The Impact of Diabetes on Exercise Tolerance in Patients After Cardiovascular Events
Abstract
1. Introduction
2. Materials and Methods
- Peak power output—the maximum workload achieved during the test [W].
- Peak power output relative to body mass—peak workload expressed in watts per kilogram of body mass [W/kg].
- Resting heart rate (HR rest)—heart rate before the start of the exercise test.
- Peak heart rate (HR peak)—maximum heart rate achieved during the exercise test.
- Systolic (SBP) and diastolic (DBP) blood pressure measurements—resting and peak values recorded during the test.
- Reasons for exercise test termination.
- Double product reserve (DP reserve)—an indicator of the heart’s ability to increase oxygen demand during physical exertion compared to resting conditions [21].
Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DBP | Diastolic Blood Pressure |
DM | Diabetes Mellitus |
DP | Diabetes Mellitus |
EF | Ejection Fraction |
HRpeak | Peak Heart Rate |
HRrest | Resting Heart Rate |
HRR | Heart Rate Recovery |
MCID | Minimal Clinically Important Difference |
PWR | Workload-to-Weight Ratio |
SBP | Systolic Blood Pressure |
SPPB | Short Physical Performance Battery |
References
- Li, S.; Wang, J.; Zhang, B.; Li, X.; Liu, Y. Diabetes Mellitus and Cause-Specific Mortality: A Population-Based Study. Diabetes Metab. J. 2019, 43, 319–341. [Google Scholar] [CrossRef] [PubMed]
- Abouzid, M.R.; Ali, K.; Elkhawas, I.; Elshafei, S.M. An Overview of Diabetes Mellitus in Egypt and the Significance of Integrating Preventive Cardiology in Diabetes Management. Cureus 2022, 14, e27066. [Google Scholar] [CrossRef] [PubMed]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef]
- Rawshani, A.; Sattar, N.; Franzén, S.; Rawshani, A.; Hattersley, A.T.; Svensson, A.M.; Eliasson, B.; Gudbjörnsdottir, S. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: A nationwide, register-based cohort study. Lancet 2018, 392, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Jyotsna, F.; Ahmed, A.; Kumar, K.; Kaur, P.; Chaudhary, M.H.; Kumar, S.; Khan, E.; Khanam, B.; Shah, S.U.; Varrassi, G.; et al. Exploring the Complex Connection Between Diabetes and Cardiovascular Disease: Analyzing Approaches to Mitigate Cardiovascular Risk in Patients With Diabetes. Cureus 2023, 15, e43882. [Google Scholar] [CrossRef]
- Topor-Madry, R.; Wojtyniak, B.; Strojek, K.; Rutkowski, D.; Bogusławski, S.; Ignaszewska-Wyrzykowska, A.; Jarosz-Chobot, P.; Czech, M.; Kozierkiewicz, A.; Chlebus, K.; et al. Prevalence of diabetes in Poland: A combined analysis of national databases. Diabet. Med. 2019, 36, 1209–1216. [Google Scholar] [CrossRef]
