Central Line-Associated Bloodstream Infections in Intensive Care Unit During and After the COVID-19 Pandemic, 5-Year Prospective Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Design and Data Acquisition
2.2. CLABSI Diagnostic Criteria
2.3. Microbiological Analysis and Pathogen Identification
2.4. Surveillance Metrics and Epidemiological Parameters
2.5. Ethical Approval
2.6. Statistical Analysis
3. Results
3.1. Patient Demographics and Study Population
3.2. CLABSI Incidence and Epidemiological Indicators
3.3. Gender and Patient Type Distribution
3.4. Mortality Analysis
Matched Cohort Analysis
3.5. Length of Stay Analysis
3.6. Microbiological Analysis
3.7. Antimicrobial Resistance Patterns
3.8. Pandemic and Post-Pandemic Periods Comparison
3.9. CLABSI Preventive Measures Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMR | Antimicrobial Resistance |
ANOVA | Analysis of Variance |
APACHE | Acute Physiology and Chronic Health Evaluation |
BSI | Bloodstream Infection |
CDC | Centers for Disease Control and Prevention |
CI | Confidence Interval |
CLABSI | Central Line-associated Bloodstream Infection |
CRBSI | Catheter-Related Bloodstream Infection |
CVC | Central Vascular Catheter |
CVC-D | Central-Vascular-Catheter-Days |
CVC-UR | Central Vascular Catheter Utilization Ratio |
ECDC | European Centre for Disease Prevention and Control |
ESBL | Extended-Spectrum β-Lactamase |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
GRE | Glycopeptide-Resistant Enterococci |
HAI | Hospital Acquired Infection |
ICU | Intensive Care Unit |
IQR | Interquartile Range |
LOS | Length of Stay |
MBL | Metallo-β-Lactamase |
MDR | Multidrug-Resistant |
MRSA | Methicillin-Resistant Staphylococcus Aureus |
MRSE | Methicillin-Resistant Staphylococcus Epidermidis |
MSSA | Methicillin-Susceptible Staphylococcus Aureus |
MSSE | Methicillin-Susceptible Staphylococcus Epidermidis |
NDM | New Delhi Metallo-β-Lactamase |
NHSN | National Healthcare Safety Network |
Pt-D | Patient-Days |
SCNMR | Staphylococcus Coagulase-Negative Methicillin-Resistant |
SD | Standard Deviation |
VIM | Verona Integron-Encoded Metallo-β-Lactamase |
WHO | World Health Organization |
XDR | Extensively Drug-Resistant |
References
- Raoofi, S.; Kan, F.P.; Rafiei, S.; Hosseinipalangi, Z.; Mejareh, Z.N.; Khani, S.; Abdollahi, B.; Talab, F.S.; Sanaei, M.; Zarabi, F.; et al. Global Prevalence of Nosocomial Infection: A Systematic Review and Meta-Analysis. PLoS ONE 2023, 18, e0274248. [Google Scholar] [CrossRef]
- Allegranzi, B.; Nejad, S.B. Report on the Burden of Endemic Health Care-Associated Infection Worldwide Clean Care Is Safer Care. Available online: https://www.who.int (accessed on 11 March 2025).
