Age-Related Characteristics of Diastolic Dysfunction in Type 2 Diabetes Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants’ Enrolment
2.2. Clinical and Biochemical Parameters
- Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) = FPG (mg/dL) × insulinemia (μU/mL)/405;
- HOMA C-peptide = FPG (mg/dL)/18 × C-peptide (ng/mL) × 3.003)/22.5;
- Index C-peptide = 20/[C-peptide (ng/mL) × 3003 × FPG (mg/dL)/18)];
- Metabolic Score for Insulin Resistance (METS-IR) = ln [2 × FPG (mg/dL) + TG (mg/dL)] × BMI/[ln(HDL-cholesterol (mg/dL)] [33].
- Triglyceride-Glucose Index (TyGi) = ln[TG (mg/dL) × FPG (mg/dL)]/2 [34].
- Atherogenic Index of Plasma (AIP) = ln(TG/HDL-cholesterol)
- Atherogenic Index (AI) = non-HDL-cholesterol/HDL-cholesterol
- Lipoprotein Combine Index (LCI) = (total cholesterol × TG × LDL-cholesterol)/HDL-cholesterol
- Castelli risk index-I (CRI-I) = TG/HDL-cholesterol
- Castelli risk index-II (CRI-II) = LDL-cholesterol/HDL-cholesterol.
2.3. Echocardiography Evaluation
2.4. Statistical Analyses
3. Results
Correlation Analysis
- E/e’ and: age (r = 0.243, p = 0.004), diabetes duration (r = 0.227, p = 0.008), BMI (r = 0.190, p = 0.027), METS-IR (r = 0.19, p = 0.024), CHA2DS2-VASc score (r = 0.353, p < 0.001), TNF-alpha (r = 0.336, p = 0.034)
- E/A and: age (r = −0.386, p = 0.003), diabetes duration (r = −0.241, p = 0.004), weight (r = 0.319, p < 0.001), HDL-cholesterol (r = −0.254, p = 0.003), AIP (r = 0.231, p = 0.006), CHA2DS2-VASc score (r = −0.343, p <0.001)
- EDT and: age (r = 0.295, p < 0.001), diabetes duration (r = 0.229, p = 0.023)
- LAVI and: age (r = 0.231, p = 0.01), HbA1c (r = −0.192, p = 0.035), METS-IR (r = 0.193, p = 0.035).
- E/e’ and: age (r = 0.251, p = 0.014), diabetes duration (r = 0.302, p = 0.008), CHA2DS2-VASc score (r = 0.345, p < 0.001) and METS-IR (r = 0.205, p = 0.046)
- E/A and: age (r = −0.382, p < 0.001), diabetes duration (r = −0.267, p = 0.008), weight (r = 0.255, p = 0.011), HDL-cholesterol (r = −0.259, p = 0.010), AIP (r = 0.242, p = 0.016)
- EDT and: age (r = 0.347, p < 0.001), diabetes duration (r = 0.229, p = 0.023), HbA1c (r = 0.219, p = 0.030), HDL-cholesterol (r = 0.204, p = 0.044).
- E/e’ and BMI: (r = 0.182, p = 0.037), TNF-alpha (r = 0.294, p = 0.01), CHA2DS2-VASc score (r = 0.300, p < 0.001)
- E/A and: age (r = −0.429, p < 0.001), diabetes duration (r = −0.277, p = 0.009), weight (r = 0.314, p = 0.008), CHA2DS2-VASc score (r = −0.381, p < 0.001), TNF-alpha (r = −0.210, p = 0.016), CRI-I (r = 0.192, p = 0.027), CRI-II (r = 0.192, p = 0.027), AI (r = 0.192, p = 0.027)
- EDT and: age (r = 0.385, p < 0.001), diabetes duration (r = 0.227, p = 0.01)
- IVRT and: diabetes duration (r = 0.240, p = 0.006), hsCRP (r = −0.913, p = 0.028), index C-peptide (r = −0.179, p = 0.040)
- LAVI and: age (r = 0.288, p < 0.001), HDL-cholesterol (r = 0.223, p = 0.043).
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, C.-X.; Ma, X.-N.; Guan, C.-H.; Li, Y.-D.; Mauricio, D.; Fu, S.-B. Cardiovascular disease in type 2 diabetes mellitus: Progress toward personalized management. Cardiovasc. Diabetol. 2022, 21, 74. [Google Scholar] [CrossRef]
- Pop-Busui, R.; Januzzi, J.L.; Bruemmer, D.; Butalia, S.; Green, J.B.; Horton, W.B.; Knight, C.; Levi, M.; Rasouli, N.; Richardson, C.R. Heart failure: An underappreciated complication of diabetes. A consensus report of the American Diabetes Association. Diabetes Care 2022, 45, 1670–1690. [Google Scholar] [CrossRef] [PubMed]
- Urlic, H.; Kumric, M.; Vrdoljak, J.; Martinovic, D.; Dujic, G.; Vilovic, M.; Ticinovic Kurir, T.; Bozic, J. Role of Echocardiography in Diabetic Cardiomyopathy: From Mechanisms to Clinical Practice. J. Cardiovasc. Dev. Dis. 2023, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Grigorescu, E.D.; Lăcătușu, C.M.; Floria, M.; Mihai, B.M.; Crețu, I.; Șorodoc, L. Left Ventricular Diastolic Dysfunction in Type 2 Diabetes-Progress and Perspectives. Diagnostics 2019, 9, 121. [Google Scholar] [CrossRef]
- García-Vega, D.; González-Juanatey, J.R.; Eiras, S. Diabesity in Elderly Cardiovascular Disease Patients: Mechanisms and Regulators. Int. J. Mol. Sci. 2022, 23, 7886. [Google Scholar] [CrossRef]
- Litwin, S.E.; Zile, M.R. Should we test for diastolic dysfunction? How and how often? JACC Cardiovasc. Imaging 2020, 13, 297–309. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef]
