Lateral Geniculate Nucleus Volume Assessed by 7 Tesla MRI 3D MT-Weighted SILENT Protocol in Patients with STARGARDT Disease—Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. 7 Tesla MRI Data Acquisition
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Association of Thalamus with LGN
3.2. LGN-to-Thalamus Ratio Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heath Jeffery, R.C.; Chen, F.K. Stargardt disease Multimodal imaging: A review 2021. Clin. Exp. Ophthalmol. 2021, 49, 498–515. [Google Scholar] [CrossRef]
- Tanna, P.; Strauss, R.W.; Fujinami, K.; Michaelides, M. Stargardt disease: Clinical features, molecular genetics, animal models and therapeutic options. Br. J. Ophtalmol. 2017, 101, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ruan, G.; Zhang, J.; Luo, F.; Zhao, K. Genetic Diagnosis of Familial Exudative Vitreoretinopathy by Targeted Next-Generation Sequencing. Ophthalmic Genet. 2021, 42, 196–202. [Google Scholar]
- Radu, R.A.; Han, Y.; Bui, T.V.; Nusinowitz, S.; Bok, D.; Lichter, J.B.; Travis, G.H.; Mata, N.L. Reductions in Serum Vitamin A in Stargardt’s Patients Treated with Oral Fenretinide. Investig. Ophthalmol. Vis. Sci. 2011, 53, 4409–4415. [Google Scholar]
- Tsang, H.S.; Sharma, T. Stargardt Disease. Adv. Exp. Med. Biol. 2018, 1085, 139–151. [Google Scholar] [PubMed]
- Runhart, E.H.; Dhooge, P.; Meester-Smoor, M.; Pas, J.; Pott, J.W.R.; van Leeuwen, R.; Kroes, H.Y.; Bergen, A.A.; de Jong-Hesse, Y.; Thiadens, A.A.; et al. Stargardt disease: Monitoring incidence and diagnostic trends in the Netherlands using a nationwide disease registry. Acta Ophthalmol. 2022, 100, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Galvin, O.; Chi, G.; Brady, L.; Hippert, C.; Rubido, M.D.V.; Daly, A.; Michaelides, M. The impact of inherited retinal diseases in the Republic of Ireland (ROI) and the United Kingdom (UK) from a cost-of-illness perspective. Clin. Ophthalmol. 2020, 14, 707–719. [Google Scholar] [CrossRef]
- Perry, V.H.; Oehler, R.; Cowey, A. Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 1984, 12, 1101–1123. [Google Scholar] [CrossRef]
- Gray, H.; Lewis, W.H. (Eds.) Anatomy of the Human Body; Lea & Febiger: Philadelphia, PA, USA; New York, NY, USA, 1918. [Google Scholar]
- Jeffries, A.M.; Killian, N.J.; Pezaris, J.S. Mapping the primate lateral geniculate nucleus: A review of experiments and methods. J. Physiol. Paris 2014, 108, 3–10. [Google Scholar] [CrossRef]
- Rompani, S.B.; Muellner, F.E.; Wanner, A.; Zhang, C.; Roth, C.N.; Yonehara, K.; Roska, B. Different modes of visual integration in the lateral geniculate nucleus revealed by single-cell-initiated transsynaptic tracing. Neuron 2017, 93, 767–776. [Google Scholar] [CrossRef]
- Takahata, T.; Patel, N.B.; Balaram, P.; Chino, Y.M.; Kaas, J.H. Long-term histological changes in the macaque primary visual cortex and the lateral geniculate nucleus after monocular deprivation produced by early restricted retinal lesions and diffuser induced form deprivation. J. Comp. Neurol. 2018, 526, 2955–2972. [Google Scholar] [CrossRef]
- Sereno, M.I.; Dale, A.M.; Reppas, J.B.; Kwong, K.K.; Belliveau, J.W.; Brady, T.J.; Rosen, B.R.; Tootell, R.B. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 1995, 268, 889–893. [Google Scholar] [CrossRef]