- Balasubramanian, R.; Van Boeckel, T.P.; Carmeli, Y.; Cosgrove, S.; Laxminarayan, R. Global Incidence in Hospital-Associated Infections Resistant to Antibiotics: An Analysis of Point Prevalence Surveys from 99 Countries. PLoS Med. 2023, 20, e1004178. [Google Scholar] [CrossRef]
- Kolpa, M.; Walaszek, M.; Gniadek, A.; Wolak, Z.; Dobroś, W. Incidence, Microbiological Profile and Risk Factors of Healthcare-Associated Infections in Intensive Care Units: A 10 Year Observation in a Provincial Hospital in Southern Poland. Int. J. Environ. Res. Public Health 2018, 15, 112. [Google Scholar] [CrossRef]
- Salmanov, A.G.; Vdovychenko, S.Y.; Litus, O.I.; Litus, V.I.; Bisyuk, Y.A.; Bondarenko, T.M.; Davtian, L.L.; Olifirova, T.F.; Leleka, M.V.; Kovalchuk, O.I.; et al. Prevalence of Health Care–Associated Infections and Antimicrobial Resistance of the Responsible Pathogens in Ukraine: Results of a Multicenter Study (2014–2016). Am. J. Infect. Control 2019, 47, e15–e20. [Google Scholar] [CrossRef] [PubMed]
- Kehagias, E.; Galanakis, N.; Tsetis, D. Central Venous Catheters: Which, When and How. Br. J. Radiol. 2023, 96, 20220894. [Google Scholar] [CrossRef] [PubMed]
- Climo, M.; Diekema, D.; Warren, D.K.; Herwaldt, L.A.; Perl, T.M.; Peterson, L.; Plaskett, T.; Price, C.; Sepkowitz, K.; Solomon, S.; et al. Prevalence of the Use of Central Venous Access Devices Within and Outside of the Intensive Care Unit: Results of a Survey Among Hospitals in the Prevention Epicenter Program of the Centers for Disease Control and Prevention. Infect. Control Hosp. Epidemiol. 2003, 24, 942–945. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, N. Infectious and Thrombotic Complications of Central Venous Catheters. Semin. Oncol. Nurs. 2010, 26, 121–131. [Google Scholar] [CrossRef]
- Buetti, N.; Timsit, J.F. Management and Prevention of Central Venous Catheter-Related Infections in the ICU. Semin. Respir. Crit. Care Med. 2019, 40, 508–523. [Google Scholar] [CrossRef]
- Rajandra, A.; Yunos, N.M.; Teo, C.H.; Kukreja, A.; Suhaimi, N.A.; Mohd Razali, S.Z.; Basri, S.; Teh, C.S.J.; Leong, C.L.; Ismail, I.; et al. Incidence, Compliance, and Risk Factor Associated with Central Line-Associated Bloodstream Infection (CLABSI) in Intensive Care Unit (ICU) Patients: A Multicenter Study in an Upper Middle-Income Country. Antibiotics 2025, 14, 271. [Google Scholar] [CrossRef]
- Duszynska, W.; Rosenthal, V.D.; Szczesny, A.; Zajaczkowska, K.; Fulek, M.; Tomaszewski, J. Device Associated -Health Care Associated Infections Monitoring, Prevention and Cost Assessment at Intensive Care Unit of University Hospital in Poland (2015–2017). BMC Infect. Dis. 2020, 20, e216-20. [Google Scholar] [CrossRef]
- Rosenthal, V.D.; Memish, Z.A.; Shweta, F.N.U.; Bearman, G.; Lutwick, L.I. Preventing Central Line-Associated Bloodstream Infections: A Position Paper of the International Society for Infectious Diseases, 2024 Update. Int. J. Infect. Dis. 2025, 150, 107290. [Google Scholar] [CrossRef]
- Thyagarajan, R.; Mondy, K.E.; Sturm, L.K.; Watson, C.; Saake, K.; Miller, C.; Masoudi, F.; Fakih, M.G. 2328. COVID-19 and CLABSI: Riding the Pandemic Waves with an Active Infection Prevention Intervention. Open Forum Infect. Dis. 2023, 10 (Suppl. S2), ofad500.1950. [Google Scholar] [CrossRef]
- Satta, G.; Rawson, T.M.; Moore, L.S.P. Coronavirus Disease 2019 (COVID-19) Impact on Central-Line-Associated Bloodstream Infections (CLABSI): A Systematic Review. Infect. Prev. Pract. 2023, 5, 100313. [Google Scholar] [CrossRef]
- Espiritu, M.R.V.; Dundas, M.; Chen, D.S.; Keller, M. 2016. CLABSIs in the Time of COVID. Open Forum Infect. Dis. 2022, 9 (Suppl. S2), ofac492.1640. [Google Scholar] [CrossRef]
- Rosenthal, V.D.; Yin, R.; Lu, Y.; Rodrigues, C.; Myatra, S.N.; Kharbanda, M.; Valderrama-Beltran, S.L.; Mehta, Y.; Daboor, M.A.; Todi, S.K.; et al. The Impact of Healthcare-Associated Infections on Mortality in ICU: A Prospective Study in Asia, Africa, Eastern Europe, Latin America, and the Middle East. Am. J. Infect. Control 2023, 51, 675–682. [Google Scholar] [CrossRef]
- Haddadin, Y.; Annamaraju, P.; Regunath, H. Central Line–Associated Blood Stream Infections. In Healthcare-Associated Infections in Children; Springer: Cham, Switzerland, 2022; pp. 95–106. [Google Scholar] [CrossRef]
- CDC; DHQP; Ncezid. Central Line-Associated Bloodstream Infection (CLABSI): An Introduction. Available online: https://www.cdc.gov/infection-control/media/pdfs/Strive-CLABSI101-508.pdf (accessed on 11 March 2025).