- Nagueh, S. Left Ventricular Diastolic Function: Understanding Pathophysiology, Diagnosis, and Prognosis with Echocardiography. JACC Cardiovasc. Imaging 2020, 13, 228–244. [Google Scholar] [CrossRef]
- Hoek, A.G.; Dal Canto, E.; Wenker, E.; Bindraban, N.; Handoko, M.L.; Elders, P.J.; Beulens, J.W. Epidemiology of heart failure in diabetes: A disease in disguise. Diabetologia 2024, 67, 574–601. [Google Scholar] [CrossRef]
- Liang, D.; Shi, G.; Xu, M.; Yin, J.; Liu, Y.; Yang, J.; Xu, L. The correlation between serum asprosin and left ventricular diastolic dysfunction in elderly patients with type 2 diabetes mellitus in the community. J. Diabetes Investig. 2024, 15, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhong, J.; Zhang, S.; Xiong, Z.; Huang, Y.; Liu, M.; Lin, Y.; Zhong, X.; Ye, X.; Zhuang, X.; et al. Association between serum cystatin C and early impairment of cardiac function and structure in type 2 diabetes patients with normal renal function. Clin. Cardiol. 2022, 45, 1287–1296. [Google Scholar] [CrossRef]
- Widyantoro, B.; Hersunarti, N.; Rahajoe, A.U.; Harimurti, G.M. Plasma endothelin-1 level is associated with cardiac fibrosis and diastolic dysfunction in diabetes. Life Sci. 2013, 93, e61. [Google Scholar] [CrossRef]
- Remmelzwaal, S.; van Ballegooijen, A.J.; Schoonmade, L.J.; Dal Canto, E.; Handoko, M.L.; Henkens, M.T.; van Empel, V.; Heymans, S.R.; Beulens, J.W. Natriuretic peptides for the detection of diastolic dysfunction and heart failure with preserved ejection fraction—A systematic review and meta-analysis. BMC Med. 2020, 18, 290. [Google Scholar] [CrossRef]
- Dienda, Y.M.; On′kin, J.-B.K.; Natuhoyila, A.N.; Lubenga, Y.; Swambulu, T.M.; M’buyamba-Kabangu, J.-R.; Longo-Mbenza, B.; Phanzu, B.K. Correlations of serum lipid parameters and atherogenic indices with left ventricular diastolic dysfunction among apparently healthy patients with type 2 diabetes mellitus: A multicenter in-hospital cross-sectional study. J. Diabetes Res. 2024, 2024, 4078281. [Google Scholar] [CrossRef]
- Yang, X.; Shi, Y.; Zhang, H.; Huang, L.; Zhang, J.; Min, J.; Chen, L. Association between neutrophil-to-lymphocyte ratio and left ventricular diastolic dysfunction in patients with type 2 diabetes mellitus. Front. Endocrinol. 2025, 15, 1499713. [Google Scholar] [CrossRef]
- Kosmala, W.; Marwick, T.H. Asymptomatic left ventricular diastolic dysfunction. JACC Cardiovasc. Imaging 2020, 13, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; Catrinoiu, D.; Chandramouli, C.; Cosentino, F.; Dombrowsky, A.C.; Itzhak, B.; Lalic, N.M.; Prattichizzo, F.; Schnell, O.; Seferović, P.M.; et al. Heart failure in type 2 diabetes: Current perspectives on screening, diagnosis and management. Cardiovasc. Diabetol. 2021, 20, 218. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Global Clinical Practice Recommendations for Managing Type 2 Diabetes; International Diabetes Federation: Amsterdam, The Netherlands, 2025; pp. 86–91. Available online: https://idf.org/t2d-cpr-2025 (accessed on 18 July 2025).
- Obokata, M.; Reddy, Y.N.V.; Borlaug, B.A. Diastolic dysfunction and heart failure with preserved ejection fraction. JACC Cardiovasc. Imaging 2020, 13, 245–257. [Google Scholar] [CrossRef]
- Nayor, M.; Cooper, L.L.; Enserro, D.M.; Xanthakis, V.; Larson, M.G.; Benjamin, E.J.; Aragam, J.; Mitchell, G.F.; Vasan, R.S. Left ventricular diastolic dysfunction in the community: Impact of diagnostic criteria on the burden, correlates, and prognosis. J. Am. Heart Assoc. 2018, 7, e008291. [Google Scholar] [CrossRef]
- Chetrit, M.; Cremer, P.C.; Klein, A.L. Imaging of diastolic dysfunction in community-based epidemiological studies and randomized controlled trials of HFpEF. JACC Cardiovasc. Imaging 2020, 13, 310–326. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.; Núñez, J.; Goyal, P.; Silverman, D.N.; van Berlo, J.H.; Maharaj, V. Aging diastole—Root cause for atrial fibrillation and heart failure with preserved ejection fraction. J. Cardiovasc. Aging 2024, 4, 25. [Google Scholar] [CrossRef]
