.4 |
Smokers | 3381 | 1.4 | 3.2 | 3487 | 1.8 | 3.7 |
Non-physical activity | 4090 | 2.5 | 2.3 | 6842 | 4.0 | 4.0 |
Yes physical activity | 5929 | 0.1 | 0.3 | 4439 | 0.3 | 0.4 |
Non-Mediterranean diet | 4206 | 2.3 | 2.0 | 7115 | 3.6 | 3.5 |
Yes Mediterranean diet | 5813 | 0.4 | 0.7 | 4166 | 0.8 | 0.9 |
Non-alcohol consumption | 8361 | 0.6 | 1.9 | 9619 | 1.1 | 3.0 |
Yes alcohol consumption | 1658 | 2.0 | 0.9 | 1662 | 3.1 | 1.3 |
Diabesity BMI | p-Value | Diabesity CUN-BAE | p-Value | |
---|---|---|---|---|
OR (95% CI) | OR (95% CI) | |||
Women | 1 | 1 | ||
Men | 1.59 (1.49–1.70) | <0.001 | 1.21 (1.17–1.26) | <0.001 |
18–29 years | 1 | 1 | ||
30–39 years | 1.21 (1.17–1.26) | <0.001 | 1.51 (1.39–1.63) | <0.001 |
40–49 years | 1.89 (1.73–2.05) | <0.001 | 2.77 (2.35–3.20) | <0.001 |
50–59 years | 3.07 (2.65–3.50) | <0.001 | 4.86 (3.97–5.76) | <0.001 |
60–69 years | 7.49 (6.08–8.90) | <0.001 | 8.95 (7.35–10.55) | <0.001 |
Social class I | 1 | 1 | ||
Social class II | 1.20 (1.15–1.26) | <0.001 | 1.65 (1.42–1.88) | <0.001 |
Social class III | 1.58 (1.46–1.70) | <0.001 | 2.12 (1.63–2.62) | <0.001 |
University | 1 | 1 | ||
High school | 1.23 (1.16–1.31) | <0.001 | 1.60 (1.40–1.81) | <0.001 |
Elementary school | 1.57 (1.45–1.69) | <0.001 | 2.13 (1.65–2.62) | <0.001 |
Non-smokers | 1 | 1 | ||
Smokers | 1.28 (1.20–1.36) | <0.001 | 1.33 (1.26–1.41) | <0.001 |
Yes physical activity | 1 | 1 | ||
Non-physical activity | 12.62 (9.95–15.30) | <0.001 | 9.87 (8.08–11.67) | <0.001 |
Yes Mediterranean diet | 1 | 1 | ||
Non-Mediterranean diet | 6.85 (5.12–8.59) | <0.001 | 5.21 (4.15–6.27) | <0.001 |
Non-alcohol consumption | 1 | 1 | ||
Yes alcohol consumption | 4.23 (3.18–5.29) | <0.001 | 5.12 (4.09–5.16) | <0.001 |
Non-shift work | 1 | 1 | ||
Yes shift work | 2.22 (1.89–2.56) | <0.001 | 2.62 (2.03–3.22) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosoratto, J.; Tárraga López, P.J.; López-González, Á.A.; Obrador de Hevia, J.; Busquets-Cortés, C.; Ramírez-Manent, J.I. Association of Shift Work, Health Behaviors, and Socioeconomic Status with Diabesity in over 53,000 Spanish Employees. J. Clin. Med. 2025, 14, 5969. https://doi.org/10.3390/jcm14175969
Tosoratto J, Tárraga López PJ, López-González ÁA, Obrador de Hevia J, Busquets-Cortés C, Ramírez-Manent JI. Association of Shift Work, Health Behaviors, and Socioeconomic Status with Diabesity in over 53,000 Spanish Employees. Journal of Clinical Medicine. 2025; 14(17):5969. https://doi.org/10.3390/jcm14175969
Chicago/Turabian StyleTosoratto, Javier, Pedro Juan Tárraga López, Ángel Arturo López-González, Joan Obrador de Hevia, Carla Busquets-Cortés, and José Ignacio Ramírez-Manent. 2025. "Association of Shift Work, Health Behaviors, and Socioeconomic Status with Diabesity in over 53,000 Spanish Employees" Journal of Clinical Medicine 14, no. 17: 5969. https://doi.org/10.3390/jcm14175969
APA StyleTosoratto, J., Tárraga López, P. J., López-González, Á. A., Obrador de Hevia, J., Busquets-Cortés, C., & Ramírez-Manent, J. I. (2025). Association of Shift Work, Health Behaviors, and Socioeconomic Status with Diabesity in over 53,000 Spanish Employees. Journal of Clinical Medicine, 14(17), 5969. https://doi.org/10.3390/jcm14175969