A Pilot Randomized Control Trial Evaluating the Feasibility of a 12-Week Mediterranean Diet Intervention Without Caloric Restriction in Women with Polycystic Ovary Syndrome
Abstract
1. Introduction
- Assess participant recruitment to an ad libitum MedDiet intervention among women with PCOS and a BMI ≥ 25 kg/m2, including recruitment strategies and eligibility.
- Evaluate the appropriateness and reliability of data collection methods for capturing key outcomes related metabolic, hormonal, anthropometric, and dietary adherence.
- Examine the acceptability and practicality of the MedDiet intervention, including participants’ satisfaction, and perceived barriers and facilitators to dietary adherence.
- Conduct a preliminary assessment of intervention effects on metabolic, hormonal and anthropometric measures and safety of the MedDiet intervention.
2. Materials and Methods
2.1. Study Reporting
2.2. Study and Intervention Design
Stakeholder Engagement
2.3. Participants and Recruitment
2.3.1. Inclusion Criteria
2.3.2. Sample Size
2.3.3. Randomization
2.3.4. Setting
2.4. Dietary Intervention
2.4.1. Theory
Name | Ad Libitum Mediterranean Diet or Healthy Eating Intervention | Behaviour Change Techniques |
---|---|---|
What materials | Health information, meal suggestions and recipes, fridge magnet, shopping list, infographic, food checklists. Weekly one-way digital messages to provide health prompts. Content of messages addressed motivational, educational, practical and social aspects. | 7.1 Prompts/cues 12.5 Adding objects to the environment 5.1 Information about health consequences 4.1 Instructions on how to perform a behaviour 2.3 Self-monitoring of behaviour 13.2 Framing/reframing 4.2 Information about antecedents 11.2 Reduce negative emotions 1.4 Action planning 3.3 Social support (emotional)—MI 3.1 Social support (unspecified) |
What procedures | One-on-one fortnightly dietary consultations Structured education presented using PowerPoint slides | 1.1 Goal setting 1.4 Action planning 1.5 Review behaviour goal 4.1 Instructions on how to perform a behaviour 1.2 Problem solving 5.1 Information about health consequences |
Who provided | Accredited Practising Dietitian (NS) | 9.1 Credible source |
How | Face to face and online via Zoom according to participant location and preference | |
Where | The Accredited Practising Dietitian provided consultations from the University clinic room | |
When and how much | Baseline (90 min) Week 12 (60–90 min) Weeks 2, 4, 6, 8 (10–30 min) | |
Tailoring | Dietary counselling, meal suggestions, recipes and adaptations were provided based on the needs of the participant. For example, meal ideas could be modified based on taste preference, dietary requirements, cooking skills and time constraints. | 4.1 Instructions on how to perform a behaviour 1.2 Problem solving |
Modifications | Due to the geographic distribution of the additional study sites, the baseline appointment for these participants was conducted via Zoom, and study resource materials were mailed to participants. | |
How well | The same Accredited Practising Dietitian delivered all dietary intervention information and consultations. Standardised case notes were completed at each consultation, adhering to the predetermined fortnightly structure to ensure consistency in data collection and intervention delivery. |
2.4.2. Dietary Protocol
2.4.3. Consultations and Resources
2.4.4. Digital Messaging
2.5. Outcomes
Baseline Characteristics
2.6. Feasibility
2.6.1. Surveys
2.6.2. Interviews
2.6.3. Dietary Intake
