Opportunistic Detection of Chronic Kidney Disease Using CT-Based Measurements of Kidney Volume and Perirenal Fat
Abstract
1. Background
2. Materials and Methods
2.1. Ethics
2.2. Inclusion and Exclusion Criteria
- Acute kidney injury at the time of imaging;
- Extensive free fluid or fat stranding impairing fat quantification (determined during screening by researchers to avoid visceral fat tissue misclassification due to abnormal density);
- Renal transplants;
- Hydronephrosis;
- Renal neoplasms (simple renal cysts were not an exclusion criterion);
- Polycystic kidney disease;
- Significant image artifacts.
2.3. Image Analysis
- Automated segmentation of all major abdominal organs for assessment of KV (Figure 1) (including liver and spleen attenuation). Only the kidney parenchyma was segmented with exclusion of renal hilum or cystic areas in subjects with renal cysts.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, Z.; Chen, X.; Sun, J.; Jiang, L. The association between visceral adiposity index and decreased renal function: A population-based study. Front. Nutr. 2023, 10, 1076301. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. (2011) 2022, 12, 7–11. [Google Scholar] [CrossRef]
- Jager, K.J.; Kovesdy, C.; Langham, R.; Rosenberg, M.; Jha, V.; Zoccali, C. A single number for advocacy and communication—Worldwide more than 850 million individuals have kidney diseases. Kidney Int. 2019, 96, 1048–1050. [Google Scholar] [CrossRef]
- Francis, A.; Harhay, M.N.; Ong, A.C.M.; Tummalapalli, S.L.; Ortiz, A.; Fogo, A.B.; Fliser, D.; Roy-Chaudhury, P.; Fontana, M.; Nangaku, M.; et al. Chronic kidney disease and the global public health agenda: An international consensus. Nat. Rev. Nephrol. 2024, 20, 473–485. [Google Scholar] [CrossRef]
- Cockwell, P.; Fisher, L.A. The global burden of chronic kidney disease. Lancet 2020, 395, 662–664. [Google Scholar] [CrossRef]
- Maringhini, S.; Zoccali, C. Chronic Kidney Disease Progression—A Challenge. Biomedicines 2024, 12, 2203. [Google Scholar] [CrossRef]
- Levin, A.; Okpechi, I.G.; Caskey, F.J.; Yang, C.W.; Tonelli, M.; Jha, V. Perspectives on early detection of chronic kidney disease: The facts, the questions, and a proposed framework for 2023 and beyond. Kidney Int. 2023, 103, 1004–1008. [Google Scholar] [CrossRef]
- Bennett, K.M.; Bertram, J.F.; Beeman, S.C.; Gretz, N. The emerging role of MRI in quantitative renal glomerular morphology. Am. J. Physiol. Renal Physiol. 2013, 304, 1252–1257. [Google Scholar] [CrossRef]
- Singla, R.K.; Kadatz, M.; Rohling, R.; Nguan, C. Kidney Ultrasound for Nephrologists: A Review. Kidney Med. 2022, 4, 100464. [Google Scholar] [CrossRef]
- Manabe, S.; Kataoka, H.; Mochizuki, T.; Iwadoh, K.; Ushio, Y.; Kawachi, K.; Watanabe, K.; Watanabe, S.; Akihisa, T.; Makabe, S.; et al. Impact of visceral fat area in patients with chronic kidney disease. Clin. Exp. Nephrol. 2021, 25, 608–620. [Google Scholar] [CrossRef]
- Fontana, L.; Eagon, J.C.; Trujillo, M.E.; Scherer, P.E.; Klein, S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 2007, 56, 1010–1013. [Google Scholar] [CrossRef]
- Yu, J.Y.; Choi, W.J.; Lee, H.S.; Lee, J.W. Relationship between inflammatory markers and visceral obesity in obese and overweight Korean adults An observational study. Medicine 2019, 98, e14740. [Google Scholar] [CrossRef]