- Fang, Z.; Raza, U.; Song, J.; Lu, J.; Yao, S.; Liu, X.; Zhang, W.; Li, S. Systemic aging fuels heart failure: Molecular mechanisms and therapeutic avenues. ESC Heart Fail. 2024, 12, 1059–1080. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hastings, M.H.; Rhee, J.; Trager, L.E.; Roh, J.D.; Rosenzweig, A. Targeting age-related pathways in heart failure. Circ. Res. 2020, 126, 533–551. [Google Scholar] [CrossRef]
- Goldenstein, D.R.; Abdel-Latif, A. Immune mechanisms of cardiac aging. J. Cardiovasc. Aging 2023, 3, 17. [Google Scholar] [CrossRef]
- Bellemare, M.; Bourcier, L.; Iglesies-Grau, J.; Boulet, J.; O’Meara, E.; Bouabdallaoui, N. Mechanisms of diabetic cardiomyopathy: Focus on inflammation. Diabetes Obes. Metab. 2025, 27, 2326–2338. [Google Scholar] [CrossRef]
- Xie, S.; Xu, S.-C.; Deng, W.; Tang, Q. Metabolic landscape in Cardiac aging: Insights into molecular biology and therapeutic implications. Sig. Transduct. Target. Ther. 2023, 8, 114. [Google Scholar] [CrossRef]
- Bala, C.; Roman, G.; Pop, D.; Dumitrescu, A.; Teodorescu, G. IDF21-0148 heart failure in type 2 diabetes: Results of a non-interventional cross-sectional study in Romania (FIND). Diabetes Res. Clin. Pract. 2022, 186, 109254. [Google Scholar] [CrossRef]
- Gherbon, A.M.C.; Gherbon, A.; Frandes, M.; Bercea, V.; Timar, B.; Timar, R. IDF21-0033 risk factors of cardiovascular disease in Romanian elderly patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2022, 186, 109241. [Google Scholar] [CrossRef]
- Braha, A.; Timar, B.; Ivan, V.; Balica, M.M.; Dăniluc, L.; Timar, R. Novel biomarkers of grade I left ventricular diastolic dysfunction in type 2 diabetes patients with metabolic-dysfunction-associated steatotic liver disease. J. Clin. Med. 2024, 13, 5901. [Google Scholar] [CrossRef] [PubMed]
- Cernea, S.; Onișor, D.; Roiban, A.L.; Benedek, T.; Rat, N. Metabolic dysfunction-associated steatotic liver disease-associated fibrosis and cardiac dysfunction in patients with type 2 diabetes. World J. Cardiol. 2024, 16, 580–594. [Google Scholar] [CrossRef]
- Wallace, T.; Levy, J.; Matthews, D. Use and Abuse of HOMA Modelling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Bello-Chavolla, O.Y.; Almeda-Valdes, P.; Gómez-Velasco, D.; Viveros-Ruiz, T.; Cruz-Bautista, I.; Romo-Romo, A.; Sánchez-Lázaro, D.; Meza-Oviedo, D.; Vargas-Vazquez, A.; Campos, O.A.; et al. METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes. Eur. J. Endocrinol. 2018, 178, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Simental-Mendía, L.; Rodríguez-Morán, M.; Guerrero-Romero, F. The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Y.; Li, S.; Ma, Y.; Lin, J.; Wan, J.; Zhao, M. The atherogenic index of plasma (AIP) is a predictor for the severity of coronary artery disease. Front. Cardiovascular. Med. 2023, 10, 1140215. [Google Scholar] [CrossRef]
- Grigorescu, E.-D.; Lăcătușu, C.-M.; Floria, M.; Cazac, G.-D.; Onofriescu, A.; Sauciuc, L.-A.; Ceasovschih, A.; Crețu, I.; Mihai, B.-M.; Șorodoc, L. Effects of Incretin-Based Treatment on the Diastolic (Dys) Function in Patients with Uncontrolled Type 2 Diabetes Mellitus: A Prospective Study with 1-Year Follow-Up. Diagnostics 2023, 13, 2817. [Google Scholar] [CrossRef]
- Fan, L.; Pan, J.A.; Lin, H.; Wang, C.Q.; Zhang, J.F.; Gu, J. Optimal management of blood glucose, blood pressure and atrial fibrillation to reduce the risk of heart failure with preserved ejection fraction. Intern. Med. J. 2022, 52, 301–309. [Google Scholar] [CrossRef]
- Metgudmath, V.; Patted, S.; Porwal, S.; Khobragade, A.; Padagi, R. Echocardiographic Assessment of Left Ventricular Diastolic Dysfunction in Type 2 Diabetes Mellitus: Correlation with Age, Disease Duration, and Glycemic Control. Cardiol. Res. Cardiovasc. Med. 2024, 9, 265. [Google Scholar] [CrossRef]
- Hao, M.; Huang, X.; Liu, X.; Fang, X.; Li, H.; Lv, L.; Zhou, L.; Guo, T.; Yan, D. Novel model predicts diastolic cardiac dysfunction in type 2 diabetes. Ann. Med. 2023, 55, 766–777. [Google Scholar] [CrossRef]
- Yadava, S.K.; Dolma, N.; Lamichhane, G.; Poudel, N.; Barakoti, M.; Karki, D.B. Prevalence of Diastolic Dysfunction in Type 2 Diabetes Mellitus. Kathmandu Univ. Med. J. (KUMJ) 2017, 15, 212–216. [Google Scholar]
- Randhawa, F.A.; Hussnain, M.T.; Nazir, S.; Masud, F. Frequency of diastolic dysfunction in asymptomatic, normotensive type 2 diabetic patients. J. Ayub Med. Coll. Abbottabad 2014, 26, 35–37. [Google Scholar] [PubMed]
