Are We Accurately Predicting Mortality in Renal Cancer? A Systematic Review of Prognostic Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol
2.2. Study Design, Search Criteria, and Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Risk of Bias and Applicability
2.5. Statistical Analysis
3. Results
3.1. Results of the Literature Search
3.2. Characteristics of the Studies According to CHARMS
3.3. Source of Data and Participants
3.4. Outcome to Be Predicted
3.5. Candidate Predictors
3.6. Sample Size
3.7. Missing Data
3.8. Model Development
3.9. Model Performance
3.10. Model Evaluation
3.11. Results
3.12. Interpretation and Discussion
3.13. PROBAST Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
PROBAST | Prediction Model Risk of Bias Assessment Tool |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
CHARMS | Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies |
References
- Lorente, D.; Trilla, E.; Meseguer, A.; Planas, J.; Placer, J.; Celma, A.; Salvador, C.; Regis, L.; Morote, J. Systematic review of renal carcinoma prognostic factors. Actas Urol. Esp. 2017, 41, 215–225. [Google Scholar] [CrossRef]
- Guo, Q.; Li, S.; Zhu, J.; Wang, Z.; Li, Z.; Wang, J.; Wen, R.; Li, H. Development and validation of prognostic nomograms for adult with papillary renal cell carcinoma: A retrospective study. Clinics 2024, 79, 100374. [Google Scholar] [CrossRef]
- Dyba, T.; Randi, G.; Bray, F.; Martos, C.; Giusti, F.; Nicholson, N.; Gavin, A.; Flego, M.; Neamtiu, L.; Dimitrova, N.; et al. The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer 2021, 157, 308–347. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, N.; Drake, C.G. Kidney Cancer: An Overview of Current Therapeutic Approaches. Urol. Clin. North Am. 2020, 47, 419–431. [Google Scholar] [CrossRef]
- Chen, W.; Tanaka, H.; Kobayashi, M.; Fukuda, S.; Nakayama, A.; Meagher, M.F.; Greenwald, R.; Schmeusser, B.; Nicase, E.; Waseda, Y.; et al. Development and validation of nomograms and integrated software incorporating preoperative C-reactive protein level for prognostic prediction of nonmetastatic clear cell renal cell carcinoma: Results from the International Marker Consortium for Renal Cancer (INMARC) Registry. World J. Urol. 2025, 43, 63. [Google Scholar] [CrossRef] [PubMed]
- Beneyto-Ripoll, C.; Palazón-Bru, A.; Llópez-Espinós, P.; Martínez-Díaz, A.M.; Gil-Guillén, V.F.; de Los Ángeles Carbonell-Torregrosa, M. A critical appraisal of the prognostic predictive models for patients with sepsis: Which model can be applied in clinical practice? Int. J. Clin. Pract. 2021, 75, e14044. [Google Scholar] [CrossRef]
- Moons, K.G.M.; de Groot, J.A.H.; Bouwmeester, W.; Vergouwe, Y.; Mallett, S.; Altman, D.G.; Reitsma, J.B.; Collins, G.S. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: The CHARMS checklist. PLoS Med. 2014, 11, e1001744. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Yao, X.; Song, W.; Zhang, H.; Zhang, H.; Wang, Y.; Zhang, Y.; Wang, G.; Wang, K.; Mao, W.; et al. Prognostic value of preoperative combined neutrophil, monocyte, and lymphocyte scores in patients with renal cell carcinoma undergoing laparoscopic nephrectomy: A retrospective study. Cancer Med. 2024, 13, e7214. [Google Scholar] [CrossRef] [PubMed]