- Ptito, M.; Pare, S.; Dricot, L.; Cavaliere, C.; Tomaiuolo, F.; Kupers, R. A quantitative analysis of the retinofugal projections in congenital and late-onset blindness. Neuroimage Clin. 2021, 32, 102809. [Google Scholar] [CrossRef]
- Hernovo, A.T.; Prins, D.; Baseler, H.A.; Plank, T.; Gouws, A.D.; Hooymans, J.M.; Morland, A.B.; Greenlee, M.W.; Cornelissen, F.W. Morphometric analyses of the visual pathways in macular degeneration. Cortex 2014, 56, 99–110. [Google Scholar] [CrossRef]
- Wang, D.; Qin, W.; Liu, Y.; Zheng, Y.; Jiang, T.; Yu, C. Altered white matter integrity in the congenital and late blind people. Neural Plast. 2013, 2013, 128236. [Google Scholar] [CrossRef]
- García-Gomar, M.G.; Strong, C.; Toschi, N.; Singh, K.; Rosen, B.R.; Wald, L.L.; Bianciardi, M. In vivo Probabilistic Structural Atlas of the Inferior and Superior Colliculi, Medial and Lateral Geniculate Nuclei and Superior Olivary Complex in Humans Based on 7 Tesla MRI. Front. Mol. Neurosci. 2019, 13, 764. [Google Scholar] [CrossRef] [PubMed]
- Aldusary, N.; Michels, L.; Traber, G.L.; Hartog-Keisker, B.; Wyss, M.; Baeshen, A.; Huebel, K.; Almalki, Y.E.; Brunner, D.O.; Pruessmann, K.P.; et al. Lateral geniculate nucleus volumetry at 3T and 7T: Four different optimized magnetic-resonance-imaging sequences evaluated against a 7T reference acquisition. Neuroimage 2018, 186, 399–409. [Google Scholar] [CrossRef] [PubMed]
- McKetton, L.; Kelly, K.R.; Schneider, K.A. Abnormal lateral geniculate nucleus and optic chiasm in human albinism. J. Comp. Neurol. 2014, 522, 2680–2687. [Google Scholar] [CrossRef] [PubMed]
- Fagan, J.A.; Bitz, A.K.; Björkman-Burtscher, I.M.; Collins, C.H.; Kimbrell, V.; Raaijmakers, A.J.E. 7T MR Safety. J. Magn. Reson. Imaging 2021, 53, 333–346. [Google Scholar] [CrossRef]
- Li, M.; He, H.G.; Shi, W.; Li, J.; Lv, B.; Wang, C.H.; Miao, Q.W.; Wang, Z.C.; Wang, N.L.; Walter, M.; et al. Quantification of the human lateral geniculate nucleus in vivo using MR imaging based on morphometry: Volume loss with age. AJNR Am. J. Neuroradiol. 2012, 33, 915–921. [Google Scholar] [CrossRef]
- Lipin, M.; Bennett, J.; Ying, G.S.; Yu, Y.; Ashtari, M. Improving the Quantification of the Lateral Geniculate Nucleus in Magnetic Resonance Imaging Using a Novel 3D-Edge Enhancement Technique. Front. Comput. Neurosci. 2021, 15, 708866. [Google Scholar] [CrossRef]
- Korsholm, K.; Madsen, K.H.; Frederiksen, J.L.; Skimminge, A.; Lund, T.E. Recovery from optic neuritis: An ROI-based analysis of LGN and visual cortical areas. Brain 2007, 130, 1244–1253. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.A.; Knott, M.; Heidemann, R.; Michelson, G.; Kober, T.; Dörfler, A.; Engelhorn, T. Investigation of lateral geniculate nucleus volume and diffusion tensor imaging in patients with normal tension glaucoma using 7 tesla magnetic resonance imaging. PLoS ONE 2018, 13, e0198830. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Miao, W.; Li, J.; Li, M.; Zhen, Z.; Sabel, B.; Xian, J.; He, H. Automatic segmentation of the lateral geniculate nucleus: Application to control and glaucoma patients. J. Neurosci. Methods 2015, 255, 104–114. [Google Scholar] [CrossRef]