- Patil, V.C.; Patil, H.V.; Avhad, A.B.; Kulkarni, A.R. A Comparative Study of Diastolic Dysfunction by Echocardiography among Diabetic and Non-Diabetic Subjects. J. Krishna Inst. Med. Sci. Univ. 2020, 9, 50–66. [Google Scholar]
- Chee, K.H.; Tan, K.L.; Luqman, I.; Saiful, S.S.; Chew, Y.Y.; Chinna, K.; Tan, A.T. Prevalence and predictors of left ventricular diastolic dysfunction in Malaysian patients with type 2 diabetes mellitus without prior known cardiovascular disease. Front. Cardiovasc. Med. 2021, 8, 676862. [Google Scholar] [CrossRef]
- Li, N.; Zhao, M.; Yuan, L.; Chen, Y.; Zhou, H. Association between glycosylated hemoglobin levels, diabetes duration, and left ventricular diastolic dysfunction in patients with type 2 diabetes and preserved ejection fraction: A cross-sectional study. Front. Endocrinol. 2023, 14, 1326891. [Google Scholar] [CrossRef]
- Yokota, S.; Tanaka, H.; Mochizuki, Y.; Soga, F.; Yamashita, K.; Tanaka, Y.; Shono, A.; Suzuki, M.; Sumimoto, K.; Mukai, J.; et al. Association of glycemic variability with left ventricular diastolic function in type 2 diabetes mellitus. Cardiovasc. Diabetol. 2019, 18, 166. [Google Scholar] [CrossRef] [PubMed]
- Ianoș, R.D.; Cozma, A.; Lucaciu, R.L.; Hangan, A.C.; Negrean, V.; Mercea, D.C.; Ciulei, G.; Pop, C.; Procopciuc, L.M. Role of circulating biomarkers in diabetic cardiomyopathy. Biomedicines 2024, 12, 2153. [Google Scholar] [CrossRef] [PubMed]
- Ganotopoulou, A.; Korakas, E.; Pliouta, L.; Kountouri, A.; Pililis, S.; Lampsas, S.; Ikonomidis, I.; Rallidis, L.S.; Papazaf-iropoulou, A.; Melidonis, A.; et al. Association Between Plasma ADAMTS-7 Levels and Diastolic Dysfunction in Patients with Type 2 Diabetes Mellitus. Medicina 2024, 60, 1981. [Google Scholar] [CrossRef]
- Hussin Sherif, A.E.; Al-Daydammony, M.M.; Abdelmoneam Tantawy, A.E.; Abdelbasit, M.S. Non-invasive markers and left ventricular diastolic dysfunction in type II diabetic patients. Zagazig Univ. Med. J. 2025, 31, 1986–1994. [Google Scholar] [CrossRef]
- Seleshi, T.; Alemneh, T.; Mekonnen, D.; Tesfaye, D.; Markos, S.; Getachew, Y.; Taddese, K.; Guteta, S. Assessment of subclinical left ventricular systolic and diastolic dysfunction in patients with type 2 diabetes mellitus under follow-up at Tikur Anbessa Specialized Hospital, Ethiopia: A case-control study. BMC Cardiovasc. Disord. 2024, 24, 201. [Google Scholar] [CrossRef]
- Porel, R.; Shyama, S.; Ahmad, S.; Kumar, N.; Ahmad, S.; Biswas, R.; Ojha, V.S. Can glycated haemoglobin (hba1c) be used as a predictor of left ventricular diastolic dysfunction in non-hypertensive patients with newly diagnosed type 2 diabetes mellitus: A cross-sectional study at a tertiary care centre in Eastern India. BMJ Open 2024, 14, e081269. [Google Scholar] [CrossRef]
- Guria, R.T.; Prasad, M.K.; Mishra, B.; Marandi, S.; Kumar, A.; Dungdung, A. Association of glycosylated haemoglobin (HbA1c) level with left ventricular diastolic dysfunction in patients with type 2 diabetes. Cureus 2022, 14, 11. [Google Scholar] [CrossRef]
- Zuo, X.; Liu, X.; Chen, R.; Ou, H.; Lai, J.; Zhang, Y.; Yan, D. An in-depth analysis of glycosylated haemoglobin level, body mass index and left ventricular diastolic dysfunction in patients with type 2 diabetes. BMC Endocr. Disord. 2019, 19, 88. [Google Scholar] [CrossRef]
- Wazeem, C.M.W.; Pillai, G.; Divakar, A.; Bhaskaran, R. Left ventricular diastolic dysfunction in type 2 diabetes mellitus: A single-centre observational study from a tertiary care hospital in South India. Cureus 2023, 15, e34667. [Google Scholar] [CrossRef]
- Akasheva, D.U.; Utina, T.G.; Dzhioeva, O.N.; Drapkina, O.M. Subclinical left ventricular dysfunction over seven-year follow-up in type 2 diabetes patients without cardiovascular diseases. Biomedicines 2024, 12, 2031. [Google Scholar] [CrossRef]
- Bergerot, C.; Davidsen, E.S.; Amaz, C.; Thibault, H.; Altman, M.; Bellaton, A.; Moulin, P.; Derumeaux, G.; Ernande, L. Diastolic function deterioration in type 2 diabetes mellitus: Predictive factors over a 3-year follow-up. Eur. Heart J. Cardiovasc. Imaging 2017, 19, 67–73. [Google Scholar] [CrossRef]
- Leung, M.; Wong, V.W.; Hudson, M.; Leung, D.Y. Impact of improved glycemic control on cardiac function in type 2 diabetes mellitus. Circ. Cardiovasc. Imaging 2016, 9, e003643. [Google Scholar] [CrossRef]
