Incidence and Predictive Factors of Acute Kidney Injury After Major Hepatectomy: Implications for Patient Management in Era of Enhanced Recovery After Surgery (ERAS) Protocols
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Definitions
2.3. Intraoperative Care
2.4. Data Collection
2.5. Study Outcomes
2.6. Follow-Up
2.7. Statistical Analysis
3. Results
3.1. Preoperative Period (Table 1)
3.2. Intraoperative Period (Table 2, Univariate Analysis)
3.3. Multivariate Analysis
3.4. Predictive Model
3.5. Postoperative Period
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Filmann, N.; Walter, D.; Schadde, E.; Bruns, C.; Keck, T.; Lang, H.; Oldhafer, K.; Schlitt, H.J.; Schön, M.R.; Herrmann, E.; et al. Mortality after Liver Surgery in Germany. Br. J. Surg. 2019, 106, 1523–1529. [Google Scholar] [CrossRef]
- Long, T.E.; Helgason, D.; Helgadottir, S.; Palsson, R.; Gudbjartsson, T.; Sigurdsson, G.H.; Indridason, O.S.; Sigurdsson, M.I. Acute Kidney Injury After Abdominal Surgery: Incidence, Risk Factors, and Outcome. Anesth. Analg. 2016, 122, 1912–1920. [Google Scholar] [CrossRef]
- Joosten, A.; Ickx, B.; Mokthari, Z.; Van Obbergh, L.; Lucidi, V.; Collange, V.; Naili, S.; Ichai, P.; Samuel, D.; Sa Cunha, A.; et al. Mild Increases in Plasma Creatinine after Intermediate to High-Risk Abdominal Surgery Are Associated with Long-Term Renal Injury. BMC Anesthesiol. 2021, 21, 135. [Google Scholar] [CrossRef]
- Lee, K.F.; Lo, E.Y.J.; Wong, K.K.C.; Fung, A.K.Y.; Chong, C.C.N.; Wong, J.; Ng, K.K.C.; Lai, P.B.S. Acute Kidney Injury Following Hepatectomy and Its Impact on Long-Term Survival for Patients with Hepatocellular Carcinoma. BJS Open 2021, 5, zrab077. [Google Scholar] [CrossRef] [PubMed]
- Reese, T.; Kröger, F.; Makridis, G.; Drexler, R.; Jusufi, M.; Schneider, M.; Brüning, R.; von Rittberg, Y.; Wagner, K.C.; Oldhafer, K.J. Impact of Acute Kidney Injury after Extended Liver Resections. HPB 2021, 23, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Gameiro, J.; Fonseca, J.A.; Neves, M.; Jorge, S.; Lopes, J.A. Acute Kidney Injury in Major Abdominal Surgery: Incidence, Risk Factors, Pathogenesis and Outcomes. Ann. Intensive Care 2018, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Tomozawa, A.; Ishikawa, S.; Shiota, N.; Cholvisudhi, P.; Makita, K. Perioperative Risk Factors for Acute Kidney Injury after Liver Resection Surgery: An Historical Cohort Study. Can. J. Anaesth. 2015, 62, 753–761. [Google Scholar] [CrossRef]
- Kim, M.; Kiran, R.P.; Li, G. Acute Kidney Injury after Hepatectomy Can Be Reasonably Predicted after Surgery. J. Hepatobiliary Pancreat. Sci. 2019, 26, 144–153. [Google Scholar] [CrossRef]
- Hao, S.; Chen, S.; Yang, X.; Wan, C. Adverse Impact of Intermittent Portal Clamping on Long-Term Postoperative Outcomes in Hepatocellular Carcinoma. Ann. R. Coll. Surg. Engl. 2017, 99, 22–27. [Google Scholar] [CrossRef]
- Melloul, E.; Hübner, M.; Scott, M.; Snowden, C.; Prentis, J.; Dejong, C.H.C.; Garden, O.J.; Farges, O.; Kokudo, N.; Vauthey, J.-N.; et al. Guidelines for Perioperative Care for Liver Surgery: Enhanced Recovery After Surgery (ERAS) Society Recommendations. World J. Surg. 2016, 40, 2425–2440. [Google Scholar] [CrossRef]