- Huang, N.; Mao, E.-W.; Hou, N.-N.; Liu, Y.-P.; Han, F.; Sun, X.-D. Novel insight into perirenal adipose tissue: A neglected adipose depot linking cardiovascular and chronic kidney disease. World J. Diabetes 2020, 11, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Mao, Y.; Hu, J.; Han, S.; Gong, L.; Luo, T.; Yang, S.; Qing, H.; Wang, Y.; Du, Z.; et al. Perirenal Fat Thickness Is Significantly Associated with the Risk for Development of Chronic Kidney Disease in Patients with Diabetes. Diabetes 2021, 70, 2322–2332. [Google Scholar] [CrossRef] [PubMed]
- Favre, G.; Grangeon-Chapon, C.; Raffaelli, C.; François-Chalmin, F.; Iannelli, A.; Esnault, V. Perirenal fat thickness measured with computed tomography is a reliable estimate of perirenal fat mass. PLoS ONE 2017, 12, e0175561. [Google Scholar] [CrossRef]
- Cho, I.J.; Wi, J.; Lee, S.E.; Kim, D.H.; Pyun, W.B. Perirenal Fat and Kidney Function Deterioration in Patients with Acute Decompensated Heart Failure. Int. J. Heart Fail. 2023, 5, 36–47. [Google Scholar] [CrossRef]
- Baumann, V.J.A.; Banati, R.; Clarke, J.L. Ultrasound measurement of perirenal adipose tissue indicates cardiovascular disease, but standardisation is needed: A systematic review. Australas. J. Ultrasound Med. 2024, 28, e12407. [Google Scholar] [CrossRef]
- Kang, P.; Sun, B.; Hao, J.; Wang, C.; Chen, X. Perirenal fat and chronic kidney disease: A systematic review and meta-analysis. Kidney Blood Press. Res. 2025, 50, 240–248. [Google Scholar] [CrossRef]
- Moritz, E.; Dadson, P.; Saukko, E.; Honka, M.J.; Koskensalo, K.; Seppälä, K.; Pekkarinen, L.; Moriconi, D.; Helmiö, M.; Salminen, P.; et al. Renal Sinus Fat Is Expanded in Patients with Obesity and/or Hypertension and Reduced by Bariatric Surgery Associated with Hypertension Remission. Metabolites 2022, 12, 617. [Google Scholar] [CrossRef]
- Lamacchia, O.; Nicastro, V.; Camarchio, D.; Valente, U.; Grisorio, R.; Gesualdo, L.; Cignarelli, M. Para- and perirenal fat thickness is an independent predictor of chronic kidney disease, increased renal resistance index and hyperuricaemia in type-2 diabetic patients. Nephrol. Dial. Transplant. 2011, 26, 892–898. [Google Scholar] [CrossRef]
- Hu, H.; Liang, W.; Zhang, Z.; Liu, Z.; Chu, F.; Bao, Y.; Ran, J.; Ding, G.; Goebl, C.S. The Utility of Perirenal Fat in Determining the Risk of Onset and Progression of Diabetic Kidney Disease. Int. J. Endocrinol. 2022, 2022, 2550744. [Google Scholar] [CrossRef] [PubMed]
- Geraci, G.; Zammuto, M.M.; Mattina, A.; Zanoli, L.; Geraci, C.; Granata, A.; Nardi, E.; Fatuzzo, P.M.; Cottone, S.; Mulè, G. Para-perirenal distribution of body fat is associated with reduced glomerular filtration rate regardless of other indices of adiposity in hypertensive patients. J. Clin. Hypertens. 2018, 20, 1438–1446. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.K.; Choi, S.M.; Park, B.H.; Jeong, B.C.; Seo, S.I.; Jeon, S.S.; Lee, H.M.; Choi, H.-Y.; Jeon, H.G. Measurement of renal function in a kidney donor: A comparison of creatinine-based and volume-based GFRs. Eur. Radiol. 2015, 25, 3143–3150. [Google Scholar] [CrossRef] [PubMed]
- Nunes-Carneiro, D.; Madanelo, M.; Silva, F.; Pestana, N.; Ribeiro, C.; Gil-Sousa, D.; Martins, L.S.; Almeida, M.; Dias, L.; Malheiro, J.; et al. Remaining kidney volume indexed to weight as a strong predictor of estimated glomerular filtration rate at 1 year and mid-term renal function after living-donor nephrectomy—A retrospective observational study. Transpl. Int. 2020, 33, 1262–1273. [Google Scholar] [CrossRef]