- Khillari, A.M.; Yelke, B. An Observational Study of Diastolic Dysfunction with 2d Echo Study in Type 2 Diabetes Mellitus. Eur. J. Cardiovasc. Med. 2024, 14, 116–120. [Google Scholar]
- Rehman, S.S.; Hussain, S.; Mateen, A.; Nasir, G.M.; Basharat, A. Incidence of Diastolic Dysfunction in Poorly Controlled Type 2 Diabetes Mellitus without Hypertension and Coronary Artery Disease. Med. Forum 2022, 33, 10–13. [Google Scholar]
- Xia, J.; Li, J.; Jin, G.; Yao, D.; Hua, Q. Development of a nomogram for estimating the risk of left ventricular diastolic dysfunction in patients with non-alcoholic fatty liver disease. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 1749–1759. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation (IDF) Diabetes Atlas, 11th Edition. 2025. Available online: https://diabetesatlas.org (accessed on 30 June 2025).
Studied Variable | Overall (N = 138) | With DD (N = 98) | Without DD (N = 40) | p-Value |
---|---|---|---|---|
Age (years) | 57.86 ± 8.82 | 59.24 ± 8.77 | 54.45 ± 8.05 | 0.002 ** |
<50 (%) | 21.7 | 15.3 | 37.5 | <0.001 ** |
50–64 (%) | 55.8 | 55.1 | 57.5 | |
>65 (%) | 22.5 | 29.6 | 5 | |
Sex (male%) | 49.30 | 46.9 | 55 | 0.390 |
BMI (kg/m2) | 32.65 ± 5.50 | 32.88 ± 5.74 | 32.07 ± 4.88 | 0.678 |
Waist circumference (cm) | 109.13 ± 10.74 | 109.22 ± 11.03 | 109.39 ± 10.18 | 0.849 |
Diabetes duration * (years) | 5 (8) | 6 (8) | 3 (9) | 0.122 |
Neuropathy (%) | 44.2 | 50 | 30 | 0.032 ** |
HbA1c * (%) | 7.8 (1.11) | 7.8 (1.03) | 7.8 (1.65) | 0.562 |
Fasting glycemia * (mg/dL) | 163.5 (46) | 165.5 (51) | 162 (39) | 0.835 |
Insulin * (µIU/mL) | 11.2 (9.39) | 11.95 (11.2) | 12.60 (6.72) | 0.882 |
C-peptide * (ng/mL) | 3.26 (2.22) | 3.18 (1.9) | 2.89 (1.92) | 0.678 |
HOMA-IR | 5.74 ± 3.87 | 5.76 ± 3.97 | 5.69 ± 3.68 | 0.932 |
HOMA C-peptide | 4.02 ± 2.10 | 4.01 ± 2.12 | 4.06 ± 2.10 | 0.914 |
Index C-peptide * | 0.24 (0.19) | 0.23 (0.17) | 0.26 (0.23) | 0.938 |
Total cholesterol (mg/dL) | 195.33 ± 46.11 | 196.29 ± 44.68 | 193.00 ± 49.96 | 0.706 |
LDL-cholesterol (mg/dL) | 103.12 ± 38.96 | 102.81 ± 40.02 | 103.90 ± 36.70 | 0.882 |
HDL-cholesterol (mg/dL) | 56.79 ± 15.27 | 58.26 ± 15.90 | 53.19 ± 13.07 | 0.104 |
Non-HDL-cholesterol (mg/dL) | 138.53 ± 44.88 | 138.05 ± 43.42 | 139.80 ± 48.84 | 0.832 |
Triglycerides (mg/dL) | 202.57 ± 90.46 | 203.57 ± 88.25 | 199.70 ± 96.78 | 0.683 |
TyGi | 5.14 ± 0.25 | 5.17 ± 0.26 | 5.14 ± 0.25 | 0.632 |
AIP | 0.165 ± 0.25 | 0.159 ± 0.25 | 0.178 ± 0.24 | 0.686 |
AI | 2.62 ± 1.11 | 2.56 ± 1.09 | 2.77 ± 1.17 | 0.310 |
LCI | 20.20 (23.15) | 19.72 (22.16) | 20.95 (29.25) | 0.618 |
CRI-I | 3.62 ± 1.11 | 3.55 ± 1.09 | 3.77 ± 1.17 | 0.310 |
CRI-II | 1.94 ± 0.90 | 1.89 ± 0.92 | 2.06 ± 0.86 | 0.327 |
METS-IR | 51.37 ± 9.65 | 50.88 ± 8.21 | 51.80 ± 8.93 | 0.851 |
eGFR (mL/min/1.73 m2) | 83.09 ± 18.00 | 82.41 ± 18.40 | 84.78 ± 17.08 | 0.243 |
UACR (mg/g) | 27.14 ± 48.64 | 23.18 ± 36.02 | 35.04 ± 67.17 | 0.859 |
Uric acid (mg/dL) | 5.48 ± 1.43 | 5.54 ± 1.47 | 5.33 ± 1.31 | 0.429 |
hsCRP * (mg/L) | 5.35 (9.18) | 5.36 (8.91) | 5.29 (11.4) | 0.747 |
IL-6 (pg/mL) | 3.52 ± 4.66 | 3.29 ± 2.72 | 2.99 ± 1.69 | 0.533 |
TNF-α (pg/mL) | 8.05 ± 3.85 | 8.08 ± 3.87 | 7.97 ± 3.86 | 0.814 |
NLR * | 1.85 (1.01) | 1.81 (0.96) | 1.91 (1.1) | 0.927 |
PLR * | 107.63 (49.66) | 107 (48.43) | 109.13 (73.6) | 0.937 |
With comorbidities (%) | 91.3 | 94.9 | 82.5 | 0.039 ** |
Obesity (%) | 65.94 | 64.3 | 70 | 0.735 |
Dyslipidemia (%) | 71.74 | 75.5 | 62.5 | 0.146 |
Hypertension (%) | 67.4 | 71.4 | 57.5 | 0.161 |
Steatohepatitis (%) | 75.46 | 78.6 | 72.5 | 0.673 |
LVEF (%) | 67.14 ± 9.35 | 66.43 ± 9.44 | 68.88 ± 9.00 | 0.164 |
FS (%) | 38.16 ± 7.89 | 37.63 ± 7.90 | 39.38 ± 7.82 | 0.249 |
E/A * | 0.95 (0.69) | 0.86 (0.61) | 1.22 (0.75) | 0.027 ** |
E/e’ | 6.54 ± 1.84 | 6.94 ± 1.86 | 5.60 ± 1.41 | <0.001 ** |
EDT * (ms) | 190 (60) | 188 (65) | 190 (45) | 0.590 |
IVRT * (ms) | 105 (25) | 105 (30) | 100 (24) | 0.044 ** |
IVS * (mm) | 11 (2) | 12 (2.5) | 11 (2) | 0.006 ** |
LVPW * (mm) | 11 (2) | 11 (2) | 10.5 (2) | 0.048 ** |
LAVI * (mL/m2) | 42 (18) | 43.5 (17) | 35.5 (11) | 0.001 ** |
CHA2DS2-VASc score * | 3 (1) | 3 (1) | 2 (1) | 0.002 ** |
NT-proBNP * (pg/mL) | 63 (77.1) | 65 (87) | 53 (77) | 0.377 |
MAC (%) | 43.47 | 45.9 | 37.5 | 0.450 |