- Prowle, J.R.; Forni, L.G.; Bell, M.; Chew, M.S.; Edwards, M.; Grams, M.E.; Grocott, M.P.W.; Liu, K.D.; McIlroy, D.; Murray, P.T.; et al. Postoperative Acute Kidney Injury in Adult Non-Cardiac Surgery: Joint Consensus Report of the Acute Disease Quality Initiative and PeriOperative Quality Initiative. Nat. Rev. Nephrol. 2021, 17, 605–618. [Google Scholar] [CrossRef] [PubMed]
- Joliat, G.-R.; Labgaa, I.; Demartines, N.; Halkic, N. Acute Kidney Injury after Liver Surgery: Does Postoperative Urine Output Correlate with Postoperative Serum Creatinine? HPB 2020, 22, 144–150. [Google Scholar] [CrossRef]
- Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; Francisco, A.L.M.D.; Jong, P.E.D.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.; Lamb, E.J.; et al. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar] [CrossRef]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibañes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo Classification of Surgical Complications: Five-Year Experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM Criteria for the Diagnosis of Malnutrition—A Consensus Report from the Global Clinical Nutrition Community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef]
- Balzan, S.; Belghiti, J.; Farges, O.; Ogata, S.; Sauvanet, A.; Delefosse, D.; Durand, F. The “50-50 Criteria” on Postoperative Day 5: An Accurate Predictor of Liver Failure and Death after Hepatectomy. Ann. Surg. 2005, 242, 824–828; discussion 828–829. [Google Scholar] [CrossRef]
- Martin, C.; Auboyer, C.; Boisson, M.; Dupont, H.; Gauzit, R.; Kitzis, M.; Leone, M.; Lepape, A.; Mimoz, O.; Montravers, P.; et al. Antibioprophylaxis in Surgery and Interventional Medicine (Adult Patients). Update 2017. Anaesth. Crit. Care Pain Med. 2019, 38, 549–562. [Google Scholar] [CrossRef]
- Futier, E.; Lefrant, J.-Y.; Guinot, P.-G.; Godet, T.; Lorne, E.; Cuvillon, P.; Bertran, S.; Leone, M.; Pastene, B.; Piriou, V.; et al. Effect of Individualized vs Standard Blood Pressure Management Strategies on Postoperative Organ Dysfunction Among High-Risk Patients Undergoing Major Surgery: A Randomized Clinical Trial. JAMA 2017, 318, 1346–1357. [Google Scholar] [CrossRef]
- Palen, A.; Garnier, J.; Hobeika, C.; Ewald, J.; Gregoire, E.; Delpero, J.-R.; Le Treut, Y.P.; Turrini, O.; Hardwigsen, J. Oncological Relevance of Major Hepatectomy with Inferior Vena Cava Resection for Intrahepatic Cholangiocarcinoma. HPB 2021, 23, 1439–1447. [Google Scholar] [CrossRef]
- Fichier des Décès de l’Insee. Available online: https://arbre.app/insee (accessed on 19 March 2023).
- Cherni, N.; Jamoussi, A.; Merhebène, T.; Ayed, S.; Ben Khelil, J.; Besbes, M. RIFLE, AKIN et KDIGO en réanimation: Quelle classification pour l’insuffisance rénale aiguë au cours du choc septique? Néphrol. Thér. 2019, 15, 369–370. [Google Scholar] [CrossRef]