- Palazón-Bru, A.; Martín-Pérez, F.; Mares-García, E.; Beneyto-Ripoll, C.; Gil-Guillén, V.F.; Pérez-Sempere, Á.; Carbonell-Torregrosa, M.Á. A general presentation on how to carry out a CHARMS analysis for prognostic multivariate models. Stat. Med. 2020, 39, 3207–3225. [Google Scholar] [CrossRef]
- Palazón-Bru, A.; Mares-García, E.; López-Bru, D.; Mares-Arambul, E.; Folgado-de la Rosa, D.M.; Carbonell-Torregrosa, M.D.L.Á.; Gil-Guillén, V.F. A critical appraisal of the clinical applicability and risk of bias of the predictive models for mortality and recurrence in patients with oropharyngeal cancer: Systematic review. Head Neck 2020, 42, 763–773. [Google Scholar] [CrossRef]
- Wolff, R.F.; Moons, K.G.M.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann. Intern. Med. 2019, 170, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Sarrió-Sanz, P.; Martinez-Cayuelas, L.; Lumberas, B.; Sánchez-Caballero, L.; Palazón-Bru, A.; Gil-Guillén, V.F.; Gómez-Pérez, L. Mortality prediction models after radical cystectomy for bladder tumour: A systematic review and critical appraisal. Eur. J. Clin. Investig. 2022, 52, e13822. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, A.; Lin, C.; Gómez Rivas, J.; Ibáñez, L.; Abad López, P.; Willemse, P.-P.; Imran Omar, M.; Remmers, S.; Cornford, P.; Rajwa, P.; et al. Predictive Models for Assessing Patients’ Response to Treatment in Metastatic Prostate Cancer: A Systematic Review. Eur. Urol. Open Sci. 2024, 63, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Moons, K.G.M.; Wolff, R.F.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Ann. Intern. Med. 2019, 170, W1–W33. [Google Scholar] [CrossRef] [PubMed]
- Zhanghuang, C.; Wang, J.; Zhang, Z.; Jin, L.; Tan, X.; Mi, T.; Liu, J.; Li, M.; He, D. A Web-Based Prediction Model for Cancer-Specific Survival of Elderly Patients With Clear Cell Renal Cell Carcinoma: A Population-Based Study. Front. Public Health 2021, 9, 833970. [Google Scholar] [CrossRef]
- Huang, G.; Liao, J.; Cai, S.; Chen, Z.; Qin, X.; Ba, L.; Rao, J.; Zhong, W.; Lin, Y.; Liang, Y.; et al. Development and validation of a prognostic nomogram for predicting cancer-specific survival in patients with metastatic clear cell renal carcinoma: A study based on SEER database. Front. Oncol. 2022, 12, 949058. [Google Scholar] [CrossRef]
- Zheng, J.; Li, S.; Zhao, Y.; Tao, Z.; Li, L.; Li, Z.; Li, M.; Chen, X. Nomograms for predicting overall and cancer-specific survival of patients with chromophobe renal cell carcinoma after nephrectomy: A retrospective SEER-based study. BMJ Open 2022, 12, e062129. [Google Scholar] [CrossRef]
- Laukhtina, E.; Schuettfort, V.M.; D’Andrea, D.; Pradere, B.; Quhal, F.; Mori, K.; Sari Motlagh, R.; Mostafaei, H.; Katayama, S.; Grossmann, N.C.; et al. Selection and evaluation of preoperative systemic inflammatory response biomarkers model prior to cytoreductive nephrectomy using a machine-learning approach. World J. Urol. 2022, 40, 747–754. [Google Scholar] [CrossRef]
- Lu, Z.; He, W.; Zhou, J.; Yang, C.; Xiang, R. Construction and validation of a novel prognostic nomogram for patients with metastatic renal cell carcinoma: A SEER-based study. J. Int. Med. Res. 2022, 50, 3000605221105367. [Google Scholar] [CrossRef]
- Ni, J.; Wang, Y.; Zhang, H.; Wang, K.; Song, W.; Luo, M.; Che, J.; Geng, J.; Xu, Y.; Yao, X.; et al. Combination of preoperative plasma fibrinogen and neutrophil-to-lymphocyte ratio to predict the prognosis for patients undergoing laparoscopic nephrectomy for renal cell carcinoma. Am. J. Cancer Res. 2022, 12, 3713–3728. [Google Scholar]
