Anterior Chamber Configuration and Its Related Factors Among 8-Year-Old Children in the Yamanashi Adjunct Study of the Japan Environment and Children’s Study
Abstract
1. Introduction
2. Subjects and Methods
Statistical Analysis
3. Results
3.1. Participants
3.2. Correlation of Angle Parameters with SE, AL, and logMAR
3.3. Comparison Between Boys and Girls
3.4. Multiple Regression Analysis of Factors Influencing the Angle Configuration
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Iwase, A.; Suzuki, Y.; Araie, M.; Yamamoto, T.; Abe, H.; Shirato, S.; Kuwayama, Y.; Mishima, H.K.; Shimizu, H.; Tomita, G.; et al. The prevalence of primary open-angle glaucoma in Japanese: The Tajimi Study. Ophthalmology 2004, 111, 1641–1648. [Google Scholar] [CrossRef]
- Yamamoto, T.; Iwase, A.; Araie, M.; Suzuki, Y.; Abe, H.; Shirato, S.; Kuwayama, Y.; Mishima, H.K.; Shimizu, H.; Tomita, G.; et al. The Tajimi Study report 2: Prevalence of primary angle closure and secondary glaucoma in a Japanese population. Ophthalmology 2005, 112, 1661–1669. [Google Scholar] [CrossRef]
- Gazzard, G.; Foster, P.J.; Devereux, J.G.; Oen, F.; Chew, P.; Khaw, P.T.; Seah, S. Intraocular pressure and visual field loss in primary angle closure and primary open angle glaucomas. Br. J. Ophthalmol. 2003, 87, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.S.; Gazzard, G.; Min, C.B.; Broman, A.T.; Quigley, H.; Tielsch, J.; Seah, S.; Foster, P.J. Age and sex variation in angle findings among normal Chinese subjects: A comparison of UBM, Scheimpflug, and gonioscopic assessment of the anterior chamber angle. J. Glaucoma 2008, 17, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Hoerauf, H.; Gordes, R.S.; Scholz, C.; Wirbelauer, C.; Koch, P.; Engelhardt, R.; Winkler, J.; Laqua, H.; Birngruber, R. First experimental and clinical results with transscleral optical coherence tomography. Ophthalmic Surg. Lasers 2000, 31, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Hoerauf, H.; Scholz, C.; Koch, P.; Engelhardt, R.; Laqua, H.; Birngruber, R. Transscleral optical coherence tomography: A new imaging method for the anterior segment of the eye. Arch. Ophthalmol. 2002, 120, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Masoodi, H.; Jafarzadehpur, E.; Esmaeili, A.; Abolbashari, F.; Ahmadi Hosseini, S.M. Evaluation of anterior chamber angle under dark and light conditions in angle closure glaucoma: An anterior segment OCT study. Cont. Lens Anterior Eye 2014, 37, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.K.; Li, H.; Weinreb, R.N.; Liu, J.; Cheung, C.Y.; Lai, R.Y.; Pang, C.P.; Lam, D.S.C. Anterior chamber angle measurement with anterior segment optical coherence tomography: A comparison between slit lamp OCT and Visante OCT. Invest. Ophthalmol. Vis. Sci. 2008, 49, 3469–3474. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Li, M.; He, X.; Lu, L.; Zhu, J.; Chang, T.C.; Zou, H. Anterior-Chamber Angle and Axial Length Measurements in Normal Chinese Children. J. Glaucoma 2016, 25, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Edawaji, B.S.A.; Gottlob, I.; Proudlock, F.A. Anterior Chamber Measurements in Healthy Children: A Cross-Sectional Study Using Optical Coherence Tomography. Transl. Vis. Sci. Technol. 