2.6.4. Mediterranean Diet Adherence
2.7. Preliminary Measures
2.7.1. Biochemical Measures
2.7.2. Anthropometric Measures
2.7.3. Physical Activity
2.8. Analysis
2.9. Protocol Adjustments
3. Results
3.1. Study Characteristics
3.2. Feasibility
3.3. Findings Related to Recruitment
3.4. Findings Related to Inclusion/Exclusion Criteria
3.4.1. Medications
3.4.2. BMI
3.4.3. Age
3.4.4. Medical Conditions
3.5. Findings Related to Retention, Attrition and Adherence Rates to Study Procedures
3.6. Findings Related to MedDiet Adherence
3.7. Findings Related to the Suitability of Data Collection Procedures and Measures
Preliminary Measures
3.8. Adverse Events
3.9. Participant Acceptability
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teede, H.J.; Tay, C.T.; Laven, J.J.E.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, L.M.; Boyle, J.A.; et al. Recommendations From the 2023 International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2023, 108, 2447–2469. [Google Scholar] [CrossRef]
- Joham, A.E.; Norman, R.J.; Stener-Victorin, E.; Legro, R.S.; Franks, S.; Moran, L.J.; Boyle, J.; Teede, H.J. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 2022, 10, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.; Deeks, A.; Moran, L. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010, 8, 41. [Google Scholar] [CrossRef]
- Teede, H.J.; Misso, M.L.; Boyle, J.A.; Garad, R.M.; McAllister, V.; Downes, L.; Gibson-Helm, M.; Hart, R.J.; Rombauts, L.; Moran, L.; et al. Translation and implementation of the Australian-led PCOS guideline: Clinical summary and translation resources from the International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. Med. J. Aust. 2018, 209, S3–S8. [Google Scholar] [CrossRef] [PubMed]
- de Groot, P.C.M.; Dekkers, O.M.; Romijn, J.A.; Dieben, S.W.M.; Helmerhorst, F.M. PCOS, coronary heart disease, stroke and the influence of obesity: A systematic review and meta-analysis. Hum. Reprod. Update 2011, 17, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Fauser, B.C.J.M.M.D.; Tarlatzis, B.C.M.D.; Rebar, R.W.M.D.; Legro, R.S.M.D.; Balen, A.H.M.D.; Lobo, R.M.D.; Carmina, E.M.D.; Chang, J.M.D.; Yildiz, B.O.M.D.; Laven, J.S.E.M.D.; et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil. Steril. 2012, 97, 28–38.e25. [Google Scholar] [CrossRef]
- Yadav, A.; Malhotra, N. Polycystic ovarian syndrome: Diagnosis and management of related infertility. Obstet. Gynaecol. Reprod. Med. 2022, 32, 197–204. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, Z.; Lou, H.; Zhu, G.; Huang, W.; Zhang, S.; Liu, F. Polycystic ovary syndrome (PCOS) and the risk of coronary heart disease (CHD): A meta-analysis. Oncotarget 2016, 7, 33715–33721. [Google Scholar] [CrossRef]
- Cooney, L.G.; Dokras, A. Depression and Anxiety in Polycystic Ovary Syndrome: Etiology and Treatment. Curr. Psychiatry Rep. 2017, 19, 83. [Google Scholar] [CrossRef]
- Cooney, L.G.; Lee, I.; Sammel, M.D.; Dokras, A. High prevalence of moderate and severe depressive and anxiety symptoms in polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. 2017, 32, 1075–1091. [Google Scholar] [CrossRef]
- Lee, I.; Cooney, L.G.; Saini, S.; Smith, M.E.; Sammel, M.D.; Allison, K.C.; Dokras, A. Increased risk of disordered eating in polycystic ovary syndrome. Fertil. Steril. 2017, 107, 796–802. [Google Scholar] [CrossRef]