- Müller-Axt, C.; Eichner, C.; Rusch, H.; Kauffmann, L.; Bazin, P.L.; Anwander, A.; Morawski, M.; von Kriegstein, K. Mapping the human visual thalamus and its cytoarchitectonic subdivisions using quantitative MRI. Neuroimage 2021, 244, 118559. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Greenberg, G.; De Tilly, L.N.; Gray, B.; Polemidiotis, M.; Yücel, Y.H. Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging. Br. J. Ophthalmol. 2009, 93, 56–60. [Google Scholar] [CrossRef]
- Gabilondo, I.; Mart’ınez-Lapiscina, E.H.; Mart’ınez-Heras, E.; Fraga-Pumar, E.; Llufriu, S.; Ortiz, S.; Bullich, S.; Sepulveda, M.; Falcon, C.; Berenguer, J.; et al. Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann. Neurol. 2014, 75, 98–107. [Google Scholar] [CrossRef]
- Kosior-Jarecka, E.; Pankowska, A.; Polit, P.; Stępniewski, A.; Symms, M.R.; Kozioł, P.; Żarnowski, T.; Pietura, R. Volume of Lateral Geniculate Nucleus in Patients with Glaucoma in 7Tesla MRI. J. Clin. Med. 2020, 9, 2382. [Google Scholar] [CrossRef]
- Simmen, C.F.; Fierz, F.C.; Michels, L.; Aldusary, N.; Landau, K.; Piccirelli, M.; Traber, G.L. Lateral Geniculate Nucleus Volume Determined on MRI Correlates With Corresponding Ganglion Cell Layer Loss in Acquired Human Postgeniculate Lesions. Investig. Ophthalmol. Vis. Sci. 2022, 63, 18. [Google Scholar] [CrossRef]
- Barnes, G.R.; Li, X.; Thompson, B.; Singh, K.D.; Dumoulin, S.O.; Hess, R.F. Decreased gray matter concentration in the lateral geniculate nuclei in human amblyopes. Investig. Ophthalmol. Vis. Sci. 2010, 51, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Jonak, K.; Krukow, P.; Jonak, K.E.; Radzikowska, E.; Baj, J.; Niedziałek, A.; Pankowska, A.; Symms, M.; Stępniewski, A.; Podkowiński, A.; et al. Decreased Volume of Lateral and Medial Geniculate Nuclei in Patients with LHON Disease-7 Tesla MRI Study. J. Clin. Med. 2020, 9, 2914. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, A.; Gaetano, L.; Pfister, A.; Altermatt, A.; Tsagkas, C.; Morency, F.; Brandt, A.U.; Hardmeier, M.; Chakravarty, M.M.; Descoteaux, M.; et al. Damage of the lateral geniculate nucleus in MS: Assessing the missing node of the visual pathway. Neurology 2019, 92, e2240–e2249. [Google Scholar] [CrossRef]
- Nowomiejska, K.; Baltaziak, K.; Czarnek-Chudzik, A.; Toborek, M.; Niedziałek, A.; Wiśniewska, K.; Midura, M.; Rejdak, R.; Pietura, R. 7 Tesla MRI Reveals Brain Structural Abnormalities and Neural Plasticity in RPGR-Related Retinitis Pigmentosa. J. Clin. Med. 2025, 14, 1617. [Google Scholar] [CrossRef]
- Ashtari, M.; Bennett, J.; Leopold, D.A. Central visual pathways affected by degenerative retinal disease before and after gene therapy. Brain 2024, 147, 3234–3246. [Google Scholar] [CrossRef]
- Sahel, J.-A.; Marazova, K.; Audo, I. Clinical Characteristics and Current Therapies for Inherited Retinal Degenerations. Cold Spring Harb. Perspect. Med. 2015, 5, a017111. [Google Scholar] [CrossRef]
- Fard, A.M.; Mirshahi, R.; Naseripour, M.; Falavarjani, K.H. Stem Cell Therapy in Stargardt Disease: A Systematic Review. J. Ophthalmic Vis. Res. 2023, 28, 318–327. [Google Scholar] [CrossRef]