- De Felice, F.; Malerba, S.; Nardone, V.; Salvestrini, V.; Calomino, N.; Testini, M.; Boccardi, V.; Desideri, I.; Gentili, C.; De Luca, R.; et al. Progress and Challenges in Integrating Nutritional Care into Oncology Practice: Results from a National Survey on Behalf of the NutriOnc Research Group. Nutrients 2025, 17, 188. [Google Scholar] [CrossRef]
- Oprea, A.D.; Lombard, F.W.; Liu, W.-W.; White, W.D.; Karhausen, J.A.; Li, Y.-J.; Miller, T.E.; Aronson, S.; Gan, T.J.; Fontes, M.L.; et al. Baseline Pulse Pressure, Acute Kidney Injury, and Mortality After Noncardiac Surgery. Anesth. Analg. 2016, 123, 1480–1489. [Google Scholar] [CrossRef]
- Abuelo, J.G. Normotensive Ischemic Acute Renal Failure. N. Engl. J. Med. 2007, 357, 797–805. [Google Scholar] [CrossRef]
- Myles, P.S.; Bellomo, R. Restrictive or Liberal Fluid Therapy for Major Abdominal Surgery. N. Engl. J. Med. 2018, 379, 1283. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.H.; Long, D.R.; McLean, D.; Grabitz, S.D.; Ladha, K.; Timm, F.P.; Thevathasan, T.; Pieretti, A.; Ferrone, C.; Hoeft, A.; et al. Effects of Intraoperative Fluid Management on Postoperative Outcomes: A Hospital Registry Study. Ann. Surg. 2018, 267, 1084–1092. [Google Scholar] [CrossRef]
- Garnier, J.; Faucher, M.; Marchese, U.; Meillat, H.; Mokart, D.; Ewald, J.; Delpero, J.-R.; Turrini, O. Severe Acute Kidney Injury Following Major Liver Resection without Portal Clamping: Incidence, Risk Factors, and Impact on Short-Term Outcomes. HPB 2018, 20, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Slankamenac, K.; Beck-Schimmer, B.; Breitenstein, S.; Puhan, M.A.; Clavien, P.-A. Novel Prediction Score Including Pre- and Intraoperative Parameters Best Predicts Acute Kidney Injury after Liver Surgery. World J. Surg. 2013, 37, 2618–2628. [Google Scholar] [CrossRef] [PubMed]
- Brustia, R.; Mariani, P.; Sommacale, D.; Slim, K.; Cotte, E.; Goater, P.; Queinnec, M.; Tzanis, D.; Germain, A.; Levesque, E.; et al. The Impact of Enhanced Recovery Program Compliance after Elective Liver Surgery: Results from a Multicenter Prospective National Registry. Surgery 2021, 170, 1457–1466. [Google Scholar] [CrossRef]
- Brustia, R.; Slim, K.; Scatton, O. Enhanced Recovery after Liver Surgery. J. Visc. Surg. 2019, 156, 127–137. [Google Scholar] [CrossRef]
- Institut Paoli-Calmettes. Effect of an Individualized Protocol Based on Cardiac Output Optimization Guided by Dynamic Indices of Preload Responsiveness Monitoring on Postoperative Complications in Major Hepatic Surgery for Primary or Secondary Liver Cancer. 2022. Available online: https://clinicaltrials.gov (accessed on 30 July 2025).
- O’Connor, M.E.; Hewson, R.W.; Kirwan, C.J.; Ackland, G.L.; Pearse, R.M.; Prowle, J.R. Acute Kidney Injury and Mortality 1 Year after Major Non-Cardiac Surgery. Br. J. Surg. 2017, 104, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, C.; Rosa, R.; Rodrigues, N.; Mendes, I.; Peixoto, L.; Dias, S.; Melo, M.J.; Pereira, M.; Bicha Castelo, H.; Lopes, J.A. Acute Kidney Injury after Major Abdominal Surgery: A Retrospective Cohort Analysis. Crit. Care Res. Pract. 2014, 2014, 132175. [Google Scholar] [CrossRef]