- Thannickal, A.; Brutocao, C.; Alsawas, M.; Morrow, A.; Zaiem, F.; Murad, M.H.; Javed Chattha, A. Eating, sleeping and sexual function disorders in women with polycystic ovary syndrome (PCOS): A systematic review and meta-analysis. Clin. Endocrinol. 2020, 92, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Dunaif, A. Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications. Endocr. Rev. 2012, 33, 981–1030. [Google Scholar] [CrossRef]
- Moran, L.J.; Misso, M.L.; Wild, R.A.; Norman, R.J. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Update 2010, 16, 347–363. [Google Scholar] [CrossRef]
- Lim, S.; Norman, R.J.; Davies, M.; Moran, L. The effect of obesity on polycystic ovary syndrome: A systematic review and meta-analysis. Obes. Rev. 2013, 14, 95–109. [Google Scholar] [CrossRef]
- Teede, H.J.; Joham, A.E.; Paul, E.; Moran, L.J.; Loxton, D.; Jolley, D.; Lombard, C. Longitudinal weight gain in women identified With polycystic ovary syndrome: Results of an observational study in young women. Obesity 2013, 21, 1526–1532. [Google Scholar] [CrossRef]
- Teede, H.J.; Tay, C.T.; Laven, J.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, L.M.; Boyle, J.A. International PCOS Network. Recommendations from the 2023 international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Eur. J. Endocrinol. 2023, 189, G43–G64. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.T.; Tay, C.T.; Laven, J.S.E.; Dokras, A.; Moran, L.J.; Piltonen, T.; Costello, M.F.; Boivin, J.; Redman, L.; Boyle, J. International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome 2023; Monash University: Melbourne, Australia, 2023. [Google Scholar] [CrossRef]
- Arentz, S.; Smith, C.A.; Abbott, J.; Bensoussan, A. Perceptions and experiences of lifestyle interventions in women with polycystic ovary syndrome (PCOS), as a management strategy for symptoms of PCOS. BMC Womens Health 2021, 21, 107. [Google Scholar] [CrossRef] [PubMed]
- Nguo, K.; McGowan, M.; Cowan, S.; Davidson, Z.; Pirotta, S.; Dordevic, A.L.; Teede, H.; Hajishafiee, M.; Carmichael, M.; Moran, L.J. Exploring the physiological factors relating to energy balance in women with polycystic ovary syndrome: A scoping review. Nutr. Rev. 2024, 83, 160–174. [Google Scholar] [CrossRef]
- Scragg, J.; Hobson, A.; Willis, L.; Taylor, K.S.; Dixon, S.; Jebb, S.A. Effect of Weight Loss Interventions on the Symptomatic Burden and Biomarkers of Polycystic Ovary Syndrome. Ann. Intern. Med. 2024, 177, 1664–1674. [Google Scholar] [CrossRef]
- Moran, L.J.; Ko, H.; Misso, M.; Marsh, K.; Noakes, M.; Talbot, M.; Frearson, M.; Thondan, M.; Stepto, N.; Teede, H.J. Dietary composition in the treatment of polycystic ovary syndrome: A systematic review to inform evidence-based guidelines. Hum. Reprod. Update 2013, 19, 432. [Google Scholar] [CrossRef]
- McGowan, M.; Garad, R.; Wadhwani, G.; Torkel, S.; Rao, V.; Maunder, A.; Osei-Safo, E.K.; Moran, L.J.; Cowan, S. Understanding barriers and facilitators to lifestyle management in people with polycystic ovary syndrome: A mixed method systematic review. Obes. Rev. 2024, 26, e13854. [Google Scholar] [CrossRef]
- Pourghassem, G.; Houjeghani, S.; Farzadi, L.; Houjeghani, S.; Safaeiyan, A. Relationship between Serum Leptin, Ghrelin and Dietary Macronutrients in Women with Polycystic Ovary Syndrome. Int. J. Fertil. Steril. 2015, 9, 313–321. [Google Scholar]
- Hart, K.; Barr, S.; Reeves, S.; Sharp, K.; Jeanes, Y. Suboptimal Dietary Intake Is Associated with Cardiometabolic Risk Factors in Women with Polycystic Ovary Syndrome: PCOS and Suboptimal Dietary Intake. Nutr. Diet. 2016, 73, 177–183. [Google Scholar] [CrossRef]
- Herbert, S.; Woolf, K. Moving beyond weight: A narrative review of the dietary and lifestyle Management for Reducing Cardiometabolic Risk in polycystic ovary syndrome (PCOS). Nutrients 2025, 15, 5069. [Google Scholar] [CrossRef] [PubMed]