2021, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, T.; Nitta, H.; Murata, K.; Toda, E.; Tsukamoto, N.; Hasegawa, M.; Yamagata, Z.; Kayama, F.; Kishi, R.; Ohya, Y.; et al. Rationale and study design of the Japan environment and children’s study (JECS). BMC Public Health 2014, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Michikawa, T.; Nitta, H.; Nakayama, S.F.; Yamazaki, S.; Isobe, T.; Tamura, K.; Suda, E.; Ono, M.; Yonemoto, J.; Iwai-Shimada, M.; et al. Baseline Profile of Participants in the Japan Environment and Children’s Study (JECS). J. Epidemiol. 2018, 28, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.P.; Lai, G.; Chiu, V.; Chong, A.; Yu, M.; Leung, C.K. Anterior chamber angle imaging with swept-source optical coherence tomography: Comparison between CASIAII and ANTERION. Sci. Rep. 2020, 10, 18771. [Google Scholar] [CrossRef] [PubMed]
- Seager, F.E.; Wang, J.; Arora, K.S.; Quigley, H.A. The effect of scleral spur identification methods on structural measurements by anterior segment optical coherence tomography. J. Glaucoma 2014, 23, e29–e38. [Google Scholar] [CrossRef] [PubMed]
- Pavlin, C.J.; Harasiewicz, K.; Foster, F.S. Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes. Am. J. Ophthalmol. 1992, 113, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, S.; Huang, D.; Smith, S.D. Optical coherence tomography imaging of the anterior chamber angle. Ophthalmol. Clin. N. Am. 2005, 18, 375–381, vi. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Leung, C.K.; Cheung, C.Y.; Wong, L.; Pang, C.P.; Weinreb, R.N.; Lam, D.S.C. Repeatability and reproducibility of anterior chamber angle measurement with anterior segment optical coherence tomography. Br. J. Ophthalmol. 2007, 91, 1490–1492. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, W.; Wang, J.; Chen, X.; Zhu, Z.; Li, J.; He, M. Normal range of ocular biometry in healthy children: A systemic review and meta-analysis of 33,559 individuals under seven years of age. Ophthalmic Physiol. Opt. 2022, 42, 1264–1275. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.C.; Dubis, A.M.; Quartilho, A.; Al-Hayouti, H.; Khaw, S.P.T.; Theodorou, M.; Dahlmann-Noor, A. Dynamic Changes in Schlemm Canal and Iridocorneal Angle Morphology During Accommodation in Children With Healthy Eyes: A Cross-Sectional Cohort Study. Invest. Ophthalmol. Vis. Sci. 2018, 59, 3497–3502. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Jafarzadehpur, E.; Ghaderi, S.; Yekta, A.; Ostadimoghaddam, H.; Norouzirad, R.; Khabazkhoob, M. Ocular components during the ages of ocular development. Acta. Ophthalmol. 2015, 93, e74–e81. [Google Scholar] [CrossRef] [PubMed]