- Humphreys, B.D. Mechanisms of Renal Fibrosis. Annu. Rev. Physiol. 2018, 80, 309–326. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, M.A.; Griffin, K.A.; Lan, R.; Geng, H.; Saikumar, P.; Bidani, A.K. Acute Kidney Injury: A Springboard for Progression in Chronic Kidney Disease. Am. J. Physiol. Renal. Physiol. 2010, 298, F1078–F1094. [Google Scholar] [CrossRef] [PubMed]
All (n = 169) | No AKI (n = 114) | AKI (n = 55) | p Value | |
---|---|---|---|---|
Age (years) | 71 [58.00–73.00] | 65 [57.00–70.75] | 69 [65.00–74.50] | 0.001 |
Male sex (%) | 85 (50.3) | 45 (39.5) | 40 (72.7) | <0.001 |
ASA score (%) | <0.001 | |||
ASA 1 | 4 (2.37) | 3 (2.6) | 1 (1.8) | |
ASA 2 | 124 (73.37) | 94 (82.5) | 30 (54.5) | |
ASA 3 | 41 (24.26) | 17 (14.9) | 24 (43.6) | |
Comorbidities (%) | ||||
Malnutrition | 39 (23.08) | 26 (22.8) | 13 (23.6) | 1.00 |
History of hypertension | 78 (46.15) | 33 (28.9) | 35 (63.6) | <0.001 |
Diabetes mellitus | 25 (14.79) | 12 (11.5) | 13 (23.7) | 0.036 |
COPD | 20 (11.83) | 9 (7.9) | 11 (20.0) | 0.043 |
Coronary heart disease | 12 (7.10) | 6 (5.3) | 6 (10.9) | 0.308 |
Systolic heart failure | 1 (0.59) | 1 (0.9) | 0 (0.0) | 1.00 |
Cirrhosis | 11 (6.51) | 5 (4.4) | 6 (10.9) | 0.201 |
Scores | ||||
Charlson comorbidity index | 8.5 [6.00–9.00] | 8.00 [6.00–9.00] | 8.00 [5.50–9.00] | 0.499 |
MELD score | 6.00 [6.00–7.00] | 6.00 [6.00–7.00] | 7.00 [6.00–8.00] | 0.002 |
LEE score | 0.026 | |||
0 | 144 (85.21) | 102 (89.5) | 42 (76.4) | |
1 | 20 (11.83) | 11 (9.6 | 9 (16.4) | |
2 | 5 (2.96) | 1 (0.9) | 4 (7.3) | |
>3 | 0 (0.00) | 0 (0.00) | 0 (0.00) | |
Treatments | ||||
Curative anticoagulation | 20 (11.83) | 9 (7.9) | 11 (20) | 0.043 |
Anti-aggregation therapy | 24 (14.20) | 10 (8.8) | 14 (25.5) | 0.007 |
ACE inhibitors/AR blockers | 43 (25.44) | 16 (14) | 27 (49.1) | <0.001 |
Thiazide diuretics | 15 (8.88) | 6 (5.3) | 9 (16.4) | 0.037 |
Furosemide | 3 (1.78) | 0 (0.00) | 3 (5.5) | 0.058 |
Beta blocker drugs | 26 (15.38) | 12 (10.5) | 14 (25.5) | 0.022 |
Calcium channel blockers | 25 (14.79) | 14 (12.3) | 11 (20.0) | 0.274 |
Statins | 26 (15.38) | 12 (10.5) | 14 (25.5) | 0.022 |
Oral antidiabetics | 18 (10.65) | 7 (6.1) | 11 (20.0) | 0.013 |
Neoadjuvant chemotherapy | 97 (57.40) | 73 (64) | 24 (43.6) | 0.019 |
Preoperative chemo/radioembolization | 20 (11.83) | 9 (7.9) | 11 (20.4) | 0.038 |
Preoperative portal embolization | 86 (50.89) | 51 (44.8) | 35 (63.6) | 0.022 |
Renal status GFR (mL/min/1.73 m2) | 0.015 | |||
>90 | 102 (60.36) | 78 (68.4) | 24 (44.4) | |
60–90 | 56 (33.14) | 33 (28.9) | 23 (42.6) | |
45–60 | 7 (4.14) | 2 (1.8) | 5 (9.3) | |
30–45 | 3 (1.78) | 1 (0.9) | 2 (3.7) | |
<30 | 0 (0.00) | 0 (0.0) | 0 (0.00) | |
Preoperative biology | ||||
Hemoglobin (g/dL) | 13.0 [12.2–14.0] | 12.9 [12.2–14.0] | 13.4 [11.8–14.4] | 0.792 |
Albumin (g/L) | 39.0 [35.1–42.0] | 39.50 [36.0–42.0] | 38.1 [35.0–41.0] | 0.267 |
Creatinine (μmol/L) | 66.0 [57.0–79.0] | 64.75 [56.1–74.8] | 72.0 [61.0–94.0] | 0.003 |
Bilirubin (μmol/L) | 8.3 [6.2–11.6] | 8.05 [6.1–10.3] | 10.0 [6.3–12.8] | 0.083 |