- Kuchenbecker, W.K.H.; Groen, H.; van Asselt, S.J.; Bolster, J.H.T.; Zwerver, J.; Slart, R.H.J.; Vd Jagt, E.J.; Muller Kobold, A.C.; Wolffenbuttel, B.H.R.; Land, J.A.; et al. In Women with Polycystic Ovary Syndrome and Obesity, Loss of Intra-Abdominal Fat Is Associated with Resumption of Ovulation. Hum. Reprod. Oxf. Engl. 2011, 26, 2505–2512. [Google Scholar] [CrossRef]
- Sharma, A.M.; Campbell-Scherer, D.L. Redefining Obesity: Beyond the Numbers: Redefining Obesity. Obesity 2017, 25, 660–661. [Google Scholar] [CrossRef]
- Agnoli, C.; Sieri, S.; Ricceri, F.; Giraudo, M.T.; Masala, G.; Assedi, M.; Panico, S.; Mattiello, A.; Tumino, R.; Giurdanella, M.C.; et al. Adherence to a Mediterranean diet and long-term changes in weight and waist circumference in the EPIC-Italy cohort. Nutr. Diabetes 2018, 8, 22. [Google Scholar] [CrossRef]
- Bendall, C.L.; Mayr, H.L.; Opie, R.S.; Bes-Rastrollo, M.; Itsiopoulos, C.; Thomas, C.J. Central obesity and the Mediterranean diet: A systematic review of intervention trials. Crit. Rev. Food Sci. Nutr. 2018, 58, 3070–3084. [Google Scholar] [CrossRef]
- Ventriglio, A.; Sancassiani, F.; Contu, M.P.; Latorre, M.; Di Slavatore, M.; Fornaro, M.; Bhugra, D. Mediterranean Diet and its Benefits on Health and Mental Health: A Literature Review. Clin. Pract. Epidemiol. Ment. Health 2020, 16, 156–164. [Google Scholar] [CrossRef]
- Scannell, N.; Villani, A.; Moran, L.; Mantzioris, E. The potential role of the Mediterranean diet for the treatment and management of polycystic ovary syndrome: A review of the pathophysiological mechanisms and clinical evidence. Proc. Nutr. Soc. 2025, 84, 176–187. [Google Scholar] [CrossRef]
- Barrea, L.; Arnone, A.; Annunziata, G.; Muscogiuri, G.; Laudisio, D.; Salzano, C.; Pugliese, G.; Colao, A.; Savastano, S. Adherence to the Mediterranean Diet, Dietary Patterns and Body Composition in Women with Polycystic Ovary Syndrome (PCOS). Nutrients 2019, 11, 2278. [Google Scholar] [CrossRef] [PubMed]
- Cutillas-Tolín, A.; Arense-Gonzalo, J.J.; Mendiola, J.; Adoamnei, E.; Navarro-Lafuente, F.; Sánchez-Ferrer, M.L.; Prieto-Sánchez, M.T.; Carmona-Barnosi, A.; Vioque, J.; Torres-Cantero, A.M. Are Dietary Indices Associated with Polycystic Ovary Syndrome and Its Phenotypes? A Preliminary Study. Nutrients 2021, 13, 313. [Google Scholar] [CrossRef]
- Mei, S.; Ding, J.; Wang, K.; Ni, Z.; Yu, J. Mediterranean Diet Combined With a Low-Carbohydrate Dietary Pattern in the Treatment of Overweight Polycystic Ovary Syndrome Patients. Front. Nutr. 2022, 9, 876620. [Google Scholar] [CrossRef]
- Scannell, N.; Villani, A.; Moran, L.; Mantzioris, E.; Cowan, S. A Pilot Study on Ad Libitum Mediterranean Diet Intervention for Women with PCOS: A Mixed-Methods Exploration of Acceptability, Adherence, and Participant Lived Experience. Nutrients 2025, 17, 1105. [Google Scholar] [CrossRef] [PubMed]
- Bowen, D.J.; Kreuter, M.; Spring, B.; Cofta-Woerpel, L.; Linnan, L.; Weiner, D.; Bakken, S.; Kaplan, C.P.; Squiers, L.; Fabrizio, C.; et al. How We Design Feasibility Studies. Am. J. Prev. Med. 2009, 36, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Orsmond, G.I.; Cohn, E.S. The Distinctive Features of a Feasibility Study: Objectives and Guiding Questions. OTJR (Thorofare N J) 2015, 35, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Moran, L.J.; Noakes, M.; Clifton, P.; Buckley, J.; Brinkworth, G.; Thomson, R.; Norman, R.J. Predictors of Lifestyle Intervention Attrition or Weight Loss Success in Women with Polycystic Ovary Syndrome Who Are Overweight or Obese. Nutrients 2019, 11, 492. [Google Scholar] [CrossRef]