AA (%) | 11.6 | 15.3 | 2.5 | 0.039 ** |
Overall | Age Groups | ||||
---|---|---|---|---|---|
Variables | <50 | 50–64 | >65 | p-Values | |
Number T0 | 138 | 30 (21.7%) | 77 (55.8%) | 31 (22.5%) | |
Number T1 | 132 | 29 (21.7%) | 73 (55.3%) | 30 (22.73%) | |
Diabetes duration (years) * | 5 (8) | 1 (2.25) | 2 (5) | 6 (4) | <0.001 ** |
BMI T0 | 32.65 ± 5.50 | 33.28 ± 6.98 | 32.74 ± 4.94 | 31.82 ± 5.32 | 0.519 |
BMI T1 | 31.97 ± 5.00 | 32.10 ± 5.00 | 32.14 ± 4.90 | 31.41 ± 4.85 | 0.722 |
p-values (T1 − T0) | <0.001 ** | 0.006 ** | 0.019 ** | 0.023 ** | |
HbA1c * (%) T0 HbA1c * (%) T1 | 7.8 (1.11) | 7.8 | 7.8 | 7.8 | 0.728 |
7.2 (1.1) | 7.2 | 7.4 | 7.1 | 0.526 | |
p-values (T1 − T0) | <0.001 ** | 0.004 ** | <0.001 ** | 0.002 ** | |
Fasting glycemia * (mg/dL) T0 Fasting glycemia * (mg/dL) T1 p-values (T1 − T0) | 163.5 (46) | 170 (44) | 159 (42) | 166 (62) | 0.434 |
145 (40.5) | 142 (39) | 148 (50.5) | 147 (39.25) | 0.528 | |
<0.001 ** | <0.001 ** | 0.025 ** | 0.020 ** | ||
eGFR (mL/min/1.73 m2) T0 | 83.09 ± 18.00 | 95.80 ± 14.65 | 83.61 ± 16.36 | 69.52 ± 15.53 | <0.001 ** |
eGFR (mL/min/1.73 m2) T1 | 77.25 ± 17.66 | 91.96 ± 16.68 | 77.27 ± 14.27 | 63.52 ± 15.23 | <0.001 ** |
p-values (T1 − T0) | <0.001 ** | 0.238 | 0.003 ** | 0.002 ** | |
UACR (mg/g) T0 | 27.14 ± 48.64 | 18.74 ± 22.00 | 33.26 ± 60.57 | 18.18 ± 22.28 | 0.600 |
UACR (mg/g) T1 | 17.30 ± 29.80 | 17.26 ± 30.42 | 19.70 ± 34.81 | 14.41 ± 7.11 | 0.763 |
p-values (T1 − T0) | 0.016 ** | 0.587 | 0.014 ** | 0.546 | |
hsCRP * (mg/L) T0 | 5.35 (9.18) | 5.47 (11.75) | 5.33 (14.68) | 4.15 (6.43) | 0.511 |
hsCRP * (mg/L) T1 | 3.61 (6.56) | 4.04 (7.97) | 3.58 (6.64) | 3.14 (6.16) | 0.849 |
p-values (T1 − T0) | <0.001 ** | 0.031 ** | 0.006 ** | 0.236 | |
IL-6 (pg/mL) T0 | 3.52 ± 4.66 | 2.58 ± 1.00 | 3.40 ± 2.91 | 3.28 ± 2.19 | 0.229 |
IL-6 (pg/mL) T1 | 3.79 ± 2.43 | 3.42 ± 2.05 | 3.95 ± 2.71 | 3.74 ± 2.05 | 0.568 |
p-values (T1 − T0) | 0.033 ** | 0.508 | 0.040 ** | 0.629 | |
TNF-α (pg/mL) T0 | 8.05 ± 3.85 | 6.89 ± 2.31 | 8.07 ± 4.02 | 9.13 ± 4.38 | 0.067 |
TNF-α (pg/mL) T1 | 9.34 ± 5.98 | 7.22 ± 3.00 | 9.21 ± 4.28 | 11.69 ± 9.86 | 0.004 ** |
p-values (T1 − T0) | <0.001 ** | 0.689 | 0.009 ** | 0.014 ** |
Overall | Age Groups | ||||
---|---|---|---|---|---|
Variables | <50 | 50–64 | >65 | p-Values | |
LVEF (%) T0 | 67.14 ± 9.35 | 67.40 ± 8.79 | 67.40 ± 8.79 | 67.40 ± 8.79 | 0.651 |
LVEF (%) T1 | 66.66 ± 7.13 | 67.21 ± 5.80 | 66.45 ± 7.03 | 66.67 ± 8.55 | 0.842 |
p-values (T1 − T0) | 0.213 | 0.665 | 0.551 | 0.248 | |
FS % T0 | 38.16 ± 7.89 | 38.93 ± 7.19 | 37.64 ± 8.42 | 38.74 ± 7.23 | 0.619 |
FS % T0 | 37.89 ± 6.97 | 38.93 ± 7.21 | 37.29 ± 6.74 | 38.37 ± 7.36 | 0.619 |
p-values (T1 − T0) | 0.337 | 0.713 | 0.470 | 0.500 | |
LVEDD (mm) * T0 | 48 (10) | 48.5 (9) | 48 (10) | 47 (9) | 0.606 |
LVEDD (mm) * T1 | 50 (10) | 50 (10.5) | 50 (10.5) | 48 (9) | 0.529 |
p-values (T1 − T0) | 0.022 ** | 0.965 | 0.019 ** | 0.190 | |
LVESD (mm) T0 | 28.44 ± 7.97 | 29.53 ± 6.57 | 29.09 ± 8.15 | 25.87 ± 7.68 | 0.107 |
LVESD (mm) T1 | 29.47 ± 8.06 | 28.96 ± 8.47 | 30.63 ± 8.42 | 27.17 ± 6.33 | 0.133 |
p-values (T1 − T0) | 0.076 | 0.374 | 0.060 | 0.056 | |
E/A * T0 | 0.95 (0.69) | 1.39 (0.47) | 0.90 (0.66) | 0.73 (0.33) | <0.001 ** |
E/A * T1 | 0.94 (0.76) | 1.47 (0.47) | 0.94 (0.73) | 0.76 (0.34) | <0.001 ** |
p-values (T1 − T0) | 0.792 | 0.779 | 0.793 | 0.614 | |
E/e’ T0 | 6.54 ± 1.84 | 6.06 ± 1.65 | 6.39 ± 1.68 | 7.38 ± 2.14 | 0.014 ** |
E/e’ T1 | 6.68 ± 1.80 | 6.22 ± 2.15 | 6.80 ± 1.55 | 6.84 ± 1.97 | 0.081 |
p-values (T1 − T0) | 0.034 ** | 0.393 | <0.001 ** | 0.156 | |
Mean e’ (cm/s) T0 | 8.21 ± 1.87 | 9.66 ± 2.19 | 8.04 ± 1.47 | 7.23 ± 1.61 | <0.001 ** |
Mean e’ (cm/s) T1 | 8.25 ± 1.83 | 9.65 ± 2.05 | 8.00 ± 1.54 | 7.51 ± 1.58 | <0.001 ** |
p-values (T1 − T0) | 0.453 | 0.980 | 0.783 | 0.011 ** | |
Lateral s’ * (cm/s) T0 | 6.7 (1.6) | 7 (1.9) | 6.85 (1.4) | 6 (1) | 0.003 ** |
Lateral s’ * (cm/s) T1 | 7 (1.8) | 7.5 (2.3) | 7.1 (1.8) | 6.05 (1.6) | 0.002 ** |
p-values (T1 − T0) | <0.001 ** | 0.103 | 0.014 ** | 0.109 | |
EDT * (ms) T0 | 190 (60) | 172.5 (63.25) | 190 (62.5) | 200 (55) | 0.004 ** |
EDT * (ms) T1 | 200 (57.5) | 165 (53.75) | 200 (60) | 215 (57.5) | <0.001 ** |
p-values (T1 − T0) | 0.002 ** | 0.548 | 0.046 ** | 0.004 ** | |
IVRT * (ms) T0 | 105 (25) | 100 (16.25) | 105 (25) | 100 (30) | 0.218 |