- CDC; Ncezid; DHQP. Bloodstream Infection Event (Central Line-Associated Bloodstream Infection and Non-Central Line Associated Bloodstream Infection). Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/4psc_clabscurrent.pdf (accessed on 11 March 2025).
- Umscheid, C.A.; Mitchell, M.D.; Doshi, J.A.; Agarwal, R.; Williams, K.; Brennan, P.J. Estimating the Proportion of Healthcare-Associated Infections That Are Reasonably Preventable and the Related Mortality and Costs. Infect. Control Hosp. Epidemiol. 2011, 32, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Savey, A.; Lepape, A.; Palomar, M.; Agodi, A.; Hiesmayr, M. Surveillance of Healthcare-Associated Infections and Prevention Indicators in European Intensive Care Units HAI-Net ICU Protocol, Version 2.2. Available online: https://op.europa.eu/en/publication-detail/-/publication/803d18a8-82f7-11e7-b5c6-01aa75ed71a1/language-en (accessed on 11 March 2025).
- Buetti, N.; Marschall, J.; Drees, M.; Fakih, M.G.; Hadaway, L.; Maragakis, L.L.; Monsees, E.; Novosad, S.; O’Grady, N.P.; Rupp, M.E.; et al. Strategies to Prevent Central Line-Associated Bloodstream Infections in Acute-Care Hospitals: 2022 Update. Infect. Control Hosp. Epidemiol. 2022, 43, 553. [Google Scholar] [CrossRef] [PubMed]
- Timsit, J.F.; Rupp, M.; Bouza, E.; Chopra, V.; Kärpänen, T.; Laupland, K.; Lisboa, T.; Mermel, L.; Mimoz, O.; Parienti, J.J.; et al. A State of the Art Review on Optimal Practices to Prevent, Recognize, and Manage Complications Associated with Intravascular Devices in the Critically Ill. Intensive Care Med. 2018, 44, 742–759. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 10.0, 2020. 2020-01-01. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf (accessed on 11 March 2025).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Ecdc. Healthcare-Associated Infections Acquired in Intensive Care Units Annual Epidemiological Report for 2020. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/healthcare-associated-infections-intensive-care-units-annual-epidemiological-report-2020.pdf (accessed on 11 March 2025).
- Ecdc. Healthcare-Associated Infections Acquired in Intensive Care Units—Annual Epidemiological Report 2021. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/healthcare-associated-infections-acquired-intensive-care-units-2021.pdf (accessed on 11 March 2025).
- Current HAI Progress Report 2023 National and State Healthcare-Associated Infections Progress Report. Available online: https://www.cdc.gov/healthcare-associated-infections/php/data/progress-report.html?CDC_AAref_Val=https://www.cdc.gov/hai/data/portal/progress-report.html (accessed on 11 March 2025).
- Patel, P.R.; Weiner-Lastinger, L.M.; Dudeck, M.A.; Fike, L.V.; Kuhar, D.T.; Edwards, J.R.; Pollock, D.; Benin, A. Impact of COVID-19 Pandemic on Central-Line–Associated Bloodstream Infections during the Early Months of 2020, National Healthcare Safety Network. Infect. Control Hosp. Epidemiol. 2022, 43, 790–793. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention, N.H.S.N. HAI Progress Reports 2020–2023|NHSN|CDC. Available online: https://www.cdc.gov/nhsn/datastat/progress-report.html (accessed on 11 March 2025).