- Eldridge, S.M.; Chan, C.L.; Campbell, M.J.; Bond, C.M.; Hopewell, S.; Thabane, L.; Lancaster, G.A. CONSORT 2010 statement: Extension to randomised pilot and feasibility trials. BMJ 2016, 355, i5239. [Google Scholar] [CrossRef] [PubMed]
- Pfledderer, C.D.; von Klinggraeff, L.; Burkart, S.; da Silva Bandeira, A.; Lubans, D.R.; Jago, R.; Okely, A.D.; van Sluijs, E.M.F.; Ioannidis, J.P.A.; Thrasher, J.F.; et al. Consolidated guidance for behavioral intervention pilot and feasibility studies. Pilot. Feasibility Stud. 2024, 10, 57. [Google Scholar] [CrossRef]
- Scannell, N.; Moran, L.; Mantzioris, E.; Cowan, S.; Villani, A. Efficacy, Feasibility and Acceptability of a Mediterranean Diet Intervention on Hormonal, Metabolic and Anthropometric Measures in Overweight and Obese Women with Polycystic Ovary Syndrome: Study Protocol. Metabolites 2022, 12, 311. [Google Scholar] [CrossRef]
- Holden, R.R. Face Validity. In The Corsini Encyclopedia of Psychology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 1–2. [Google Scholar]
- Martinez-Gonzalez, M.A.; Garcia-Arellano, A.; Toledo, E.; Salas-Salvado, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schroder, H.; Aros, F.; Gomez-Gracia, E. A 14-item Mediterranean diet assessment tool and obesity indexes among high-risk subjects: The predimed trial. PLoS ONE 2012, 7, e43134. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.C.; Itsiopoulos, C.; Thodis, T.; Ward, G.; Trost, N.; Hofferberth, S.; O’Dea, K.; Desmond, P.V.; Johnson, N.A.; Wilson, A.M. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J. Hepatol. 2013, 59, 138–143. [Google Scholar] [CrossRef]
- Michie, S.; Richardson, M.; Johnston, M.; Abraham, C.; Francis, J.; Hardeman, W.; Eccles, M.P.; Cane, J.; Wood, C.E. The Behavior Change Technique Taxonomy (v1) of 93 Hierarchically Clustered Techniques: Building an International Consensus for the Reporting of Behavior Change Interventions. Ann. Behav. Med. 2013, 46, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.C.; Glasziou, P.P.; Boutron, I.; Milne, R.; Perera, R.; Moher, D.; Altman, D.G.; Barbour, V.; Macdonald, H.; Johnston, M.; et al. Better reporting of interventions: Template for intervention description and replication (TIDieR) checklist and guide. BMJ 2014, 348, g1687. [Google Scholar] [CrossRef] [PubMed]
- Muniyappa, R.; Madan, R.; Varghese, R.T. Assessing Insulin Sensitivity and Resistance in Humans. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Grossman, A., Hershman, J.M., Hofland, J., et al., Eds.; MDText.com, Inc. Copyright © 2000–2021, MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef]
- Turner-McGrievy, G.M.; Davidson, C.R.; Wingard, E.E.; Billings, D.L. Low glycemic index vegan or low-calorie weight loss diets for women with polycystic ovary syndrome: A randomized controlled feasibility study. Nutr. Res. 2014, 34, 552–558. [Google Scholar] [CrossRef]
- Groth, S.W.; David, T. New mothers’ views of weight and exercise. MCN Am. J. Matern. Child. Nurs. 2008, 33, 364–370. [Google Scholar] [CrossRef]
- Caldwell, P.H.; Hamilton, S.; Tan, A.; Craig, J.C. Strategies for increasing recruitment to randomised controlled trials: Systematic review. PLoS Med. 2010, 7, e1000368. [Google Scholar] [CrossRef]
- Moroshko, I.; Brennan, L.; O’Brien, P. Predictors of dropout in weight loss interventions: A systematic review of the literature. Obes. Rev. 2011, 12, 912–934. [Google Scholar] [CrossRef]