- Goh, Y.S.B.; Wu, M.W.F.; Tai, B.C.; Lee, K.C.J.; Raman, L.; Teo, B.W.; Vathsala, A.; Tiong, H.Y. Comparison of creatinine based and kidney volume based methods of estimating glomerular filtration rates in potential living kidney donors. J. Urol. 2013, 190, 1820–1826. [Google Scholar] [CrossRef]
- Herts, B.R.; Sharma, N.; Lieber, M.; Freire, M.; Goldfarb, D.A.; Poggio, E.D. Estimating glomerular filtration rate in kidney donors: A model constructed with renal volume measurements from donor CT scans. Radiology 2009, 252, 109–116. [Google Scholar] [CrossRef]
- Gupta, S.; Singh, A.H.; Shabbir, A.; Hahn, P.F.; Harris, G.; Sahani, D. Assessing renal parenchymal volume on unenhanced ct as a marker for predicting renal function in patients with chronic kidney disease. Acad. Radiol. 2012, 19, 654–660. [Google Scholar] [CrossRef]
- Narikiyo, K.; Tanabe, M.; Higashi, M.; Kawano, Y.; Inoue, A.; Kiyoyama, H.; Kamamura, N.; Kobayashi, T.; Ueda, T.; Ito, K. Longitudinal changes in renal volumes evaluated by automated three-dimensional volumetric computed tomography of the whole kidney: The association with the renal function and disease progression. Eur. J. Radiol. 2024, 170, 111245. [Google Scholar] [CrossRef]
- Cho, J.M.; Koh, J.H.; Kim, S.G.; Lee, S.; Kim, Y.; Cho, S.; Kim, K.; Kim, Y.C.; Han, S.S.; Lee, H.; et al. Associations of MRI-derived kidney volume, kidney function, body composition and physical performance in ≈38,000 UK Biobank participants: A population-based observational study. Clin. Kidney J. 2024, 17, sfae068. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Wasserthal, J.; Breit, H.-C.; Meyer, M.T.; Pradella, M.; Hinck, D.; Sauter, A.W.; Heye, T.; Boll, D.T.; Cyriac, J.; Yang, S.; et al. TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images. Radiol. Artif. Intell. 2023, 5, e230024. [Google Scholar] [CrossRef]
- Yang, H.; Gao, Z.; Shen, Q.; Zhi, H.; Cai, W.; Wang, X.; Chen, X.; Shen, X.; Zhang, W. Body composition analysis using CT at three aspects of the lumbar third vertebra and its impact on the diagnosis of sarcopenia. World J. Surg. Oncol. 2025, 23, 64. [Google Scholar] [CrossRef]
- Lin, P.; Min, Z.; Wei, G.; Lei, H.; Feifei, Z.; Yunfei, Z. Volumetric evaluation of renal sinus adipose tissue on computed tomography images in bilateral nephrolithiasis patients. Int. Urol. Nephrol. 2020, 52, 1027–1034. [Google Scholar] [CrossRef]
- Singh, D.; Das, C.; Baruah, M. Imaging of non alcoholic fatty liver disease: A road less travelled. Indian J. Endocrinol. Metab. 2013, 17, 990. [Google Scholar] [CrossRef]
- Kodama, Y.; Ng, C.S.; Wu, T.T.; Ayers, G.D.; Curley, S.A.; Abdalla, E.K.; Vauthey, J.N.; Charnsangavej, C. Comparison of CT methods for determining the fat content of the liver. Am. J. Roentgenol. 2007, 188, 1307–1312. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Gong, H.; Pang, Y.; Gu, L.; Niu, S.; Xu, Y.; Li, P.; Liu, K.; Tang, L.; Xuan, Y.; et al. Risk factors influencing the thickness and stranding of perinephric fat of mayo adhesive probability score in minimally invasive nephrectomy. Med. Sci. Monit. 2019, 25, 3825–3831. [Google Scholar] [CrossRef] [PubMed]