- Rosenthal, V.D.; Myatra, S.N.; Divatia, J.V.; Biswas, S.; Shrivastava, A.; Al-Ruzzieh, M.A.; Ayaad, O.; Bat-Erdene, A.; Bat-Erdene, I.; Narankhuu, B.; et al. The Impact of COVID-19 on Health Care–Associated Infections in Intensive Care Units in Low- and Middle-Income Countries: International Nosocomial Infection Control Consortium (INICC) Findings. Int. J. Infect. Dis. 2022, 118, 83–88. [Google Scholar] [CrossRef]
- Rosenthal, V.D.; Yin, R.; Myatra, S.N.; Memish, Z.A.; Rodrigues, C.; Kharbanda, M.; Valderrama-Beltran, S.L.; Mehta, Y.; Afeef Al-Ruzzieh, M.; Aguirre-Avalos, G.; et al. Multinational Prospective Study of Incidence and Risk Factors for Central-Line-Associated Bloodstream Infections in 728 Intensive Care Units of 41 Asian, African, Eastern European, Latin American, and Middle Eastern Countries over 24 Years. Infect. Control Hosp. Epidemiol. 2023, 44, 1737–1747. [Google Scholar] [CrossRef]
- Kübler, A.; Duszynska, W.; Rosenthal, V.D.; Fleischer, M.; Kaiser, T.; Szewczyk, E.; Barteczko-Grajek, B. Device-Associated Infection Rates and Extra Length of Stay in an Intensive Care Unit of a University Hospital in Wroclaw, Poland: International Nosocomial Infection Control Consortium’s (INICC) Findings. J. Crit. Care 2012, 27, e5–e105. [Google Scholar] [CrossRef]
- Duszyńska, W.; Rosenthal, V.D.; Dragan, B.; Litwin, A.; Woźnica, E.; Kübler, A. Catheter-Associated Blood Stream Infections in an Intensive Care Unit of a University Hospital in Wroclaw—International Nosocomial Infection Control Consortium’s Findings. Forum Zakażeń 2014, 5, 257. [Google Scholar] [CrossRef][Green Version]
- Arabi, Y.M.; Myatra, S.N.; Lobo, S.M. Surging ICU during COVID-19 Pandemic: An Overview. Curr. Opin. Crit. Care 2022, 28, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Douglas, I.S.; Mehta, A.; Mansoori, J. Policy Proposals for Mitigating ICU Strain: Insights from the COVID-19 Pandemic. Ann. Am. Thorac. Soc. 2024, 21, 1633–1642. [Google Scholar] [CrossRef]
- Moss, M.; Ehni, J.; Herbison, I.; Rabii, K.B.; Koepsell, C.; Devries, E.; Fetman, R.; Latrace, M.; Mahoney, C.D.; O’Neill, A.; et al. 505. Use of CLABSI Prevention Bundle Audits to Decrease CLABSI Rates in COVID Positive ICU Patients in an Acute Care Hospital in New York City During the COVID-19 Epidemic. Open Forum Infect. Dis. 2020, 7 (Suppl. 1), S318–S319. [Google Scholar] [CrossRef]
- Chandramohan, D.; Ford, D.; Beck, E.; Garza, L.N.; Reveles, K.R.; Cadena, J. 2014. Central Line—Associated Bloodstream Infections and Their Increase With the COVID-19 Pandemic at Veterans Affairs in San Antonio, Texas. Open Forum Infect. Dis. 2022, 9 (Suppl. S2), ofac492.1638. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Kim, D.Y.; Kim, E.J.; Park, K.-H.; Lee, M.S. 2041. Impact of Coronavirus Disease 2019 Pandemic on Healthcare-Associated Infections at Intensive Care Unit in South Korea: Data from Korean National Healthcare-Associated Infections Surveillance System (KONIS). Open Forum Infect. Dis. 2022, 9 (Suppl. S2), ofac492.1663. [Google Scholar] [CrossRef]