- Wang, J.; Zhanghuang, C.; Tan, X.; Mi, T.; Liu, J.; Jin, L.; Li, M.; Zhang, Z.; He, D. Development and Validation of a Competitive Risk Model in Elderly Patients With Chromophobe Cell Renal Carcinoma: A Population-Based Study. Front. Public Health 2022, 10, 840525. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J.; Pan, X.; Liu, X.; Zhao, B. A Web-Based Prediction Model for Cancer-Specific Survival of Middle-Aged Patients With Non-metastatic Renal Cell Carcinoma: A Population-Based Study. Front. Public Health 2022, 10, 822808. [Google Scholar] [CrossRef]
- Zhanghuang, C.; Wang, J.; Yao, Z.; Li, L.; Xie, Y.; Tang, H.; Zhang, K.; Wu, C.; Yang, Z.; Yan, B. Development and Validation of a Nomogram to Predict Cancer-Specific Survival in Elderly Patients With Papillary Renal Cell Carcinoma. Front. Public Health 2022, 10, 874427. [Google Scholar] [CrossRef]
- Wu, K.; Liu, Z.; Shao, Y.; Li, X. Nomogram Predicting Survival to Assist Decision-Making of Metastasectomy in Patients With Metastatic Renal Cell Carcinoma. Front. Oncol. 2020, 10, 592243. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Liu, Z.; Zhang, Z.; Fan, Y.; Chen, Y.; He, Z.; Zhou, L.; Jin, J.; Shen, C.; Yu, W. Development and internal validation of nomograms for the prediction of postoperative survival of patients with grade 4 renal cell carcinoma (RCC). Transl. Androl. Urol. 2020, 9, 2629–2639. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Wei, X.; Wu, A.; Sha, Y.; Li, X.; Qi, F. Nomograms for predicting overall and cancer-specific survival in patients with papillary renal cell carcinoma: A population-based study using SEER database. Transl. Androl. Urol. 2020, 9, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, R.; Ding, Y.; Wang, Z.; Yang, C.; Tao, S.; Liang, C. Prognostic nomograms and Aggtrmmns scoring system for predicting overall survival and cancer-specific survival of patients with kidney cancer. Cancer Med. 2020, 9, 2710–2722. [Google Scholar] [CrossRef]
- Chen, C.; Geng, X.; Liang, R.; Zhang, D.; Sun, M.; Zhang, G.; Hou, J. Nomograms-based prediction of overall and cancer-specific survivals for patients with chromophobe renal cell carcinoma. Exp. Biol. Med. 2021, 246, 729–739. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, C.; Yuan, N. Prognostic nomograms based on log odds of positive lymph nodes for patients with renal cell carcinoma: A retrospective cohort study. Int. J. Surg. 2018, 60, 28–40. [Google Scholar] [CrossRef]
- Lyon, T.D.; Gershman, B.; Shah, P.H.; Thompson, R.H.; Boorjian, S.A.; Lohse, C.M.; Costello, B.A.; Cheville, J.C.; Leibovich, B.C. Risk prediction models for cancer-specific survival following cytoreductive nephrectomy in the contemporary era. Urol. Oncol. Semin. Orig. Investig. 2018, 36, 499.e1–499.e7. [Google Scholar] [CrossRef]
- Leibovich, B.C.; Lohse, C.M.; Cheville, J.C.; Zaid, H.B.; Boorjian, S.A.; Frank, I.; Thompson, R.H.; Parker, W.P. Predicting Oncologic Outcomes in Renal Cell Carcinoma After Surgery. Eur. Urol. 2018, 73, 772–780. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, Y.; Zhang, J.; Fang, Z.; Liu, Z.; Xu, Z.; Fan, Y. Nomograms for predicting long-term overall survival and disease-specific survival of patients with clear cell renal cell carcinoma. OncoTargets Ther. 2018, 11, 5535–5544. [Google Scholar] [CrossRef]