- Mutsaerts, M.; Kuchenbecker, W.; Mol, B.; Land, J.; Hoek, A. Dropout is a problem in lifestyle intervention programs for overweight and obese infertile women: A systematic review. Hum. Reprod. 2013, 28, 979–986. [Google Scholar] [CrossRef]
- Teixeira, P.; Going, S.; Houtkooper, L.; Cussler, E.; Metcalfe, L.; Blew, R.; Sardinha, L.; Lohman, T. Pretreatment predictors of attrition and successful weight management in women. Int. J. Obes. 2004, 28, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Pirotta, S.; Joham, A.; Hochberg, L.; Moran, L.; Lim, S.; Hindle, A.; Brennan, L. Strategies to reduce attrition in weight loss interventions: A systematic review and meta-analysis. Obes. Rev. 2019, 20, 1400–1412. [Google Scholar] [CrossRef] [PubMed]
- Webber, K.H.; Tate, D.F.; Bowling, J.M. A randomized comparison of two motivationally enhanced Internet behavioral weight loss programs. Behav. Res. Ther. 2008, 46, 1090–1095. [Google Scholar] [CrossRef]
- Sood, S.; Sylivris, A.L.; Sualeheen, A.; Scott, D.; Tan, S.Y.; Villani, A.; Baguley, B.J.; Abbott, G.; Kiss, N.; Daly, R.M.; et al. The effects of Mediterranean diet with and without exercise on body composition in adults with chronic disease: A systematic review and meta-analysis of clinical trials. Clin. Nutr. 2025, 51, 222–239. [Google Scholar] [CrossRef]
- Piers, L.S.; Walker, K.Z.; Stoney, R.M.; Soares, M.J.; O’dea, K. The influence of the type of dietary fat on postprandial fat oxidation rates: Monounsaturated (olive oil) vs saturated fat (cream). Int. J. Obes. 2002, 26, 814–821. [Google Scholar] [CrossRef]
- Jones, P.J.; Jew, S.; Abumweis, S. The effect of dietary oleic, linoleic, and linolenic acids on fat oxidation and energy expenditure in healthy men. Metabolism 2008, 57, 1198–1203. [Google Scholar] [CrossRef] [PubMed]
- Verde, L.; Dalamaga, M.; Capó, X.; Annunziata, G.; Hassapidou, M.; Docimo, A.; Savastano, S.; Colao, A.; Muscogiuri, G.; Barrea, L. The antioxidant potential of the mediterranean diet as a predictor of weight loss after a very low-calorie ketogenic diet (VLCKD) in women with overweight and obesity. Antioxidants 2022, 12, 18. [Google Scholar] [CrossRef]
- Khunti, K.; Taub, N.; Webb, D.; Srinivasan, B.; Stockman, J.; Griffin, S.; Simmons, R.; Davies, M. Validity of self-assessed waist circumference in a multi-ethnic UK population. Diabet. Med. 2012, 29, 404–409. [Google Scholar] [CrossRef]
- Contardo Ayala, A.M.; Nijpels, G.; Lakerveld, J. Validity of self-measured waist circumference in adults at risk of type 2 diabetes and cardiovascular disease. BMC Med. 2014, 12, 170. [Google Scholar] [CrossRef]
- Cooper, I.; Brukner, P.; Devlin, B.L.; Reddy, A.J.; Fulton, M.; Kemp, J.L.; Culvenor, A.G. An anti-inflammatory diet intervention for knee osteoarthritis: A feasibility study. BMC Musculoskelet. Disord. 2022, 23, 47. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Kirkpatrick, S.I.; Mittl, B.; Zimmerman, T.P.; Thompson, F.E.; Bingley, C.; Willis, G.; Islam, N.G.; Baranowski, T.; McNutt, S.; et al. The Automated Self-Administered 24-hour dietary recall (ASA24): A resource for researchers, clinicians, and educators from the National Cancer Institute. J. Acad. Nutr. Diet. 2012, 112, 1134–1137. [Google Scholar] [CrossRef] [PubMed]
Variable | Baseline | Week 6 | Week 12 |
---|---|---|---|
Age | x | ||
Education | x | ||
Household income | x | ||
Country of birth | x | ||
Smoking status | x | ||
Medical conditions | x | ||
Supplement use | x | ||
Medication use | x | ||
IPAQ-SF | x | x | |