- Valensi, P.; Henry, P.; Boccara, F.; Cosson, E.; Prevost, G.; Emmerich, J.; Ernande, L.; Marcadet, D.; Mousseaux, E.; Rouzet, F.; et al. Risk stratification and screening for coronary artery disease in asymptomatic patients with diabetes mellitus: Position paper of the French Society of Cardiology and the French-speaking Society of Diabetology. Diabetes Metab. 2021, 47, 101185. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, T.; Fu, H. Prevalence of diabetes and hypertension and their interaction effects on cardio-cerebrovascular diseases: A cross-sectional study. BMC Public Health 2021, 21, 1224. [Google Scholar] [CrossRef]
- Jóźwiak, J.J.; Studziński, K.; Tomasik, T.; Windak, A.; Mastej, M.; Catapano, A.L.; Ray, K.K.; Mikhailidis, D.P.; Toth, P.P.; Howard, G.; et al. The prevalence of cardiovascular risk factors and cardiovascular disease among primary care patients in Poland: Results from the LIPIDOGRAM2015 study. Atheroscler. Suppl. 2020, 42, e15–e24. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Xia, C.; Wu, L.; Li, Z.; Li, H.; Zhang, J. Systemic Immune Inflammation Index (SII), System Inflammation Response Index (SIRI) and Risk of All-Cause Mortality and Cardiovascular Mortality: A 20-Year Follow-Up Cohort Study of 42,875 US Adults. J. Clin. Med. 2023, 12, 1128. [Google Scholar] [CrossRef] [PubMed]
- Balady, G.J.; Larson, M.G.; Vasan, R.S.; Leip, E.P.; O’Donnell, C.J.; Levy, D. Usefulness of exercise testing in the prediction of coronary disease risk among asymptomatic persons as a function of the Framingham risk score. Circulation 2004, 110, 1920–1925. [Google Scholar] [CrossRef]
- Ihsan, A.; Khan, S.B. Silent myocardial ischemia among asymptomatic type-2 diabetic patients. J. Postgrad. Med. Inst. 2022, 36, 20–24. [Google Scholar] [CrossRef]
- Smarż, K.; Jaxa-Chamiec, T.; Bednarczyk, T.; Bednarz, B.; Eysymontt, Z.; Gałaszek, M.; Jegier, A.; Korzeniowska-Kubacka, I.; Mamcarz, A.; Mawlichanów, A.; et al. Electrocardiographic exercise testing in adults: Performance and interpretation. An expert opinion of the Polish Cardiac Society Working Group on Cardiac Rehabilitation and Exercise Physiology. Kardiol. Pol. 2019, 77, 399–408. [Google Scholar] [CrossRef]
- Kabbadj, K.; Taiek, N.; El Hjouji, W.; El Karrouti, O.; El Hangouche, A.J. Cardiopulmonary Exercise Testing: Methodology, Interpretation, and Role in Exercise Prescription for Cardiac Rehabilitation. US Cardiol. 2024, 18, e22. [Google Scholar] [CrossRef]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on Sports Cardiology and Exercise in Patients with Cardiovascular Disease. Rev. Esp. Cardiol. (Engl. Ed.) 2021, 74, 545. [Google Scholar] [CrossRef]
- Kasouridis, I.; Probert, H.; Gatzoulis, M.A. Cardiac rehabilitation in ACHD: Further investment is now due. Int. J. Cardiol. Congenit. Heart Dis. 2025, 19, 100564. [Google Scholar] [CrossRef]
- Smolis-Bąk, E.; Dąbrowski, R. Nowoczesna Rehabilitacja Kardiologiczna; PZWL Wydawnictwo Lekarskie: Warsaw, Poland, 2023. [Google Scholar]
- Ambrosetti, M.; Abreu, A.; Corrà, U.; Davos, C.H.; Hansen, D.; Frederix, I.; Iliou, M.C.; Pedretti, R.F.E.; Schmid, J.P.; Vigorito, C.; et al. Secondary prevention through comprehensive cardiovascular rehabilitation: From knowledge to implementation. 2020 update. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2021, 28, 460–495. [Google Scholar] [CrossRef]