- Yeter, V.; Aritürk, N.; Bİrİncİ, H.; Süllü, Y.; Güngör, İ. Effects of Birth Weight on Anterior Segment Measurements in Full-Term Children Without Low Birth Weight by Dual-Scheimpflug Analyzer. Am. J. Ophthalmol. 2015, 160, 832–840.e1. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Nakakura, S.; Nagasawa, T.; Okamoto, A.; Tabuchi, H.; Kiuchi, Y. Comparison of the anterior chamber angle structure between children and adults. J. AAPOS 2017, 21, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Amerasinghe, N.; Foster, P.J.; Wong, T.Y.; Htoon, H.M.; He, M.; Shen, S.Y.; Aung, H.T.; Saw, S.-M.; Aung, T. Variation of angle parameters in asians: An anterior segment optical coherence tomography study in a population of singapore malays. Invest. Ophthalmol. Vis. Sci. 2009, 50, 2626–2631. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.E.; Li, Y.; Wang, D.; He, M.; Lin, S. Comparison of factors associated with occludable angle between american Caucasians and ethnic Chinese. Invest. Ophthalmol. Vis. Sci. 2013, 54, 7717–7723. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.Y.; Liu, S.; Weinreb, R.N.; Liu, J.; Li, H.; Leung, D.Y.; Dorairaj, S.; Liebmann, J.; Ritch, R.; Lam, D.S.C.; et al. Dynamic analysis of iris configuration with anterior segment optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2010, 51, 4040–4046. [Google Scholar] [CrossRef] [PubMed]
- Okabe, N.; Takahashi, A.; Shigemoto, Y.; Kogure, C.; Ooka, T.; Shinohara, R.; Otawa, S.; Kobayashi, A.; Horiuchi, S.; Kushima, M.; et al. Refractive Error and Axial Length and Their Related Factors in 8-Year-Old Japanese Children: The Yamanashi Adjunct Study of the Japan Environment and Children’s Study (JECS). J. Clin. Med. 2023, 12, 5929. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.H.; Song, Y.; Liu, J.L.; Li, J.; Wang, Y.; Hua, Y.J.; Wu, Q. Investigation of ocular biometry in 4- to 9-year-old Chinese children. BMC Ophthalmol. 2023, 23, 225. [Google Scholar] [CrossRef] [PubMed]
- Tideman, J.W.L.; Polling, J.R.; Vingerling, J.R.; Jaddoe, V.W.V.; Williams, C.; Guggenheim, J.A.; Klaver, C.C.W. Axial length growth and the risk of developing myopia in European children. Acta Ophthalmol. 2018, 96, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Pinilla Lozano, I.; López de la Fuente, C.; Segura, F.; Orduna Hospital, E.; Sánchez-Cano, A. Evaluation of anterior chamber parameters with spectral-domain optical coherence tomography. Jpn. J. Ophthalmol. 2018, 62, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Huang, G.; Huang, W.; He, M. Distribution of central and peripheral corneal thickness in Chinese children and adults: The Guangzhou twin eye study. Cornea 2008, 27, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Mak, H.; Xu, G.; Leung, C.K. Imaging the iris with swept-source optical coherence tomography: Relationship between iris volume and primary angle closure. Ophthalmology 2013, 120, 2517–2524. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, S.; Vahedian, Z.; Fakhraie, G.; Ghaffari, R.; Eslami, Y.; Jabarvand, M.; Zarei, R.; Mohammadi, M.; Lin, S. Ocular biometry in the subtypes of angle closure: An anterior segment optical coherence tomography study. Am. J. Ophthalmol. 2013, 155, 664–673.e1. [Google Scholar] [CrossRef] [PubMed]