4-day food record | x | x | x |
MEDAS | x | x | |
TT | x | x | |
SHBG | x | x | |
FG | x | x | |
FI | x | x | |
HOMA-IR | x | x | |
Waist circumference | x | x | |
Weight | x | x | |
BMI | x | x |
Feasibility Outcome | Description |
---|---|
Recruitment metrics | Recruitment rate Eligibility rate |
Retention and adherence | Completion rate Consultation attendance |
Dietary adherence | Mediterranean diet adherence screener |
Suitability of data collection | Completion of 4-day food records Consent to anthropometric measures Consent to biochemical measures Preliminary outcomes for anthropometric and biochemical measures |
Safety | Reported adverse events |
Acceptability | Participant acceptability and factors influencing dietary adherence were collected at baseline and week 12 through surveys and semi-structured interviews for participants randomised to receive the MedDiet intervention. This study has been published elsewhere [42]; however, a summary of study findings will be provided within the results of the present study. The methods for survey and questionnaire development are provided below. |
Characteristic | MedDiet (n = 12) | HE (n = 14) |
---|---|---|
Age (years) | 30.0 ± 5.5 | 28.2 ± 3.1 |
MEDAS | 4.4 ± 2.0 | 3.5 ± 1.0 |
Total testosterone (nmol/L) | 1.5 ± 0.4 | 1.4 ± 0.5 |
SHBG (nmol/L) | 28.9 ± 12.3 | 27.4 ± 11.4 |
Fasting insulin (mU/L) | 15. 2 ± 4.7 | 19.1 ± 16.1 |
Fasting glucose (mmol/L) | 5.0 ± 0.5 | 4.9 ± 0.3 |
HOMA-IR | 3.4 ± 1.2 | 4.2 ± 4.0 |
Weight (kg) | 101.7 ± 18.8 | 113.8 ± 23.0 |
BMI (kg/m2) | 37.1 ± 7.0 | 40.3 ± 8.3 |
Waist circumference (cm) | 106.0 ± 15.9 | 113.6 ± 15.4 |
Highest level of education | ||
Year 10 | 0 (0) | 1 (7) |
Year 12 | 1 (8) | 4 (29) |
Trade | 3 (25) | 5 (36) |
Bachelor | 8 (67) | 4 (29) |
Country of birth | ||
Australia | 9 (75) | 13 (93) |
Brazil | 1 (8) | 0 (0) |
India | 1 (8) | 0 (0) |
Argentina | 1 (8) | 0 (0) |
New Zealand | 0 (0) | 1 (7) |
Household income (AUD) | ||
<75,000 | 3 (25) | 2 (14) |
75,000–150,000 | 7 (58) | 8 (57) |
>150,000 | 2 (16) | 4 (28) |
Smoking status | ||
Current smoker | 1 (8) | 0 (0) |
Never smoked | 8 (67) | 11 (79) |
Former smoker | 3 (25) | 3 (21) |
Other health conditions | ||
Yes | 6 (50) | 9 (64) |
No | 6 (50) | 5 (36) |
Taking medications | ||
Yes | 2 (17) | 3 (21) |
No | 10 (83) | 11 (79) |
Taking supplements | ||
Yes | 4 (33) | 8 (57) |
No | 8 (67) | 6 (43) |
Ad Libitum Mediterranean Diet or Healthy Diet Intervention | Recommendations for Full-Scale Clinical Trial | |
---|---|---|
Recruitment metrics | ||
Eligibility rate | 40 (11% of interested individuals) | Incorporate digital self-screening tool for interested participants to determine their eligibility before contacting research team. Record reasons for ineligibility or reason for disinterest. Consider removing need for an in-person appointment by including self-reported anthropometric data. Consider expanding inclusion criteria to include insulin sensitising and hormonal contraceptives. |
Recruitment rate | 26 participants enrolled over 30 months | Strategies to improve recruitment may include multiple study locations and flexible appointments, partnering with PCOS support groups and clinical settings to promote the study, and flexible inclusion criteria. |
Retention and adherence | ||
Completion rate | 16 (62%) completion 9 (75%) MedDiet 7 (50%) HE | Consider telephone check-ins on the weeks alternate to the consultations to provide more consistent contact, interactive digital messages to optimise engagement. |