- Hsiao, W.; Herrel, L.A.; Yu, C.; Kattan, M.W.; Canter, D.J.; Carthon, B.C.; Ogan, K.; Master, V.A. Nomograms incorporating serum C-reactive protein effectively predict mortality before and after surgical treatment of renal cell carcinoma. Int. J. Urol. 2015, 22, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Margulis, V.; Shariat, S.F.; Rapoport, Y.; Rink, M.; Sjoberg, D.D.; Tannir, N.M.; Abel, E.J.; Culp, S.H.; Tamboli, P.; Wood, C.G. Development of accurate models for individualized prediction of survival after cytoreductive nephrectomy for metastatic renal cell carcinoma. Eur. Urol. 2013, 63, 947–952. [Google Scholar] [CrossRef]
- May, M.; Ficarra, V.; Shariat, S.F.; Zigeuner, R.; Chromecki, T.; Cindolo, L.; Burger, M.; Gunia, S.; Feciche, B.; Wenzl, V.; et al. Impact of clinical and histopathological parameters on disease specific survival in patients with collecting duct renal cell carcinoma: Development of a disease specific risk model. J. Urol. 2013, 190, 458–463. [Google Scholar] [CrossRef]
- Kutikov, A.; Egleston, B.L.; Canter, D.; Smaldone, M.C.; Wong, Y.N.; Uzzo, R.G. Competing risks of death in patients with localized renal cell carcinoma: A comorbidity based model. J. Urol. 2012, 188, 2077–2083. [Google Scholar] [CrossRef] [PubMed]
- Klatte, T.; Remzi, M.; Zigeuner, R.E.; Mannweiler, S.; Said, J.W.; Kabbinavar, F.F.; Haitel, A.; Waldert, M.; de Martino, M.; Marberger, M.; et al. Development and external validation of a nomogram predicting disease specific survival after nephrectomy for papillary renal cell carcinoma. J. Urol. 2010, 184, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Iimura, Y.; Saito, K.; Fujii, Y.; Kumagai, J.; Kawakami, S.; Komai, Y.; Yonese, J.; Fukui, I.; Kihara, K. Development and external validation of a new outcome prediction model for patients with clear cell renal cell carcinoma treated with nephrectomy based on preoperative serum C-reactive protein and TNM classification: The TNM-C score. J. Urol. 2009, 181, 1004–1012. [Google Scholar] [CrossRef]
- Karakiewicz, P.I.; Suardi, N.; Capitanio, U.; Jeldres, C.; Ficarra, V.; Cindolo, L.; de la Taille, A.; Tostain, J.; Mulders, P.F.A.; Bensalah, K.; et al. A preoperative prognostic model for patients treated with nephrectomy for renal cell carcinoma. Eur. Urol. 2009, 55, 287–295. [Google Scholar] [CrossRef]
- Kanao, K.; Mizuno, R.; Kikuchi, E.; Miyajima, A.; Nakagawa, K.; Ohigashi, T.; Nakashima, J.; Oya, M. Preoperative prognostic nomogram (probability table) for renal cell carcinoma based on TNM classification. J. Urol. 2009, 181, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.S.; Choi, Y.D.; Kim, S.J.; Kim, C.I.; Chung, B.H.; Seong, D.H.; Lee, D.H.; Cho, J.S.; Cho, I.R.; Hong, S.J. A comprehensive prognostic stratification for patients with metastatic renal clear cell carcinoma. Yonsei Med. J. 2008, 49, 451–458. [Google Scholar] [CrossRef]
- Karakiewicz, P.I.; Briganti, A.; Chun, F.K.H.; Trinh, Q.-D.; Perrotte, P.; Ficarra, V.; Cindolo, L.; De la Taille, A.; Tostain, J.; Mulders, P.F.A.; et al. Multi-institutional validation of a new renal cancer-specific survival nomogram. J. Clin. Oncol. 2007, 25, 1316–1322. [Google Scholar] [CrossRef]