- Chansangpetch, S.; Tran, B.; Perez, C.I.; Siguan-Bell, C.; Lau, K.; Nguyen, A.H.; Thai, A.; He, M.; Wang, D.; Nguyen, N.; et al. Comparison of Anterior Segment Optical Coherence Tomography Parameters Among Vietnamese, Chinese, and Whites. Am. J. Ophthalmol. 2018, 195, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Congdon, N.; Wang, F.; Tielsch, J.M. Issues in the epidemiology and population-based screening of primary angle-closure glaucoma. Surv. Ophthalmol. 1992, 36, 411–423. [Google Scholar] [CrossRef] [PubMed]
Parameters | SE (Correlation Coefficient, p-Value) | AL (Correlation Coefficient, p-Value) | Uncorrected logMAR (Correlation Coefficient, p-Value) |
---|---|---|---|
ACA500μm | −0.19 (<0.001) | 0.22 (<0.001) | 0.16 (<0.001) |
ACA750μm | −0.24 (<0.001) | 0.26 (<0.001) | 0.19 (<0.001) |
AOD500μm | −0.19 (<0.001) | 0.25 (<0.001) | 0.18 (<0.001) |
AOD750μm | −0.24 (<0.001) | 0.30 (<0.001) | 0.21 (<0.001) |
TISA500μm | −0.17 (<0.001) | 0.24 (<0.001) | 0.16 (<0.001) |
TISA750μm | −0.23 (<0.001) | 0.29 (<0.001) | 0.19 (<0.001) |
PCT500μm | 0.05 (0.22) | 0.11 (0.004) | −0.06 (0.12) |
PCT750μm | 0.08 (0.04) | 0.11 (0.006) | −0.08 (0.04) |
PIT500μm | −0.01 (0.76) | 0.05 (0.21) | −0.03 (0.41) |
PIT750μm | −0.01 (0.83) | 0.04 (0.35) | −0.02 (0.55) |
Boy (n = 350) Mean ± SD (95%CI) | Girl (n = 359) Mean ± SD (95%CI) | p-Value (Boys vs. Girls) | |||
---|---|---|---|---|---|
ACA500μm | 37.36 ± 6.07 | 19.40–55.60 | 36.51 ± 5.73 | 22.20–56.00 | 0.06 |
AOD500μm | 569.76 ± 143.87 | 211.00–1.54.00 | 559.56–133.24 | 258.00–993.00 | 0.33 |
TISA500μm | 0.19 ± 0.06 | 0.06–0.38 | 0.19 ± 0.05 | 0.08–0.37 | 0.53 |
PIT500μm | 248.31 ± 42.15 | 121.00–245.00 | 242.65 ± 39.11 | 139.00–391.00 | 0.06 |
PCT500μm | 812.82 ± 51.94 | 686.00–977.00 | 784.48 ± 51.80 | 658.00–1072.00 | <0.001 |
ACA750μm | 38.46 ± 5.90 | 19.60–53.90 | 37.31 ± 5.37 | 20.50–51.20 | 0.007 |
AOD750μm | 800.94 ± 173.98 | 358.00–1449.00 | 772.47 ± 148.53 | 343.00–1372.00 | 0.02 |
TISA750μm | 0.38 ± 0.09 | 0.15–0.73 | 0.36 ± 0.08 | 0.15–0.70 | 0.06 |
PIT750μm | 287.05 ± 43.76 | 150.00–422.00 | 282.05 ± 42.85 | 156.00–419.00 | 0.13 |
PCT750μm | 776.01 ± 48.64 | 631.00–954.00 | 751.34 ± 49.63 | 634.00–1028.00 | <0.001 |
AL (mm) | 23.30 ± 0.76 | 21.32–25.93 | 22.79 ± 0.72 | 20.20–25.61 | <0.001 |
SE (D) | −0.40 ± 0.96 | −5.00–+4.38 | −0.41 ± 1.04 | −4.25–+5.88 | 0.86 |
logMAR | 0.08 ± 0.20 | 0.00–1.00 | 0.09 ± 0.22 | 0.00–1.52 | 0.41 |
Height (cm) | 125.44 ± 4.88 | 113.40–139.50 | 124.99 ± 4.88 | 113.20–142.50 | 0.22 |
Response Variable | AL | Height | logMAR | SE | Gender | |||||
---|---|---|---|---|---|---|---|---|---|---|
β | p | β | p | β | p | β | p | β | p | |
ACA500μm | 0.13 | <0.001 | 0.06 | 0.11 | 0.05 | 0.30 | −0.11 | 0.005 | −0.03 | 0.45 |
ACA750μm | 0.15 | <0.001 | 0.05 | 0.20 | 0.05 | 0.22 | −0.14 | <0.001 | −0.05 | 0.23 |
AOD500μm | 0.18 | <0.001 | 0.10 | 0.008 | 0.06 | 0.16 | −0.08 | 0.009 | 0.03 | 0.51 |
AOD750μm | 0.20 | <0.001 | 0.07 | 0.04 | 0.06 | 0.22 | −0.12 | <0.001 | −0.02 | 0.61 |
TISA500μm | 0.18 | <0.001 | 0.10 | 0.005 | 0.05 | 0.20 | −0.06 | 0.03 | 0.04 | 0.30 |