- Lissauer, M.E.; Leekha, S.; Preas, M.A.; Thom, K.A.; Johnson, S.B. Risk Factors for Central Line-Associated Bloodstream Infections in the Era of Best Practice. J. Trauma Acute Care Surg. 2012, 72, 1174–1180. [Google Scholar] [CrossRef]
- Moriyama, K.; Ando, T.; Kotani, M.; Tokumine, J.; Nakazawa, H.; Motoyasu, A.; Yorozu, T. Risk Factors Associated with Increased Incidences of Catheter-Related Bloodstream Infection. Medicine 2022, 101, e31160. [Google Scholar] [CrossRef]
- Alshamrani, M.M.; El-Saed, A.; Aldayhani, O.; Alhassan, A.; Alhamoudi, A.; Alsultan, M.; Alrasheed, M.; Othman, F. Risk of Central Line-Associated Bloodstream Infections during COVID-19 Pandemic in Intensive Care Patients in a Tertiary Care Centre in Saudi Arabia. Epidemiol. Infect. 2024, 152, e95. [Google Scholar] [CrossRef]
- Buetti, N.; Ruckly, S.; de Montmollin, E.; Reignier, J.; Terzi, N.; Cohen, Y.; Shiami, S.; Dupuis, C.; Timsit, J.F. COVID-19 Increased the Risk of ICU-Acquired Bloodstream Infections: A Case–Cohort Study from the Multicentric OUTCOMEREA Network. Intensive Care Med. 2021, 47, 180. [Google Scholar] [CrossRef]
- Elangovan, S.; Lo, J.J.; Xie, Y.; Mitchell, B.; Graves, N.; Cai, Y. Impact of central-line-associated bloodstream infections and catheter-related bloodstream infections: A systematic review and meta-analysis. J. Hosp. Infect. 2024, 152, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.W.; Gantner, D.; McGloughlin, S.; Leong, T.; Worth, L.J.; Klintworth, G.; Scheinkestel, C.; Pilcher, D.; Cheng, A.C.; Udy, A.A. The Influence of Intensive Care Unit-Acquired Central Line-Associated Bloodstream Infection on in-Hospital Mortality: A Single-Center Risk-Adjusted Analysis. Am. J. Infect. Control 2016, 44, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.J.; Pellegrini, D.C.; Safdar, N. Attributable mortality of central line associated bloodstream infection: Systematic review and meta-analysis. Infection 2015, 43, 29–36. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, N.P.; Alexander, M.; Burns, L.A.; Dellinger, E.P.; Garland, J.; Heard, S.O.; Lipsett, P.A.; Masur, H.; Mermel, L.A.; Pearson, M.L.; et al. Guidelines for the Prevention of Intravascular Catheter-Related Infections. Clin. Infect. Dis. 2011, 52, e162. [Google Scholar] [CrossRef]
- Mosquera, J.M.A.; Assis Reveiz, J.K.; Barrera, L.; Liscano, Y.; Mario, J.; Mosquera, A.; Karim, J.; Reveiz, A.; Barrera, L.; Liscano, Y. Impact of Central Line-Associated Bloodstream Infections on Mortality and Hospital Stay in Adult Patients at a Tertiary Care Institution in Cali, Colombia, 2015–2018. J. Clin. Med. 2024, 13, 5376. [Google Scholar] [CrossRef]
- Cabrero, E.L.; Robledo, R.T.; Cuñado, A.C.; Sardelli, D.G.; López, C.H.; Formatger, D.G.; Perez, L.L.; López, C.E.; Moreno, A.T. Risk Factors of Catheter- Associated Bloodstream Infection: Systematic Review and Meta-Analysis. PLoS ONE 2023, 18, e0282290. [Google Scholar] [CrossRef]