Main liver tumors | ||||
Metastatic cancer | 102 (60.3) | 79 (69.3) | 23 (41.8) | 0.001 |
Hepatocellular carcinoma | 22 (13) | 11 (9.6) | 11 (20.4) | 0.093 |
Cholangiocarcinoma | 28 (16.7) | 10 (8.8) | 18 (32.7) | <0.001 |
No AKI (n = 114) | AKI (n = 55) | p Value | |
---|---|---|---|
Surgical procedures | |||
Open surgery | 100 (87.7) | 53 (96.4) | 0.129 |
Laparoscopic surgery | 22 (19.3) | 5 (9.1) | 0.141 |
Pringle maneuver | 34 (29.8) | 13 (23.6) | 0.511 |
Inferior vena cava clamping | 6 (5.4) | 4 (7.4) | 0.603 |
Bile duct reconstruction | 11 (9.6) | 13 (23.6) | 0.027 |
Vascular procedure | 17 (14.9) | 10 (18.2) | 0.685 |
Duration of procedures | |||
Anesthesia (min) | 487 [429–570] | 550 [471–640] | 0.002 |
Surgical (min) | 393 [312–472] | 434 [361–531] | 0.019 |
Pringle maneuver | 0.00 [0.00–10.00] | 0.00 [0.00–0.00] | 0.450 |
Inferior vena cava clamping | 0.00 [0.00–0.00] | 0.00 [0.00–0.00] | 0.670 |
Time to liver resection | 397 [310–472] | 426 [368–501] | 0.046 |
Vasopressors | |||
Norepinephrine use | 6 (5.3) | 21 (38.2) | <0.001 |
Norepinephrine cumulative dose (ug) | 0.00 [0.00–271.15] | 407.05 [0.00–3192.50] | <0.001 |
Fluid parameters | |||
Cumulative fluid intake (mL) | 3470 [2717–4165] | 4460 [3445–6140] | <0.001 |
Fluid intake output (mL/kg/h) | 6.37 [5.47–8.04] | 6.17 [5.39–8.24] | 0.846 |
Urine output (mL/kg/min) | 0.80 [0.52–1.19] | 0.55 [0.33–0.84] | <0.001 |
Fluid balance (mL) | 2097 [1341–2874] | 2636 [1797–3934] | 0.014 |
Bleeding | |||
Volume (mL) | 300 [200–500] | 600 [350–800] | <0.001 |
RBCs units | 0.00 [0.00–0.00] | 0.00 [0.00–0.00] | 0.013 |
Lactate kinetic within the first 24 h | |||
Peak lactate level on day 0 (mmol/L) | 3.40 [2.30–4.70] | 4.50 [2.90–5.70] | 0.043 |
Peak lactate level on day 1 (mmol/L) | 3.65 [2.50–5.10] | 4.50 [2.90–5.68] | 0.165 |
Lactate clearance (day 0–day 1) (mmol/L) | 0.00 [0.00–0.79] | 0.00 [−0.007–0.17] | 0.031 |
Nephrotoxic drugs | |||
Aminoglycosides | 14 (12.3) | 5 (9.1) | 0.722 |
NSAIs | 91 (79.8) | 41 (74.5) | 0.563 |
Variables | OR | p Value | 95% CI | β (log OR) |
---|---|---|---|---|
Preoperative treatment with ACE/ARB | 5.914 | 0.021 | 1.31 to 26.70 | 1.777 |
Neoadjuvant chemotherapy | 0.144 | 0.009 | 0.03 to 0.61 | −1.936 |
Bile duct reconstruction | 5.538 | 0.088 | 0.77 to 39.61 | 1.712 |
Age (per year) | 1.114 | 0.006 | 1.03 to 1.20 | 0.108 |
Time to liver resection (per min) | 1.008 | 0.025 | 1.01 to 1.16 | 0.008 |
Intraoperative use of vasopressors | 8.663 | 0.018 | 1.44 to 51.84 | 2.159 |
Body Mass Index (kg/m2) (per point) | 1.239 | 0.028 | 1.02 to 1.50 | 0.214 |
No AKI (n = 114) | AKI (n = 55) | p Value | |
---|---|---|---|
SAPS II | 25 [19–30] | 32 [24–40] | <0.001 |
SOFA day 1 | 3 [2–5] | 6 [4–7] | <0.001 |
SOFA day 3 | 2 [0–2] | 2 [2–4] | <0.001 |
Fluid parameters (from day 0 to day 1) | |||
Cumulative fluid intake (mL) | 4410 [3490–5650] | 6910 [4870–9270] | <0.001 |
Fluid balance (mL) | 3365 [2136–4415] | 5580 [3595–7692] | <0.001 |
Renal function on day 90 | |||
GFR (mL/min/1.73 m2) | 0.033 | ||