- Castaldi, E.; Cicchini, G.M.; Cinelli, L.; Biagi, L.; Rizzo, S.; Morrone, M.C. Visual BOLD response in late blind subjects with Argus II retinal prosthesis. PLoS Biol. 2016, 14, e1002569. [Google Scholar] [CrossRef]
- Piotter, E.; McClements, M.; MacLaren, R. Therapy Approaches for Stargardt Disease. Biomolecules 2021, 11, 1179. [Google Scholar] [CrossRef]
- Baker, C.I.; Peli, E.; Knouf, N.; Kanwisher, N.G. Reorganization of visual processing in macular degeneration. J. Neurosci. 2005, 25, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, S.G.; Budd, J.; Cummings, R.W. Eccentric fixation with macular scotoma. Investig. Ophthalmol. Vis. Sci. 1988, 29, 268–278. [Google Scholar]
- Baseler, H.A.; Gouws, A.; Haak, K.V.; Racey, C.; Crossland, M.D.; Tufail, A.; Rubin, G.S.; Cornelissen, F.W.; Morland, A.B. Large-scale remapping of visual cortex is absent in adult humans with macular degeneration. Nat. Neurosci. 2011, 14, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, E.H.; Jacko, J.A.; Primo, S.A.; Main, K.L.; Moloney, K.P.; Kinzel, E.N.; Ginn, J. Reorganization of visual processing is related to eccentric viewing in patients with macular degeneration. Restor. Neurol. Neurosci. 2008, 26, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Melillo, P.; Prinster, A.; Di Iorio, V.; Olivo, G.; D’Alterio, F.M.; Cocozza, S.; Orrico, A.; Quarantelli, M.; Testa, F.; Brunetti, A.; et al. Visual Cortex Activation in Patients With Stargardt Disease. Investig. Ophthalmol. Vis. Sci. 2018, 59, 1503–1511. [Google Scholar] [CrossRef] [PubMed]
Patient ID | Age (Years) | Gender (F: Female; M: Male) | Visual Acuity Right Eye (Snellen) | Visual Acuity Left Eye (Snellen) |
---|---|---|---|---|
1 | 44 | F | 0.05 | 0.05 |
2 | 54 | F | 0.02 | 0.02 |
3 | 19 | M | 0.02 | 0.02 |
4 | 42 | M | 0.01 | 0.01 |
5 | 21 | M | 0.05 | 0.05 |
6 | 43 | M | 0.05 | 0.05 |
7 | 20 | M | 0.01 | 0.01 |
8 | 48 | M | 0.05 | 0.05 |
9 | 33 | M | 0.02 | 0.02 |
10 | 34 | F | 0.1 | 0.1 |
11 | 38 | M | 0.05 | 0.01 |
12 | 49 | M | 0.05 | 0.05 |
13 | 33 | F | 0.05 | 0.05 |
14 | 31 | F | 0.05 | 0.05 |
15 | 32 | M | 0.05 | 0.05 |
16 | 17 | M | 0.05 | 0.05 |
17 | 23 | F | 0.2 | 0.1 |
18 | 18 | M | 0.1 | 0.1 |
Mean | Standard Deviation | Levene’s Test | Shapiro–Wilk | t-Test | ||||
---|---|---|---|---|---|---|---|---|
F | p | W | p | t | p Value | |||
Age Stargardt disease | 33.3 | 11.74 | 3.165 | 0.0851 | 0.94 | 0.2639 | 0.76 | 0.4505 |
Age control group | 30.7 | 7.15 | 0.95 | 0.6035 |
3D BRAVO T1-W | 3D MT-W SILENT | |
---|---|---|
Scan duration | 4 min 24 s | 6 min 30 s |
FOV (cm) | 22 × 22 | 17.6 × 17.6 |
Slice thickness [mm] | 1.0 | 0.8 |
TE [ms] | 2.6 | 0.0 |
TR [ms] | 6.6 | 257 |
TI [ms] | 450 | not applicable |
Matrix size | 288 × 288 | 224 × 224 |
NEX | 1 | 3 |
Flip Angle | 12 | 2 |
Variable | Mean | SD | Median | Min | Max | N |
---|---|---|---|---|---|---|
1 LGN L | 114.12 | 13.02 | 115.70 | 87.00 | 141.00 | 33 |
2 LGN L | 116.28 | 12.89 | 118.00 | 88.90 | 140.00 | 33 |
3 LGN L | 114.71 | 13.45 | 116.50 | 78.27 | 138.00 | 33 |
1 LGN R | 119.23 | 13.65 | 120.00 | 91.90 | 142.60 | 33 |
2 LGN R | 118.45 | 13.44 | 123.30 | 90.70 | 140.70 | 33 |