- Khaznadar, O.; Khaznadar, F.; Petrovic, A.; Kuna, L.; Loncar, A.; Omanovic Kolaric, T.; Mihaljevic, V.; Tabll, A.A.; Smolic, R.; Smolic, M. Antimicrobial Resistance and Antimicrobial Stewardship: Before, during and after the COVID-19 Pandemic. Microbiol. Res. 2023, 14, 727–740. [Google Scholar] [CrossRef]
- Al-Hadidi, S.H.; Alhussain, H.; Abdel Hadi, H.; Johar, A.; Yassine, H.M.; Al Thani, A.A.; Eltai, N.O. The Spectrum of Antibiotic Prescribing during COVID-19 Pandemic: A Systematic Literature Review. Microb. Drug Resist. 2021, 27, 1705–1725. [Google Scholar] [CrossRef]
- Premkumar, S.; Ramanathan, Y.; Varghese, J.J.; Morris, B.; Nambi, P.S.; Ramakrishnan, N.; Venkatasubramanian, R. “Nurse-The Archer” Fighting Against the Hidden Enemy. Indian J. Crit. Care Med. 2023, 27, 246–253. [Google Scholar] [CrossRef]
- Dyk, D.; Matusiak, A.; Cudak, E.; Gutysz-Wojnicka, A.; Mędrzycka-Dabrowska, W. Assessment of Knowledge on the Prevention of Central-Line-Associated Bloodstream Infections among Intensive Care Nurses in Poland—A Prospective Multicentre Study. Int. J. Environ. Res. Public Health 2021, 18, 12672. [Google Scholar] [CrossRef]
- Kallen, A.; Patel, P. Central Line-Associated Bloodstream Infections (CLABSI) in Non-Intensive Care Unit (non-ICU) Settings Toolkit Activity C: ELC Prevention Collaboratives. Available online: https://www.cdc.gov/healthcare-associated-infections/media/pdfs/CLABSI-Toolkit-P.pdf (accessed on 11 March 2025).
Category | 2020 | 2021 | 2022 | 2023 | 2024 |
---|---|---|---|---|---|
No. of patients | 570 (100%) | 598 (100%) | 572 (100%) | 643 (100%) | 766 (100%) |
Male | 360 (63.2%) | 372 (62.2%) | 367 (64.2%) | 410 (63.8%) | 513 (67.0%) |
Female | 210 (36.8%) | 226 (37.8%) | 205 (35.8%) | 233 (36.2%) | 253 (33.0%) |
Medical patients | 231 (40.5%) | 256 (42.8%) | 141 (24.7%) | 140 (21.8%) | 187 (24.4%) |
Surgical patients | 339 (59.5%) | 342 (57.2%) | 431 (75.3%) | 503 (78.2%) | 579 (75.6%) |
Pt-D | 6517 | 7553 | 8704 | 8154 | 8909 |
CVC-D | 5912 | 6804 | 7925 | 7354 | 8043 |
CVC-UR | 90.72% | 90.08% | 91.05% | 90.19% | 90.28% |
CLABSI Epidemiological Indicators | 2020 | 2021 | 2022 | 2023 | 2024 |
---|---|---|---|---|---|
CLABSI frequency | 3.14 (1.58–4.69) | 2.53 (1.08–3.99) | 4.05 (2.24–5.85) | 2.86 (0.48–5.23) | 2.28 (0.57–4) |
CLABSI rate | 2.8 (1.45–4.14) | 1.9 (0.72–3.09) | 2.55 (1.54–3.55) | 2.26 (0.49–4.03) | 1.91 (0.37–3.45) |
CLABSI density | 3.09 (1.63–4.54) | 2.11 (0.84–3.39) | 2.8 (1.7–3.89) | 2.39 (0.58–4.2) | 2.05 (0.45–3.65) |
CLABSI | 2020 | 2021 | 2022 | 2023 | 2024 |
---|---|---|---|---|---|
TOTAL | 18 | 15 | 22 | 18 | 17 |
In men | 13 (72.2%) | 14 (93.3%) | 15 (68.2%) | 16 (88.9%) | 13 (76.5%) |
In women | 5 (27.8%) | 1 (6.7%) | 7 (31.8%) | 2 (11.1%) | 4 (23.5%) |
In medical patients | 9 (50%) | 10 (66.7%) | 5 (22.7%) | 4 (22.2%) | 4 (23.5%) |