- Nesbitt, K.; Sharma, P. Visceral fat is associated with high-grade complications in patients undergoing minimally invasive partial nephrectomy for small renal masses. Curr. Urol. 2021, 15, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Eisner, B.H.; Zargooshi, J.; Berger, A.D.; Cooperberg, M.R.; Doyle, S.M.; Sheth, S.; Stoller, M.L. Gender differences in subcutaneous and perirenal fat distribution. Surg. Radiol. Anat. 2010, 32, 879–882. [Google Scholar] [CrossRef]
- Guo, X.L.; Tu, M.; Chen, Y.; Wang, W. Perirenal Fat Thickness: A Surrogate Marker for Metabolic Syndrome in Chinese Newly Diagnosed Type 2 Diabetes. Front. Endocrinol. 2022, 13, 850334. [Google Scholar] [CrossRef]
- Hu, D.; Li, G.; Ge, D.; Ke, L.; Shu, H.; Chen, Y.; Hao, Z. The ratio of perirenal fat thickness to renal parenchymal thickness, a novel indicator of fat accumulation associated with kidney stones. Lipids Health Dis. 2025, 24, 86. [Google Scholar] [CrossRef]
- Wang, L.; Pan, Y.; Ye, X.; Zhu, Y.; Lian, Y.; Zhang, H.; Xu, M.; Liu, M.; Ruan, X. Perirenal fat thickness and liver fat fraction are independent predictors of MetS in adults with overweight and obesity suspected with NAFLD: A retrospective study. Diabetol. Metab. Syndr. 2023, 15, 56. [Google Scholar] [CrossRef]
- Białek, P.; Dobek, A.; Falenta, K.; Kurnatowska, I.; Stefańczyk, L. Usefulness of Radiomics and Kidney Volume Based on Non-Enhanced Computed Tomography in Chronic Kidney Disease: Initial Report. Kidney Blood Press. Res. 2025, 50, 161–170. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, Y.; Yang, Y.; Liu, C.; Zhao, D.; Ke, J. The Relationship between Perirenal Fat Thickness and Reduced Glomerular Filtration Rate in Patients with Type 2 Diabetes. J. Diabetes Res. 2020, 2020, 6076145. [Google Scholar] [CrossRef]
- Musso, G.; Gambino, R.; Tabibian, J.H.; Ekstedt, M.; Kechagias, S.; Hamaguchi, M.; Hultcrantz, R.; Hagström, H.; Yoon, S.K.; Charatcharoenwitthaya, P.; et al. Association of Non-alcoholic Fatty Liver Disease with Chronic Kidney Disease: A Systematic Review and Meta-analysis. PLoS Med. 2014, 11, e1001680. [Google Scholar] [CrossRef]
- Mantovani, A.; Zaza, G.; Byrne, C.D.; Lonardo, A.; Zoppini, G.; Bonora, E.; Targher, G. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis. Metabolism 2018, 79, 64–76. [Google Scholar] [CrossRef]
- Kawasaki, S.; Aoki, K.; Hasegawa, O.; Numata, K.; Tanaka, K.; Shibata, N.; Shimada, S.; Okamura, A.; Terauchi, Y. Sonographic evaluation of visceral fat by measuring para- and perirenal fat. J. Clin. Ultrasound 2008, 36, 129–133. [Google Scholar] [CrossRef]
CKD | Controls | p-Value | |
---|---|---|---|
Number | 117 (100%) | 120 (100%) | - |
Male (n) | 56 (47.9%) | 61 (50.8%) | 0.648 |
Age (years) | 72.0 (60.0–78.0) | 67.5 (49.0–74.3) | 0.017 |
BMI (kg/m2) | 25.4(±5.0) | 26.4(±3.8) | 0.114 |
Creatinine (mg/dL) | 2.00 (1.45–3.11) | 0.73 (0.62–0.85) | <0.001 |
eGFR (mL/min/1.73 m2) | 29.0 (18.7–39.3) | 96.6 (77.0–114.9) | <0.001 |
KV (mL) | 106.1 (73.3–143.6) | 154.2 (127.5–188.7) | <0.001 |
PrFT (mm) | 15.12 (12.20–22.87) | 8.27 (5.53–13.53) | <0.001 |
Renal hilum volume (mL) | 8.41 (5.57–18.77) | 6.88 (4.20–12.21) | 0.007 |
Renal hilum attenuation (HU) | −70.0 (±9.4) | −66.7(±10.5) | 0.012 |
Visceral fat area (cm2) | 156.54 (91.96–236.67) | 126.24 (66.68–197.91) | 0.013 |
Subcutaneous fat area (cm2) | 185.49 (126.34–266.54) | 170.50 (118.92–255.28) | 0.485 |
Skeletal muscles area (cm2) | 112.56 (96.05–130.53) | 115.58 (97.95–138.01) | 0.421 |