3 LGN R | 120.02 | 13.27 | 124.40 | 91.51 | 143.30 | 33 |
Control Group | Patients with Stargardt Disease | ||||||||
---|---|---|---|---|---|---|---|---|---|
No | Age | Gender | LGN LEFT | LGN RIGHT | No | Age | Gender | LGN LEFT | LGN RIGHT |
1 | 33 | M | 133.67 | 134.53 | 1 | 44 | F | 95.84 | 107.13 |
2 | 22 | M | 132.10 | 137.23 | 2 | 54 | F | 95.27 | 99.57 |
3 | 24 | M | 130.67 | 132.23 | 3 | 19 | M | 84.72 | 95.89 |
4 | 27 | M | 112.77 | 122.27 | 4 | 42 | M | 114.77 | 109.77 |
5 | 27 | M | 126.53 | 126.67 | 5 | 21 | M | 114.20 | 112.07 |
6 | 28 | M | 111.80 | 121.97 | 6 | 43 | M | 112.57 | 129.03 |
7 | 24 | M | 139.67 | 141.97 | 7 | 20 | M | 105.43 | 97.31 |
8 | 28 | M | 133.40 | 130.17 | 8 | 48 | M | 100.17 | 99.00 |
9 | 20 | M | 124.40 | 127.83 | 9 | 33 | M | 116.80 | 127.87 |
10 | 33 | M | 121.50 | 126.03 | 10 | 34 | F | 105.07 | 107.03 |
11 | 37 | F | 123.00 | 130.33 | 11 | 38 | M | 119.30 | 120.87 |
12 | 36 | F | 101.98 | 106.50 | 12 | 49 | M | 110.10 | 123.30 |
13 | 39 | F | 120.27 | 130.93 | 13 | 33 | F | 109.30 | 110.83 |
14 | 44 | F | 122.00 | 131.83 | 14 | 31 | F | 90.36 | 91.37 |
15 | 39 | F | 120.90 | 130.57 | 15 | 32 | M | 117.87 | 116.77 |
16 | 17 | M | 112.73 | 117.00 | |||||
17 | 23 | F | 109.80 | 117.07 | |||||
18 | 18 | M | 117.93 | 120.03 |
Gr. | Mean | SD | Median | Levene’s Test | t-test | 95 Percent Confidence Interval | ||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | t (df) | p Value | Left | Right | |||||
LGN LEFT | S | 107.4 | 10.20 | 110.0 | 0.05 | 0.83 | 4.66; (31) | <0.001 | 9.16 | 23.44 |
C | 123.6 | 9.77 | 123.0 | |||||||
LGN RIGHT | S | 111.2 | 11.26 | 111.5 | 3.54 | 0.07 | 5.04; (31) | <0.001 | 10.43 | 24.61 |
C | 128.7 | 8.06 | 130.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szpringer-Wabicz, A.; Nowomiejska, K.; Niedziałek, A.; Toborek, M.; Wiśniewska, K.; Midura, M.; Symms, M.; Rejdak, R.; Pietura, R. Lateral Geniculate Nucleus Volume Assessed by 7 Tesla MRI 3D MT-Weighted SILENT Protocol in Patients with STARGARDT Disease—Pilot Study. J. Clin. Med. 2025, 14, 5666. https://doi.org/10.3390/jcm14165666
Szpringer-Wabicz A, Nowomiejska K, Niedziałek A, Toborek M, Wiśniewska K, Midura M, Symms M, Rejdak R, Pietura R. Lateral Geniculate Nucleus Volume Assessed by 7 Tesla MRI 3D MT-Weighted SILENT Protocol in Patients with STARGARDT Disease—Pilot Study. Journal of Clinical Medicine. 2025; 14(16):5666. https://doi.org/10.3390/jcm14165666
Chicago/Turabian StyleSzpringer-Wabicz, Agata, Katarzyna Nowomiejska, Anna Niedziałek, Michał Toborek, Katarzyna Wiśniewska, Mateusz Midura, Mark Symms, Robert Rejdak, and Radosław Pietura. 2025. "Lateral Geniculate Nucleus Volume Assessed by 7 Tesla MRI 3D MT-Weighted SILENT Protocol in Patients with STARGARDT Disease—Pilot Study" Journal of Clinical Medicine 14, no. 16: 5666. https://doi.org/10.3390/jcm14165666
APA StyleSzpringer-Wabicz, A., Nowomiejska, K., Niedziałek, A., Toborek, M., Wiśniewska, K., Midura, M., Symms, M., Rejdak, R., & Pietura, R. (2025). Lateral Geniculate Nucleus Volume Assessed by 7 Tesla MRI 3D MT-Weighted SILENT Protocol in Patients with STARGARDT Disease—Pilot Study. Journal of Clinical Medicine, 14(16), 5666. https://doi.org/10.3390/jcm14165666