TISA750μm | 0.22 | <0.001 | 0.08 | 0.03 | 0.05 | 0.28 | −0.10 | 0.003 | 0.004 | 0.92 |
PIT500μm | 0.04 | 0.24 | 0.03 | 0.56 | −0.06 | 0.45 | −0.03 | 0.55 | −0.05 | 0.07 |
PIT750μm | 0.03 | 0.43 | −0.01 | 0.90 | −0.04 | 0.61 | −0.02 | 0.65 | −0.04 | 0.13 |
PCT500μm | 0.08 | 0.15 | 0.01 | 0.77 | −0.06 | 0.17 | 0.05 | 0.27 | −0.24 | <0.001 |
PCT750μm | 0.14 | 0.01 | −0.004 | 0.93 | −0.08 | 0.09 | 0.11 | 0.03 | −0.20 | <0.001 |
Study | Current Study | Edawaji B. S. A. et al. [11] | Daniel M. C. et al. [20] | Hashemi H. et al. [21] | Yeter V. et al. [22] |
---|---|---|---|---|---|
Subject number | 709 | 223 | 50 | 683 | 110 |
Age (years) | 8 | 2 day–15 | 4–16 | 6–18 | 3–6 |
Published Year | 2021 | 2018 | 2015 | 2015 | |
Modality | AS-OCT | Handheld OCT | AS-OCT | Optical | UBM |
AL | available | NA | NA | available | available |
SE | available | available | available | NA | available |
ACA | available | NA | NA | NA | available |
AOD | available | available | available | NA | NA |
TISA | available | available | available | NA | NA |
PIT | available | NA | NA | NA | NA |
PCT | available | NA | NA | NA | available |
CCT | NA | available | available | available | available |
Remarks | trabecular meshwork length | trabecular meshwork length and height | central ACD | peripheral ACD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, M.; Harada, R.; Kasai, Y.; Okabe, N.; Takahashi, A.; Kuleshov, C.; Shigemoto, Y.; Ooka, T.; Yokomichi, H.; Miyake, K.; et al. Anterior Chamber Configuration and Its Related Factors Among 8-Year-Old Children in the Yamanashi Adjunct Study of the Japan Environment and Children’s Study. J. Clin. Med. 2025, 14, 5454. https://doi.org/10.3390/jcm14155454
Bao M, Harada R, Kasai Y, Okabe N, Takahashi A, Kuleshov C, Shigemoto Y, Ooka T, Yokomichi H, Miyake K, et al. Anterior Chamber Configuration and Its Related Factors Among 8-Year-Old Children in the Yamanashi Adjunct Study of the Japan Environment and Children’s Study. Journal of Clinical Medicine. 2025; 14(15):5454. https://doi.org/10.3390/jcm14155454
Chicago/Turabian StyleBao, Mingxue, Ryo Harada, Yuka Kasai, Natsuki Okabe, Airi Takahashi, Chio Kuleshov, Yumi Shigemoto, Tadao Ooka, Hiroshi Yokomichi, Kunio Miyake, and et al. 2025. "Anterior Chamber Configuration and Its Related Factors Among 8-Year-Old Children in the Yamanashi Adjunct Study of the Japan Environment and Children’s Study" Journal of Clinical Medicine 14, no. 15: 5454. https://doi.org/10.3390/jcm14155454
APA StyleBao, M., Harada, R., Kasai, Y., Okabe, N., Takahashi, A., Kuleshov, C., Shigemoto, Y., Ooka, T., Yokomichi, H., Miyake, K., Kojima, R., Shinohara, R., Yui, H., Otawa, S., Kobayashi, A., Kushima, M., Yamagata, Z., Kashiwagi, K., & on behalf of The Yamanashi Adjunct Study of the Japan Environment and Children’s Study Group. (2025). Anterior Chamber Configuration and Its Related Factors Among 8-Year-Old Children in the Yamanashi Adjunct Study of the Japan Environment and Children’s Study. Journal of Clinical Medicine, 14(15), 5454. https://doi.org/10.3390/jcm14155454