- Leibovich, B.C.; Han Kryu Bui, M.H.T.; Pantuck, A.J.; Dorey, F.J.; Figlin, R.A.; Belldegrun, A. Scoring algorithm to predict survival after nephrectomy and immunotherapy in patients with metastatic renal cell carcinoma: A stratification tool for prospective clinical trials. Cancer 2003, 98, 2566–2575. [Google Scholar] [CrossRef]
- Frank, I.; Blute, M.L.; Cheville, J.C.; Lohse, C.M.; Weaver, A.L.; Zincke, H. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: The SSIGN score. J. Urol. 2002, 168, 2395–2400. [Google Scholar] [CrossRef]
- Velis, J.M.; Ancizu, F.J.; Hevia, M.; Merino, I.; García, A.; Doménech, P.; Algarra, R.; Tienza, A.; Pascual, J.I.; Robles, J.E. Risk models for patients with localised renal cell carcinoma. Actas Urol. Esp. 2017, 41, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; He, Z.S.; Li, X.S.; Tang, Q.; Zhang, L.; Yang, K.-W.; Yu, X.-T.; Zhang, C.-J.; Zhou, L.-Q. A Novel Predictor of Survival with Renal Cell Carcinoma After Nephrectomy. J. Endourol. 2017, 31, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Zhang, C.J.; Tang, Q.; Zhang, L.; Yang, K.-W.; Yu, X.-T.; Gong, Y.; Li, X.-S.; He, Z.-S.; Zhou, L.-Q. Prognostic significance of the combination of preoperative hemoglobin and albumin levels and lymphocyte and platelet counts (HALP) in patients with renal cell carcinoma after nephrectomy. BMC Urol. 2018, 18, 20. [Google Scholar] [CrossRef]
- Su, X.; Hou, N.N.; Yang, L.J.; Li, P.-X.; Yang, X.-J.; Hou, G.-D.; Gao, X.-L.; Ma, S.-J.; Guo, F.; Zhang, R.; et al. The first competing risk survival nomogram in patients with papillary renal cell carcinoma. Sci. Rep. 2021, 11, 11835. [Google Scholar] [CrossRef]
- Tian, S.; Sun, S.; Mao, W.; Qian, S.; Zhang, L.; Zhang, G.; Xu, B.; Chen, M. Development and Validation of Prognostic Nomogram for Young Patients with Kidney Cancer. Int. J. Gen. Med. 2021, 14, 5091–5103. [Google Scholar] [CrossRef]
- Xiao, R.; Liu, C.; He, W.; Ma, L. Prognostic Factors and a Nomogram Predicting Overall Survival and Cancer-Specific Survival for Patients with Collecting Duct Renal Cell Carcinoma. BioMed Res. Int. 2021, 2021, 6736008. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Wang, Y.; Han, Y.; Wei, D.; Zhao, J.; Li, M.; Jiang, Y.; Luo, Y. Development and validation of a nomogram to predict postoperative cancer-specific survival of patients with nonmetastatic T3a renal cell carcinoma. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 835.e19–835.e27. [Google Scholar] [CrossRef] [PubMed]
- Russo, D.; Mariani, P.; Caponio, V.C.A.; Lo Russo, L.; Fiorillo, L.; Zhurakivska, K.; Lo Muzio, L.; Laino, L.; Troiano, G. Development and Validation of Prognostic Models for Oral Squamous Cell Carcinoma: A Systematic Review and Appraisal of the Literature. Cancers 2021, 13, 5755. [Google Scholar] [CrossRef] [PubMed]
Study | ROB | Applicability | Overall | ROB | Applicability | Overall | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Participants | Predictors | Outcome | Analysis | Participants | Predictors | Outcome | ROB | Applicability | Study | Participants | Predictors | Outcome | Analysis | Participants | Predictors | Outcome | ROB | Applicability | |
Chen et al., 2025 | + | + | + | - | + | + | + | - | + | Zhou et al., 2018 | - | + | + | - | - | + | + | - | - |
Ni et al., 2024 | - | + | + | - | - | + | + | - | - | Leibovich et al., 2018 | - | + | + | - | - | + | + | - | - |