IVRT * (ms) T1 | 105 (20) | 100 (25) | 110 (20) | 105 (35) | 0.149 |
p-values (T1 − T0) | 0.002 ** | 0.468 | 0.078 | 0.002 ** | |
IVS * (mm) T0 | 11 (2) | 11 (2) | 11.5 (2) | 12 (3) | 0.246 |
IVS * (mm) T1 | 12 (2) | 11 (2) | 12 (3) | 12 (2.12) | 0.047 ** |
p-values (T1 − T0) | 0.186 | 0.588 | 0.131 | 0.487 | |
LVPW * (mm) T0 | 11 (2) | 11 (2) | 11 (2) | 11 (2) | 0.650 |
LVPW * (mm) T1 | 11 (2) | 11 (2) | 11 (2) | 11 (2) | 0.104 |
p-values (T1 − T0) | 0.039 ** | 0.265 | 0.040 ** | 0.065 | |
LAVI * (mL/m2) T0 | 42 (18) | 36 (13.5) | 42 (18) | 45 (15) | 0.050 |
LAVI * (mL/m2) T1 | 42 | 38 (10.5) | 43 (14.75) | 44.5 (12.5) | 0.003 ** |
p-values (T1 − T0) | 0.133 | 0.955 | 0.333 | 0.194 | |
LA area (cm2) | 24.36 ± 4.28 | 22.73 ± 3.44 | 24.71 ± 4.52 | 25.03 ± 4.13 | 0.025 ** |
LA area (cm2) | 24.17 ± 4.22 | 22.72 ± 3.76 | 24.42 ± 4.20 | 24.97 ± 4.84 | 0.050 |
p-values (T1 − T0) | 0.882 | 0.773 | 0.889 | 0.742 |
Variables | Worsened | Stable/Improved | Total | p-Value | ||||
---|---|---|---|---|---|---|---|---|
N (27) | % | N (105) | % | N (132) | % | |||
Gender | Male | 16 | 59.3 | 49 | 46.7 | 65 | 49.2 | 0.243 |
Female | 11 | 40.7 | 56 | 53.3 | 67 | 50.8 | ||
Age | <50 | 5 | 18.5 | 24 | 22.9 | 29 | 22.0 | 0.845 |
50–64 | 15 | 55.6 | 58 | 55.2 | 73 | 55.3 | ||
>65 | 7 | 25.9 | 23 | 21.9 | 30 | 22.7 | ||
Diabetes duration (years) | <5 | 14 | 51.9 | 46 | 43.8 | 60 | 45.5 | 0.561 |
5–10 | 8 | 29.6 | 29 | 27.6 | 37 | 28.0 | ||
>10 | 5 | 18.5 | 30 | 28.6 | 35 | 26.5 | ||
Comorbidities | With | 25 | 92.6 | 97 | 92.4 | 122 | 92.4 | 1.000 |
Without | 2 | 7.4 | 8 | 7.6 | 10 | 7.6 | ||
Obesity | With | 15 | 55.6 | 74 | 70.5 | 89 | 67.4 | 0.140 |
Without | 12 | 44.4 | 31 | 29.5 | 43 | 32.6 | ||
Dyslipidemia | With | 21 | 77.8 | 75 | 71.4 | 96 | 72.7 | 0.509 |
Without | 6 | 22.2 | 30 | 28.6 | 36 | 27.3 | ||
Hypertension | With | 17 | 63 | 74 | 70.5 | 91 | 68.9 | 0.452 |
Without | 10 | 37 | 31 | 29.5 | 41 | 31.1 | ||
Steatohepatitis | With | 24 | 88.9 | 73 | 69.5 | 97 | 73.5 | 0.051 |
Without | 3 | 11.1 | 32 | 30.5 | 35 | 26.5 | ||
Neuropathy | With | 11 | 40.7 | 46 | 43.8 | 57 | 43.2 | 0.774 |
Without | 16 | 59.3 | 59 | 56.2 | 75 | 56.8 | ||
MAC | With | 12 | 44.4 | 45 | 42.9 | 57 | 43.2 | 0.882 |
Without | 15 | 55.6 | 60 | 57.1 | 75 | 56.8 | ||
HbA1c (%) | <7.5 | 9 | 33.3 | 37 | 35.2 | 46 | 34.8 | 0.365 |
7.5–8 | 11 | 40.7 | 29 | 27.6 | 40 | 30.3 | ||
>8 | 7 | 25.9 | 39 | 37.1 | 46 | 34.8 | ||
hs CRP (mg/L) | <3 | 8 | 29.6 | 29 | 28.4 | 37 | 28.7 | 0.903 |
>3 | 19 | 70.4 | 73 | 71.6 | 92 | 71.3 | ||
HOMA-IR | <5 | 12 | 44.4 | 55 | 52.4 | 67 | 50.8 | 0.462 |
>5 | 15 | 55.6 | 50 | 47.6 | 65 | 49.2 | ||
Antihyperglycemic drugs | Incretin-based | 22 | 81.5 | 67 | 63.8 | 89 | 67.4 | 0.081 |
Conventional | 5 | 18.5 | 38 | 36.2 | 43 | 32.6 |
LVDD | Echocardiographic Parameters | Age | Diabetes Duration | BMI | WC | Weight | CHA2DS2-VASc Score | HbA1c | HDL- Cholesterol | METS -IR | AIP | UACR | TNF-α | hs CRP | PLR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | 0.243 ** | 0.227 ** | 0.190 * | 0.139 | 0.053 | 0.353 ** | −0.017 | 0.089 | 0.190 * | −0.002 | 0.072 | 0.336 * | −0.103 | −0.061 | |
With DD | E/e’ | 0.251 * | 0.302 ** | 0.167 | 0.154 | 0.053 | 0.345 ** | −0.184 | 0.069 | 0.205 * | −0.014 | 0.164 | 0.097 | −0.095 | −0.005 |
Without DD | 0.033 | −0.037 | 0.207 | 0.134 | 0.013 | 0.217 | −0.100 | −0.067 | 0.232 | 0.098 | 0.065 | 0.336 * | −0.083 | −0.332 * | |
Overall | −0.386 ** | −0.241 ** | 0.061 | 0.065 | 0.319 ** | −0.343 ** | −0.158 | −0.254 ** | 0.163 | 0.231 ** | 0.170 | −0.072 | 0.036 | 0.042 | |
With DD | E/A | −0.382 ** | −0.267 ** | −0.006 | −0.015 | 0.255 * | −0.303 ** | −0.161 | −0.259 * | 0.096 | 0.242 * | 0.048 | −0.116 | 0.004 | 0.069 |
Without DD | −0.237 | −0.063 | −0.317 * | 0.341 * | 0.416 ** | −0.331 * | −0.184 | −0.142 | 0.376 * | 0.051 | 0.367 * | 0.096 | 0.093 | 0.028 | |
Overall | 0.295 ** | 0.229 * | −0.092 | 0.051 | −0.063 | 0.058 | 0.157 | 0.164 | −0.134 | −0.051 | 0.004 | 0.076 | −0.158 | −0.027 | |
With DD | EDT | 0.347 ** | 0.229 * | −0.133 | 0.037 | −0.132 | 0.063 | 0.219 * | 0.204 * | −0.182 | −0.108 | −0.034 | 0.092 | −0.112 | 0.084 |
Without DD | 0.116 | −0.245 | −0.004 | 0.108 | 0.138 | −0.049 | 0.001 | 0.011 | 0.022 | 0.124 | 0.027 | 0.050 | −0.237 | −0.284 | |