- Nakagoshi, N.; Kubo, S.; Nishida, Y.; Kuwabara, K.; Hirata, A.; Sata, M.; Higashiyama, A.; Kubota, Y.; Hirata, T.; Tatsumi, Y.; et al. Correction to: Determinants of double product: A cross-sectional study of urban residents in Japan. Environ. Health Prev. Med. 2023, 28, 74. [Google Scholar] [CrossRef] [PubMed]
- Temali, I.; Ahmet, K. Double product as a predictor of coronary artery disease in males with normal blood pressure. Eur. J. Nat. Sci. Med. 2021, 4, 53–63. [Google Scholar] [CrossRef]
- Aksentijević, D.; Lewis, H.R.; Shattock, M.J. Is rate-pressure product of any use in the isolated rat heart? Assessing cardiac ‘effort’ and oxygen consumption in the Langendorff-perfused heart. Exp. Physiol. 2016, 101, 282–294. [Google Scholar] [CrossRef]
- Römer, C.; Wolfarth, B. Heart Rate Recovery (HRR) Is Not a Singular Predictor for Physical Fitness. Int. J. Environ. Res. Public Health 2022, 20, 792. [Google Scholar] [CrossRef]
- Sedaghat, A.R. Understanding the Minimal Clinically Important Difference (MCID) of Patient-Reported Outcome Measures. Otolaryngol. Head. Neck Surg. 2019, 161, 551–560. [Google Scholar] [CrossRef]
- Yasui, Y.; Nakamura, K.; Omote, K.; Ishizaka, S.; Takenaka, S.; Mizuguchi, Y.; Shimono, Y.; Kazui, S.; Takahashi, Y.; Saiin, K.; et al. Prognostic Significance of Peak Workload-to-Weight Ratio by Cardiopulmonary Exercise Testing in Chronic Heart Failure. Am. J. Cardiol. 2023, 193, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Nesti, L.; Pugliese, N.R.; Sciuto, P.; Natali, A. Type 2 diabetes and reduced exercise tolerance: A review of the literature through an integrated physiology approach. Cardiovasc. Diabetol. 2020, 19, 134. [Google Scholar] [CrossRef] [PubMed]
- Piché, M.E.; Tchernof, A.; Després, J.P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Res. 2020, 126, 1477–1500. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Pizzol, D.; Demurtas, J.; Soysal, P.; Smith, L.; Sieber, C.; Strandberg, T.; Bourdel-Marchasson, I.; Sinclair, A.; Petrovic, M.; et al. Association between sarcopenia and diabetes: A systematic review and meta-analysis of observational studies. Eur. Geriatr. Med. 2019, 10, 685–696. [Google Scholar] [CrossRef]
- Feng, L.; Gao, Q.; Hu, K.; Wu, M.; Wang, Z.; Chen, F.; Mei, F.; Zhao, L.; Ma, B. Prevalence and Risk Factors of Sarcopenia in Patients With Diabetes: A Meta-analysis. J. Clin. Endocrinol. Metab. 2022, 107, 1470–1483. [Google Scholar] [CrossRef]
- Bryndal, A.; Glowinski, S.; Grochulska, A. Influence of Risk Factors on Exercise Tolerance in Patients after Myocardial Infarction-Early Cardiac Rehabilitation in Poland. J. Clin. Med. 2022, 11, 5597. [Google Scholar] [CrossRef]
- Murray, E.M.; Whellan, D.J.; Chen, H.; Bertoni, A.G.; Duncan, P.; Pastva, A.M.; Kitzman, D.W.; Mentz, R.J. Physical Rehabilitation in Older Patients Hospitalized with Acute Heart Failure and Diabetes: Insights from REHAB-HF. Am. J. Med. 2022, 135, 82–90. [Google Scholar] [CrossRef]