Guo et al., 2024 | - | + | + | - | - | + | + | - | - | Zhang et al., 2018 | - | + | + | - | - | + | + | - | - |
Zhanghuang et al., 2022 | + | + | + | - | + | + | + | - | + | Hsiao et al., 2015 | + | + | + | - | + | + | + | - | + |
Tang et al., 2022 | + | + | + | - | + | + | + | - | + | May et al., 2013 | - | + | + | - | - | + | + | - | - |
Wang et al., 2022 | + | + | + | - | + | + | + | - | + | Kutikov et al. 2012 | - | + | + | - | - | + | + | - | - |
Ni et al., 2022 | - | + | + | - | - | + | + | - | - | Klatte et al., 2010 | - | + | + | - | - | + | + | - | - |
Lu et al., 2022 | - | + | + | - | - | + | + | - | - | Iimura et al., 2008 | - | + | + | - | - | + | + | - | - |
Laukhtina et al., 2021 | - | + | + | - | - | + | + | - | - | Karakiewicz et al., 2008 | - | + | + | - | - | + | + | - | - |
Zheng et al., 2022 | + | + | + | - | + | + | + | - | + | Kanao et al., 2008 | + | + | + | - | + | + | + | - | + |
Huang et al., 2022 | + | + | + | - | - | + | + | - | - | Karakiewicz et al., 2007 | - | + | + | - | - | + | + | - | - |
Zhanghuang et al., 2022 | + | + | + | - | + | + | + | - | + | Frank et al., 2002 | + | + | + | - | + | + | + | - | + |
Guo et al., 2021 | + | + | + | - | + | + | + | - | + | Velis et al., 2017 | - | + | + | - | - | + | + | - | - |
Tian et al., 2021 | + | - | + | - | + | + | + | - | + | Peng et al., 2016 | + | + | + | - | + | + | + | - | + |
Xiao et al., 2021 | - | - | + | - | - | + | + | - | - | Peng et al., 2018 | + | + | + | - | + | + | + | - | + |
Su et al., 2021 | - | + | + | - | - | + | + | - | - | Wu et al., 2020 | - | + | + | - | + | + | + | - | + |
Zhu et al., 2020 | - | + | + | - | - | + | + | - | - | Lyon et al., 2020 | - | + | + | - | - | + | + | - | - |
Yan et al., 2020 | - | + | + | - | - | + | + | - | - | Margulis et al., 2012 | ? | + | + | - | + | + | + | - | + |
Zhou et al., 2020 | + | + | + | - | + | + | + | - | + | Cho et al., 2008 | - | + | + | - | - | + | + | - | - |
Chen et al., 2020 | - | + | + | - | - | + | + | - | - | Leibovich et al., 2003 | - | + | + | - | - | + | + | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Cayuelas, L.; Sarrio-Sanz, P.; Lumbreras, B.; Gil-Guillen, V.F.; Romero-Maroto, J.; Gomez-Perez, L. Are We Accurately Predicting Mortality in Renal Cancer? A Systematic Review of Prognostic Models. J. Clin. Med. 2025, 14, 5851. https://doi.org/10.3390/jcm14165851
Martinez-Cayuelas L, Sarrio-Sanz P, Lumbreras B, Gil-Guillen VF, Romero-Maroto J, Gomez-Perez L. Are We Accurately Predicting Mortality in Renal Cancer? A Systematic Review of Prognostic Models. Journal of Clinical Medicine. 2025; 14(16):5851. https://doi.org/10.3390/jcm14165851
Chicago/Turabian StyleMartinez-Cayuelas, Laura, Pau Sarrio-Sanz, Blanca Lumbreras, Vicente F. Gil-Guillen, Jesus Romero-Maroto, and Luis Gomez-Perez. 2025. "Are We Accurately Predicting Mortality in Renal Cancer? A Systematic Review of Prognostic Models" Journal of Clinical Medicine 14, no. 16: 5851. https://doi.org/10.3390/jcm14165851
APA StyleMartinez-Cayuelas, L., Sarrio-Sanz, P., Lumbreras, B., Gil-Guillen, V. F., Romero-Maroto, J., & Gomez-Perez, L. (2025). Are We Accurately Predicting Mortality in Renal Cancer? A Systematic Review of Prognostic Models. Journal of Clinical Medicine, 14(16), 5851. https://doi.org/10.3390/jcm14165851