Overall | 0.020 | 0.091 | 0.081 | 0.127 | 0.149 | −0.002 | −0.024 | −0.030 | 0.061 | 0.006 | 0.017 | −0.085 | 0.041 | −0.088 | |
With DD | IVRT | 0.130 | 0.082 | 0.089 | 0.145 | 0.150 | −0.002 | −0.034 | −0.008 | 0.044 | −0.036 | 0.051 | −0.151 | 0.077 | −0.039 |
Without DD | −0.233 | 0.026 | 0.009 | 0.081 | 0.192 | −0.290 | 0.020 | −0.195 | 0.104 | 0.161 | −0.061 | 0.125 | −0.054 | −0.242 | |
Overall | 0.231 * | 0.114 | 0.116 | 0.092 | 0.002 | 0.178 | −0.192 * | 0.114 | 0.193 * | −0.012 | 0.055 | −0.045 | −0.077 | −0.115 | |
With DD | LAVI | 0.130 | −0.019 | 0.157 | 0.159 | 0.056 | 0.063 | −0.188 | 0.198 | 0.074 | 0.007 | 0.035 | −0.018 | −0.128 | −0.206 |
Without DD | 0.194 | 0.271 | 0.020 | 0.055 | 0.059 | 0.090 | −0.169 | −0.304 | 0.083 | 0.045 | 0.103 | −0.113 | 0.070 | 0.028 |
LVDD | Echocardiographic Parameters | Age | Diabetes Duration | Weight | CHA2DS2 -VASc score | HbA1c | Index C-Peptide | HDL- Cholesterol | CRI-I | CRI-II | AI | TNF-α | hs CRP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | 0.147 | 0.104 | −0.048 | 0.300 ** | 0.083 | 0.049 | 0.072 | 0.032 | 0.061 | 0.032 | 0.294 ** | −0.044 | |
With DD | E/e’ | −0.096 | 0.033 | 0.084 | 0.064 | 0.012 | 0.080 | 0.032 | 0.161 | 0.180 | 0.161 | 0.260 * | 0.032 |
Without DD | 0.266 | −0.089 | −0.222 | 0.525 ** | 0.184 | −0.048 | −0.030 | −0.016 | −0.035 | −0.016 | 0.385 ** | 0.115 | |
Overall | −0.429 ** | −0.227 ** | 0.314 ** | −0.381 ** | −0.093 | 0.069 | −0.152 | 0.192 * | 0.192 * | 0.192 * | −0.210 * | −0.040 | |
With DD | E/A | −0.447 ** | −0.301 * | 0.262 * | −0.324 ** | −0.205 | 0.087 | −0.082 | 0.180 | 0.220 * | 0.180 | −0.273 * | 0.033 |
Without DD | −0.260 | 0.000 | 0.343 * | −0.343 * | −0.205 | 0.084 | −0.088 | 0.127 | 0.144 | 0.127 | −0.023 | −0.164 | |
Overall | 0.385 ** | 0.227 ** | −0.050 | 0.096 | −0.114 | −0.008 | 0.131 | −0.097 | −0.137 | −0.097 | 0.120 | −0.115 | |
With DD | EDT | 0.416 ** | 0.290 * | −0.096 | 0.072 | −0.007 | 0.012 | 0.064 | −0.037 | −0.073 | −0.037 | 0.180 | −0.236 * |
Without DD | 0.183 | 0.047 | 0.193 | 0.030 | −0.277 | 0.125 | 0.125 | −0.155 | −0.237 | −0.155 | 0.013 | 0.116 | |
Overall | 0.150 | 0.240 ** | −0.032 | −0.024 | 0.110 | −0.179 * | 0.074 | −0.026 | −0.024 | −0.026 | 0.032 | −0.193 * | |
With DD | IVRT | 0.135 | 0.215 | −0.046 | −0.029 | 0.237 * | 0.182 | 0.094 | 0.030 | 0.025 | 0.030 | 0.129 | −0.097 |
Without DD | 0.048 | 0.189 | 0.030 | −0.204 | −0.113 | 0.163 | −0.046 | −0.070 | −0.072 | −0.070 | −0.138 | −0.227 | |
Overall | 0.288 ** | 0.140 | −0.006 | 0.121 | −0.114 | 0.147 | 0.223 * | −0.054 | −0.047 | −0.054 | 0.162 | −0.020 | |
With DD | LAVI | 0.189 | −0.070 | −0.095 | 0.054 | 0.134 | 0.200 | 0.223 * | −0.107 | −0.120 | −0.107 | 0.124 | −0.001 |
Without DD | 0.051 | 0.240 | 0.360 * | −0.313 * | −0.075 | −0.015 | −0.127 | 0.244 | 0.183 | 0.244 | 0.102 | −0.054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigorescu, E.-D.; Mihai, B.-M.; Cazac-Panaite, G.-D.; Foșălău, A.-B.; Onofriescu, A.; Floria, M.; Dascălu, C.G.; Ceasovschih, A.; Șorodoc, L.; Lăcătușu, C.-M. Age-Related Characteristics of Diastolic Dysfunction in Type 2 Diabetes Patients. J. Clin. Med. 2025, 14, 5772. https://doi.org/10.3390/jcm14165772
Grigorescu E-D, Mihai B-M, Cazac-Panaite G-D, Foșălău A-B, Onofriescu A, Floria M, Dascălu CG, Ceasovschih A, Șorodoc L, Lăcătușu C-M. Age-Related Characteristics of Diastolic Dysfunction in Type 2 Diabetes Patients. Journal of Clinical Medicine. 2025; 14(16):5772. https://doi.org/10.3390/jcm14165772
Chicago/Turabian StyleGrigorescu, Elena-Daniela, Bogdan-Mircea Mihai, Georgiana-Diana Cazac-Panaite, Adina-Bianca Foșălău, Alina Onofriescu, Mariana Floria, Cristina Gena Dascălu, Alexandr Ceasovschih, Laurențiu Șorodoc, and Cristina-Mihaela Lăcătușu. 2025. "Age-Related Characteristics of Diastolic Dysfunction in Type 2 Diabetes Patients" Journal of Clinical Medicine 14, no. 16: 5772. https://doi.org/10.3390/jcm14165772
APA StyleGrigorescu, E.-D., Mihai, B.-M., Cazac-Panaite, G.-D., Foșălău, A.-B., Onofriescu, A., Floria, M., Dascălu, C. G., Ceasovschih, A., Șorodoc, L., & Lăcătușu, C.-M. (2025). Age-Related Characteristics of Diastolic Dysfunction in Type 2 Diabetes Patients. Journal of Clinical Medicine, 14(16), 5772. https://doi.org/10.3390/jcm14165772