Consultation attendance | 96% for MedDiet 100% for HE | Continue to offer telehealth options. |
Dietary adherence | ||
MEDAS | Significantly increased throughout study (MedDiet; Baseline: 3.67 ± 1.32; Week 12: 8.11 ± 2.37; p ≤ 0.001; HE; Baseline: 3.57 ± 1.27; Week 12: 4.57 ± 0.98; p = 0.02) | |
Suitability of Data Collection | ||
Completion of 4-day food records | 69% | Consider offering alternatives such as a digital app for completing food record, 24 h automated recall, shorter and/or less frequent checklists. |
Consent to anthropometric measures | 100% | |
Consent to biochemical testing | 100% | |
Preliminary outcome measures | Waist circumference reduced significantly over the course of the study for the MedDiet group Other measures were mixed and not significant | |
Safety and tolerability | ||
Adverse events | No adverse events | |
Participant acceptability of Mediterranean diet intervention | ||
Summary of acceptability and lived experience study [31] | Participants reported: Increases in confidence and ability to following a MedDiet; Consultations and resources made it easier to adhere; Barriers and facilitators to dietary adherence were identified. | Ensure consultations and participant resources continue to focus on practical strategies and increase motivation. Could incorporate more frequent digital messaging. |
Mediterranean Diet | Healthy Eating | Between-Group Difference | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Mean Change | SD | 95% CI | p | Mean Change | SD | 95% CI | p | p |
TT | 0.18 | 0.28 | −0.03, 0.39 | 0.09 | 0.01 | 0.25 | −0.21,0.24 | 0.88 | 0.24 |
SHBG | 1.67 | 9.47 | −5.62, 8.95 | 0.61 | −0.29 | 8.30 | −7.96, 7.39 | 0.93 | 0.67 |
FI | 0.53 | 4.53 | −2.95, 4.02 | 0.73 | −1.71 | 6.80 | −8.00, 4.57 | 0.53 | 0.44 |
FG | −0.78 | 0.32 | −0.32, 0.17 | 0.49 | −0.86 | 0.41 | −0.46, 0.29 | 0.60 | 0.97 |
HOMA-IR | 0.07 | 1.06 | −0.35, −0.74 | 0.85 | −0.43 | 1.55 | −1.86, 1.00 | 0.49 | 0.46 |
Weight | 1.92 | 4.44 | −1.49, 5.33 | 0.23 | 0.60 | 3.10 | −2.26, 3.46 | 0.63 | 0.51 |
BMI | 0.68 | 1.63 | −0.58, 1.93 | 0.25 | 0.20 | 1.18 | −0.89, 1.29 | 0.67 | 0.53 |
WC | 3.03 | 3.46 | 0.37, 5.70 | 0.03 | 0.41 | 3.38 | −2.72, 3.54 | 0.76 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scannell, N.; Mantzioris, E.; Cowan, S.; Moran, L.; Villani, A. A Pilot Randomized Control Trial Evaluating the Feasibility of a 12-Week Mediterranean Diet Intervention Without Caloric Restriction in Women with Polycystic Ovary Syndrome. J. Clin. Med. 2025, 14, 5842. https://doi.org/10.3390/jcm14165842
Scannell N, Mantzioris E, Cowan S, Moran L, Villani A. A Pilot Randomized Control Trial Evaluating the Feasibility of a 12-Week Mediterranean Diet Intervention Without Caloric Restriction in Women with Polycystic Ovary Syndrome. Journal of Clinical Medicine. 2025; 14(16):5842. https://doi.org/10.3390/jcm14165842
Chicago/Turabian StyleScannell, Nicole, Evangeline Mantzioris, Stephanie Cowan, Lisa Moran, and Anthony Villani. 2025. "A Pilot Randomized Control Trial Evaluating the Feasibility of a 12-Week Mediterranean Diet Intervention Without Caloric Restriction in Women with Polycystic Ovary Syndrome" Journal of Clinical Medicine 14, no. 16: 5842. https://doi.org/10.3390/jcm14165842
APA StyleScannell, N., Mantzioris, E., Cowan, S., Moran, L., & Villani, A. (2025). A Pilot Randomized Control Trial Evaluating the Feasibility of a 12-Week Mediterranean Diet Intervention Without Caloric Restriction in Women with Polycystic Ovary Syndrome. Journal of Clinical Medicine, 14(16), 5842. https://doi.org/10.3390/jcm14165842