Skeletal muscles attenuation (HU) | 23.60 (15.40–32.10) | 26.65 (17.48–34.80) | 0.042 |
Liver steatosis (n) | 13 (11.1%) | 21 (17.5%) | 0.161 |
Liver attenuation (HU) | 54.3 (50.2–58.7) | 51.4 (46.6–56.0) | <0.001 |
ICC (3,1) (95% CI) | Paired t-Test-p-Value | Bland–Altman (Mean Diff., LoA, Range) | |
---|---|---|---|
KV | 0.999 (0.998–0.999) | p = 0.546 | 0.184; −4.416 to 4.784; range: 9.200 |
PrFT | 0.996 (0.993–0.998) | p = 0.299 | −0.108; −1.675 to 1.459; range: 3.134 |
Renal hilum volume | 0.997 (0.995–0.998) | p = 0.057 | −0.129; −1.140 to 0.881; range: 2.021 |
Renal hilum attenuation | 0.997 (0.995–0.998) | p = 0.135 | 0.135; −1.217 to 1.487; range: 2.704 |
Predictor | OR (95% CI) | p-Value |
---|---|---|
Gender | 0.616 (0.334–1.137) | 0.121 |
Age | 1.018 (1.001–1.035) | 0.043 |
BMI | 0.931 (0.852–1.018) | 0.117 |
KV | 0.978 (0.970–0.986) | <0.001 |
PrFT | 1.125 (1.071–1.182) | <0.001 |
Renal hilum volume | 1.034 (0.994–1.076) | 0.103 |
Renal hilum attenuation | 0.982 (0.953–1.012) | 0.238 |
Visceral fat area | 1.020 (0.999–1.005) | 0.166 |
Subcutaneous fat area | 1.000 (0.998–1.003) | 0.797 |
Skeletal muscles area | 0.993 (0.983–1.003) | 0.148 |
Skeletal muscles attenuation | 0.973 (0.950–0.997) | 0.026 |
Liver steatosis | 0.694 (0.289–1.667) | 0.414 |
Liver attenuation | 1.065 (1.021–1.111) | 0.138 |
Variable | OR | OR Lower 95% CI | OR Upper 95% CI | p-Value |
---|---|---|---|---|
Intercept | 0.173 | 0.077 | 0.389 | <0.001 |
Age | 0.732 | 0.410 | 1.307 | 0.292 |
KV | 0.241 | 0.139 | 0.416 | <0.001 |
PrFT (2nd tertile) | 8.189 | 2.916 | 22.994 | <0.001 |
PrFT (3rd tertile) | 19.129 | 6.012 | 61.993 | <0.001 |
Skeletal muscles attenuation | 0.833 | 0.480 | 1.445 | 0.516 |
Variable | OR | OR Lower 95% CI | OR Upper 95% CI | p-Value |
---|---|---|---|---|
Intercept | 0.180 | 0.083 | 0.392 | <0.001 |
KV | 0.249 | 0.146 | 0.422 | <0.001 |
PrFT (2nd tertile) | 7.720 | 2.860 | 20.839 | <0.001 |
PrFT (3rd tertile) | 16.892 | 5.727 | 49.822 | <0.001 |
Average/Total | |
---|---|
n | 71 |
AUC | 0.894 |
Accuracy | 0.789 |
F1 Score | 0.800 |
Precision (Positive Predictive Value) | 0.750 |
Recall (True Positive Rate (Sensitivity).) | 0.857 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Białek, P.; Żuberek, M.; Dobek, A.; Falenta, K.; Kurnatowska, I.; Stefańczyk, L. Opportunistic Detection of Chronic Kidney Disease Using CT-Based Measurements of Kidney Volume and Perirenal Fat. J. Clin. Med. 2025, 14, 5888. https://doi.org/10.3390/jcm14165888
Białek P, Żuberek M, Dobek A, Falenta K, Kurnatowska I, Stefańczyk L. Opportunistic Detection of Chronic Kidney Disease Using CT-Based Measurements of Kidney Volume and Perirenal Fat. Journal of Clinical Medicine. 2025; 14(16):5888. https://doi.org/10.3390/jcm14165888
Chicago/Turabian StyleBiałek, Piotr, Michał Żuberek, Adam Dobek, Krzysztof Falenta, Ilona Kurnatowska, and Ludomir Stefańczyk. 2025. "Opportunistic Detection of Chronic Kidney Disease Using CT-Based Measurements of Kidney Volume and Perirenal Fat" Journal of Clinical Medicine 14, no. 16: 5888. https://doi.org/10.3390/jcm14165888
APA StyleBiałek, P., Żuberek, M., Dobek, A., Falenta, K., Kurnatowska, I., & Stefańczyk, L. (2025). Opportunistic Detection of Chronic Kidney Disease Using CT-Based Measurements of Kidney Volume and Perirenal Fat. Journal of Clinical Medicine, 14(16), 5888. https://doi.org/10.3390/jcm14165888