In surgical patients | 9 (50%) | 5 (33.3%) | 17 (77.3%) | 14 (77.8%) | 13 (76.5%) |
Parameter | Pandemic Period | Post-Pandemic Period | p-Value |
---|---|---|---|
No. of hospitalized patients [mean monthly] | 1168 [48.67 (44.93–52.4)] | 1981 [54.97 (50.81–59.14)] | 0.034 |
Mean monthly Pt-D | 586.25 (545.23–627.27) | 715.75 (700.04–731.46) | 0.000001 |
Mean monthly CVC-D | 529.83 (489.8–569.86) | 647.83 (628.73–666.94) | 0.000004 |
Mean CVC-UR | 90.32% (88.38–92.27) | 90.53% (88.68–92.38) | 0.881 |
Mean CLABSI frequency | 2.84 (1.85–3.82) | 3.06 (2.01–4.12) | 0.764 |
Mean CLABSI rate | 2.35 (1.5–3.2) | 2.24 (1.47–3.01) | 0.849 |
Mean CLABSI density | 2.6 (1.69–3.51) | 2.41 (1.62–3.21) | 0.761 |
Parameter | COVID-Positive | COVID-Negative | p-Value |
---|---|---|---|
CLABSI incidence | 16/264 (6.06%) | 17/904 (1.88%) | 0.00037 |
Mortality in CLABSI patients | 4/16 (25%) | 1/17 (5.88%) | 0.22 |
CLABSI caused by alert pathogens | 7/16 (43.75%) | 10/17 (58.82%) | 0.674 |
Prevention Criterium | Pandemic | Post-Pandemic | p |
---|---|---|---|
Hand Hygiene Before Manipulation of a CVC | 99.71 (99.15–100.28) | 97.02 (94.75–99.3) | 0.046 |
Aseptic Technique of Insertion | 99.71 (99.15–100.28) | 94.46 (89.7–99.22) | 0.057 |
Catheter presence necessity documentation | 98.46 (97–99.92) | 97.1 (95.46–98.73) | 0.238 |
Presence of sterile dressing | 98.48 (97.31–99.65) | 98.82 (97.84–99.79) | 0.671 |
Dressing in good condition | 81.32 (71.2–91.44) | 88.37 (84.93–91.81) | 0.218 |
Chlorhexidine-impregnated dressing | 23.51 (17.46–29.56) | 46.49 (38.09–54.9) | 0.0004 |
Administration equipment date | 97.3 (95.55–99.06) | 97.12 (95.63–98.62) | 0.88 |
Total mean compliance | 85.5 (79.66–91.34) | 88.48 (84.3–92.67) | 0.417 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sleziak, J.; Błażejewska, M.; Duszyńska, W. Central Line-Associated Bloodstream Infections in Intensive Care Unit During and After the COVID-19 Pandemic, 5-Year Prospective Observational Study. J. Clin. Med. 2025, 14, 5655. https://doi.org/10.3390/jcm14165655
Sleziak J, Błażejewska M, Duszyńska W. Central Line-Associated Bloodstream Infections in Intensive Care Unit During and After the COVID-19 Pandemic, 5-Year Prospective Observational Study. Journal of Clinical Medicine. 2025; 14(16):5655. https://doi.org/10.3390/jcm14165655
Chicago/Turabian StyleSleziak, Jakub, Marta Błażejewska, and Wiesława Duszyńska. 2025. "Central Line-Associated Bloodstream Infections in Intensive Care Unit During and After the COVID-19 Pandemic, 5-Year Prospective Observational Study" Journal of Clinical Medicine 14, no. 16: 5655. https://doi.org/10.3390/jcm14165655
APA StyleSleziak, J., Błażejewska, M., & Duszyńska, W. (2025). Central Line-Associated Bloodstream Infections in Intensive Care Unit During and After the COVID-19 Pandemic, 5-Year Prospective Observational Study. Journal of Clinical Medicine, 14(16), 5655. https://doi.org/10.3390/jcm14165655