>90 | 55 (62.5) | 15 (38.5) | |
60–90 | 30 (34.1) | 20 (51.3) | |
45–60 | 2 (2.3 | 2 (5.1) | |
30–45 | 0 (0.0) | 2 (5.1) | |
<30 | 1 (1.1) | 0 (0.00) | |
Renal replacement therapy | 0 (0.0) | 1 (1.8) | 0.709 |
Nephrotoxic Drugs | |||
NSAIs | 92 (81.4) | 28 (51.9) | <0.001 |
Ketoprofen cumulative dose in IMC/ICU | 200 [100.00–400.00] | 50.00 [0.00–200.00] | <0.001 |
Postoperative complications up to day 30 | |||
Sepsis | 19 (16.7) | 23 (41.8) | 0.001 |
Vasopressors | 24 (21.1) | 29 (52.7) | <0.001 |
ARF | 25 (21.9) | 25 (45.5) | 0.003 |
Oxygen therapy | 24 (21.1) | 24 (43.6) | 0.004 |
Non-invasive mechanical ventilation | 2 (1.8) | 6 (10.9) | 0.025 |
Invasive mechanical ventilation | 1 (0.9) | 10 (18.2) | <0.001 |
PHLF | 2 (1.8) | 2 (3.8) | 0.338 |
Surgical re-operation | 5 (4.4) | 9 (16.4) | 0.019 |
Total RBC units | 0.00 [0.00–0.75] | 0.00 [0.00–3.00] | 0.001 |
Dindo–Clavien stage | <0.001 | ||
I or no complication | 73 (64) | 16 (29.1) | |
II | 28 (24.6) | 10 (18.2) | |
III | 8 (7.0) | 7 (12.7) | |
IV | 5 (4.4) | 18 (32.7) | |
V | 0 (0.0) | 4 (7.3) | |
Hospital length of stay (days) | 8.00 [7.00–12.00] | 13.00 [8.00–16.50] | <0.001 |
Thirty-day mortality | 0 (0.0) | 4 (7.3) | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mingaud, H.; de Guibert, J.M.; Garnier, J.; Chow-Chine, L.; Gonzalez, F.; Bisbal, M.; Alisauskaite, J.; Sannini, A.; Léone, M.; Tezier, M.; et al. Incidence and Predictive Factors of Acute Kidney Injury After Major Hepatectomy: Implications for Patient Management in Era of Enhanced Recovery After Surgery (ERAS) Protocols. J. Clin. Med. 2025, 14, 5452. https://doi.org/10.3390/jcm14155452
Mingaud H, de Guibert JM, Garnier J, Chow-Chine L, Gonzalez F, Bisbal M, Alisauskaite J, Sannini A, Léone M, Tezier M, et al. Incidence and Predictive Factors of Acute Kidney Injury After Major Hepatectomy: Implications for Patient Management in Era of Enhanced Recovery After Surgery (ERAS) Protocols. Journal of Clinical Medicine. 2025; 14(15):5452. https://doi.org/10.3390/jcm14155452
Chicago/Turabian StyleMingaud, Henri, Jean Manuel de Guibert, Jonathan Garnier, Laurent Chow-Chine, Frederic Gonzalez, Magali Bisbal, Jurgita Alisauskaite, Antoine Sannini, Marc Léone, Marie Tezier, and et al. 2025. "Incidence and Predictive Factors of Acute Kidney Injury After Major Hepatectomy: Implications for Patient Management in Era of Enhanced Recovery After Surgery (ERAS) Protocols" Journal of Clinical Medicine 14, no. 15: 5452. https://doi.org/10.3390/jcm14155452
APA StyleMingaud, H., de Guibert, J. M., Garnier, J., Chow-Chine, L., Gonzalez, F., Bisbal, M., Alisauskaite, J., Sannini, A., Léone, M., Tezier, M., Tourret, M., Cambon, S., Ewald, J., Pouliquen, C., Nguyen Duong, L., Ettori, F., Turrini, O., Faucher, M., & Mokart, D. (2025). Incidence and Predictive Factors of Acute Kidney Injury After Major Hepatectomy: Implications for Patient Management in Era of Enhanced Recovery After Surgery (ERAS) Protocols. Journal of Clinical Medicine, 14(15), 5452. https://doi.org/10.3390/jcm14155452