- den Uijl, I.; Ter Hoeve, N.; Sunamura, M.; Lenzen, M.J.; Braakhuis, H.E.M.; Stam, H.J.; Boersma, E.; van den Berg-Emons, R.J.G. Physical Activity and Sedentary Behavior in Cardiac Rehabilitation: Does Body Mass Index Matter? Phys. Ther. 2021, 101, pzab142. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.; Colberg, S.R.; Sigal, R.J. Where to Start? Physical Assessment, Readiness, and Exercise Recommendations for People With Type 1 or Type 2 Diabetes. Diabetes Spectr. 2023, 36, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Nishitani, M.; Shimada, K.; Masaki, M.; Sunayama, S.; Kume, A.; Fukao, K.; Sai, E.; Onishi, T.; Shioya, M.; Sato, H.; et al. Effect of cardiac rehabilitation on muscle mass, muscle strength, and exercise tolerance in diabetic patients after coronary artery bypass grafting. J. Cardiol. 2013, 61, 216–221. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, N.; Chen, G.; Wan, Q.; Yan, L.; Wang, G.; Qin, Y.; Luo, Z.; Tang, X.; Huo, Y.; et al. Interaction between smoking and diabetes in relation to subsequent risk of cardiovascular events. Cardiovasc. Diabetol. 2022, 21, 14. [Google Scholar] [CrossRef] [PubMed]
Variable | All Patients ± SD (Min–Max) or n (%) | Non-DM Group ± SD (Min–Max) or n (%) | DM Group ± SD (Min–Max) or n (%) | p-Value |
---|---|---|---|---|
Sex [women/men] | 452 (86/366) | 226 (43/183) | 226 (43/183) | 1.000 |
Age [years] | 63.21 ± 7.16 (44–86) | 63.29 ± 7.09 (45–85) | 63.13 ± 7.25 (44–86) | 0.82 |
Height [m] | 1.72 ± 0.08 (1.52–1.94) | 1.72 ± 0.08 (1.52–1.94) | 1.73 ± 0.08 (1.52–1.92) | 0.49 |
Body mass [kg] | 83.93 ± 14.63 (50–140) | 80.92 ± 15.25 (50–140) | 86.93 ± 13.35 (58–140) | <0.001 |
BMI [kg/m2] | 28.16 ± 3.97 (18.96–45.19) | 27.19 ± 3.98 (18.96–42.59) | 29.12 ± 3.73 (20.66–45.19) | <0.001 |
Number of comorbidities [n] | 3.74 ± 1.39 (0–8) | 3.19 ± 1.30 (0–7) | 4.29 ± 1.26 (1–8) | <0.001 |
Number of medications taken [n] | 8.27 ± 2.15 (3–17) | 7.83 ± 2.05 (3–17) | 8.71 ± 2.16 (3–16) | <0.001 |
EF [%] | 49.89 ± 8.76 (20–71) | 51.01 ± 8.40 (20–70) | 48.78 ± 8.99 (20–71) | 0.002 |
Time since cardiovascular event [days] | 37.17 ± 24.22 (3–188) | 34.94 ± 22.42 (3–124) | 39.41 ± 25.75 (5–188) | 0.05 |
Hemoglobin [g/dl] | 13.29 ± 1.45 (9.30–17.50) | 13.35 ± 1.47 (9.30–17.50) | 13.22 ± 1.42 (9.30–16.90) | 0.27 |
Red blood cells (×106/μL) | 4.41 ± 0.46 (3.26–5.88) | 4.41 ± 0.45 (3.30–5.62) | 4.41 ± 0.46 (3.26–5.88) | 0.98 |
Hematocrit [%] | 39.41 ± 3.95 (28.20–51.00) | 39.51 ± 4.00 (29.3–51.00) | 39.30 ± 3.91 (28.20–51.00) | 0.52 |
Smoking in the past [n/%] | 156 (34.5%) | 72 (28.6%) | 84 (32.81%) | 0.24 |
Current smoking [n/%] | 156 (34.5%) | 86 (33.60%) | 70 (27.34%) | 0.11 |
Variable | All Patients ± SD (Min–Max) | Non-DM Group ± SD (Min–Max) | DM Group ± SD (Min–Max) | p-Value |
---|---|---|---|---|
Borg scale [pts] | 14.25 ± 2.04 (7–19) | 14.32 ± 2.05 (7–19) | 14.19 ± 2.04 (7–17) | 0.32 |
Peak power [W] | 91.66 ± 25.83 (30–179) | 92.67 ± 26.66 (33–179) | 90.65 ± 24.99 (30–164) | 0.41 |
Peak power per kg of body mass [W/kg] | 1.11 ± 0.30 (0.32–2.10) | 1.16 ± 0.31 (0.41–2.10) | 1.05 ± 0.27 (0.32–2.02) | <0.001 |
HR rest [bpm] | 72.25 ± 11.12 (44–113) | 71.31 ± 11.51 (44–113) | 73.18 ± 10.66 (48–108) | 0.08 |
HR peak [bpm] | 110.48 ± 15.46 (70–191) | 109.39 ± 14.67 (70–154) | 111.58 ± 16.18 (71–191) | 0.13 |
HRR [bpm] | 29.28 ± 12.88 (−31–96) | 28.57 ± 12.22 (−31–77) | 29.99 ± 13.49 (−12–96) | 0.24 |
SBP rest [mmHg] | 115.39 ± 15.07 (82–159) | 115.33 ± 14.52 (89–158) | 115.45 ± 15.63 (82–159) | 0.97 |
DBP rest [mmHg] | 70.03 ± 9.21 (47–106) | 69.42 ± 8.85 (47–91) | 70.66 ± 9.53 (47–106) | 0.28 |
SBP max [mmHg] | 161.92 ± 24.95 (85–230) | 162.55 ± 24.83 (85–230) | 161.29 ± 25.11 (102–230) | 0.59 |
DBP max [mmHg] | 79.32 ± 11.37 (49–147) | 79.55 ± 11.46 (51–147) | 79.09 ± 11.30 (49–115) | 0.67 |
DP rest/100 | 83.41 ± 17.37(42.50–151.42) | 82.37 ± 17.95 (49.84–151.42) | 84.44 ± 16.73 (42.50–144.72) | 0.21 |
DP exercise/100 | 179.76 ± 40.00 (69.70–364.08) | 179.04 ± 40.54 (69.70–269.10) | 180.48 ± 39.52 (79.52–364.08) | 0.70 |
DP reserve | 2.21 ± 0.55 (0.79–4.24) | 2.22 ± 0.54 (0.79–4.09) | 2.19 ± 0.56 (1.01–4.24) | 0.53 |
Reasons for Terminating the Exercise Test | All Patients | Non-DM Group | DM Group | p-Value |
---|---|---|---|---|
Fatigue [n/%] | 250/55.3 | 121/53.5 | 129/57.1 | 0.449 |
HR limit [n/%] | 144/31.9 | 74/32.7 | 70/31.0 | 0.687 |
Blood pressure limit [n/%] | 19/4.2 | 12/5.3 | 7/3.1 | 0.241 |
Rhythm disturbances [n/%] | 17/3.8 | 6/2.7 | 11/4.9 | 0.216 |
ECG abnormalities [n/%] | 19/4.2 | 12/5.3 | 7/3.1 | 0.241 |
Lower limb pain [n/%] | 105/23.2 | 45/19.9 | 60/26.5 | 0.095 |
Other [n/%] | 22/4.9 | 11/4.9 | 11/4.9 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czechowska, B.; Chrzczanowicz, J.; Gawor, R.; Zarzycka, A.; Kostka, T.; Kostka, J. The Impact of Diabetes on Exercise Tolerance in Patients After Cardiovascular Events. J. Clin. Med. 2025, 14, 5561. https://doi.org/10.3390/jcm14155561
Czechowska B, Chrzczanowicz J, Gawor R, Zarzycka A, Kostka T, Kostka J. The Impact of Diabetes on Exercise Tolerance in Patients After Cardiovascular Events. Journal of Clinical Medicine. 2025; 14(15):5561. https://doi.org/10.3390/jcm14155561
Chicago/Turabian StyleCzechowska, Beata, Jacek Chrzczanowicz, Rafał Gawor, Aleksandra Zarzycka, Tomasz Kostka, and Joanna Kostka. 2025. "The Impact of Diabetes on Exercise Tolerance in Patients After Cardiovascular Events" Journal of Clinical Medicine 14, no. 15: 5561. https://doi.org/10.3390/jcm14155561
APA StyleCzechowska, B., Chrzczanowicz, J., Gawor, R., Zarzycka, A., Kostka, T., & Kostka, J. (2025). The Impact of Diabetes on Exercise Tolerance in Patients After Cardiovascular Events. Journal of Clinical Medicine, 14(15), 5561. https://doi.org/10.3390/jcm14155561