Initial Dip in Estimated Glomerular Filtration Rate After Dapagliflozin Affects Renal Function in Chronic Phase in Chronic Heart Failure
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Definition of Initial Dip of eGFR
2.4. Outcome
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Risk Factors for Initial Dip
3.3. Risk Factors Affecting Long-Term Renal Function
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SGLT2 | sodium–glucose cotransporter 2 |
CHF | chronic heart failure |
eGFR | estimated glomerular filtration rate |
HFrEF | heart failure with reduced ejection fraction |
HFmrEF | heart failure with mildly reduced ejection fraction |
HFpEF | heart failure with preserved ejection fraction |
CKD | chronic kidney disease |
AST | aspartate aminotransferase |
ALT | alanine aminotransferase |
BUN | blood urea nitrogen |
CRP | C-reactive protein |
SDs | standard deviations |
MAR | missing at random |
ACE | angiotensin-converting enzyme |
ARB | angiotensin II receptor blockers |
OR | odds ratio |
CI | confidence interval |
AKI | acute kidney injury |
References
- Azad, N.; Lemay, G. Management of chronic heart failure in the older population. J. Geriatr. Cardiol. 2014, 11, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Mawatari, K.; Nakashima, N.; Shimozono, K.; Ushijima, K.; Yamaji, Y.; Tetsuka, K.; Murakami, M.; Okabe, K.; Yanai, T.; et al. Multidisciplinary Team-Based Palliative Care for Heart Failure and Food Intake at the End of Life. Nutrients 2021, 13, 2387. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, Y.; Tada, T.; Suzuki, H.; Nishimoto, Y.; Moriuchi, K.; Arikawa, T.; Adachi, H.; Momomura, S.I.; Seino, Y.; Yasumura, Y.; et al. Chronic Effects of Adaptive Servo-Ventilation Therapy on Mortality and the Urgent Rehospitalization Rate in Patients Experiencing Recurrent Admissions for Heart Failure—A Multicenter Prospective Observational Study (SAVIOR-L). Circ. J. 2024, 88, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, H.; Isobe, M.; Ito, H.; Ito, H.; Okumura, K.; Ono, M.; Kitakaze, M.; Kinugawa, K.; Kihara, Y.; Goto, Y.; et al. JCS 2017/JHFS 2017 Guideline on Diagnosis and Treatment of Acute and Chronic Heart Failure—Digest Version. Circ. J. 2019, 83, 2084–2184. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, H.; Ide, T.; Ito, H.; Kihara, Y.; Kinugawa, K.; Kinugawa, S.; Makaya, M.; Murohara, T.; Node, K.; Saito, Y.; et al. JCS/JHFS 2021 Guideline Focused Update on Diagnosis and Treatment of Acute and Chronic Heart Failure. Circ. J. 2021, 85, 2252–2291. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e263–e421. [Google Scholar] [CrossRef] [PubMed]
- Dunlay, S.M.; Roger, V.L.; Redfield, M.M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 2017, 14, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Vaduganathan, M.; Claggett, B.L.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Baseline Characteristics of Patients with HF with Mildly Reduced and Preserved Ejection Fraction: DELIVER Trial. JACC Heart Fail. 2022, 10, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Jhund, P.S.; Kondo, T.; Butt, J.H.; Docherty, K.F.; Claggett, B.L.; Desai, A.S.; Vaduganathan, M.; Gasparyan, S.B.; Bengtsson, O.; Lindholm, D.; et al. Dapagliflozin across the range of ejection fraction in patients with heart failure: A patient-level, pooled meta-analysis of DAPA-HF and DELIVER. Nat. Med. 2022, 28, 1956–1964. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; McMurray, J.J.V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review. Diabetologia 2018, 61, 2108–2117. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Stefansson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Cherney, D.Z.I.; Dekkers, C.C.J.; Barbour, S.J.; Cattran, D.; Abdul Gafor, A.H.; Greasley, P.J.; Laverman, G.D.; Lim, S.K.; Di Tanna, G.L.; Reich, H.N.; et al. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): A randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol. 2020, 8, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Cherney, D.Z.; Odutayo, A.; Aronson, R.; Ezekowitz, J.; Parker, J.D. Sodium Glucose Cotransporter-2 Inhibition and Cardiorenal Protection: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 74, 2511–2524. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.J.; Day, C.; Bellary, S. Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease. Curr. Diabetes Rep. 2022, 22, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Fioretto, P.; Zambon, A.; Rossato, M.; Busetto, L.; Vettor, R. SGLT2 Inhibitors and the Diabetic Kidney. Diabetes Care 2016, 39 (Suppl. 2), S165–S171. [Google Scholar] [CrossRef] [PubMed]
- Oshima, M.; Jardine, M.J.; Agarwal, R.; Bakris, G.; Cannon, C.P.; Charytan, D.M.; de Zeeuw, D.; Edwards, R.; Greene, T.; Levin, A.; et al. Insights from CREDENCE trial indicate an acute drop in estimated glomerular filtration rate during treatment with canagliflozin with implications for clinical practice. Kidney Int. 2021, 99, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Jongs, N.; Chertow, G.M.; Greene, T.; McMurray, J.J.V.; Langkilde, A.M.; Correa-Rotter, R.; Kashihara, N.; Rossing, P.; Sjostrom, C.D.; Stefansson, B.V.; et al. Correlates and Consequences of an Acute Change in eGFR in Response to the SGLT2 Inhibitor Dapagliflozin in Patients with CKD. J. Am. Soc. Nephrol. 2022, 33, 2094–2107. [Google Scholar] [CrossRef] [PubMed]
- Chertow, G.M.; Vart, P.; Jongs, N.; Toto, R.D.; Gorriz, J.L.; Hou, F.F.; McMurray, J.J.V.; Correa-Rotter, R.; Rossing, P.; Sjostrom, C.D.; et al. Effects of Dapagliflozin in Stage 4 Chronic Kidney Disease. J. Am. Soc. Nephrol. 2021, 32, 2352–2361. [Google Scholar] [CrossRef] [PubMed]
- Kraus, B.J.; Weir, M.R.; Bakris, G.L.; Mattheus, M.; Cherney, D.Z.I.; Sattar, N.; Heerspink, H.J.L.; Ritter, I.; von Eynatten, M.; Zinman, B.; et al. Characterization and implications of the initial estimated glomerular filtration rate ‘dip’ upon sodium-glucose cotransporter-2 inhibition with empagliflozin in the EMPA-REG OUTCOME trial. Kidney Int. 2021, 99, 750–762. [Google Scholar] [CrossRef] [PubMed]
- Lindeman, R.D.; Tobin, J.; Shock, N.W. Longitudinal studies on the rate of decline in renal function with age. J. Am. Geriatr. Soc. 1985, 33, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Denic, A.; Lieske, J.C.; Chakkera, H.A.; Poggio, E.D.; Alexander, M.P.; Singh, P.; Kremers, W.K.; Lerman, L.O.; Rule, A.D. The Substantial Loss of Nephrons in Healthy Human Kidneys with Aging. J. Am. Soc. Nephrol. 2017, 28, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Shamseddin, M.K.; Parfrey, P.S. Mechanisms of the cardiorenal syndromes. Nat. Rev. Nephrol. 2009, 5, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Damman, K.; Testani, J.M. The kidney in heart failure: An update. Eur. Heart J. 2015, 36, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Damman, K.; van Deursen, V.M.; Navis, G.; Voors, A.A.; van Veldhuisen, D.J.; Hillege, H.L. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J. Am. Coll. Cardiol. 2009, 53, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Zannad, F.; Ferreira, J.P.; Pocock, S.J.; Zeller, C.; Anker, S.D.; Butler, J.; Filippatos, G.; Hauske, S.J.; Brueckmann, M.; Pfarr, E.; et al. Cardiac and Kidney Benefits of Empagliflozin in Heart Failure Across the Spectrum of Kidney Function: Insights from EMPEROR-Reduced. Circulation 2021, 143, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Cahn, A.; Melzer-Cohen, C.; Pollack, R.; Chodick, G.; Shalev, V. Acute renal outcomes with sodium-glucose co-transporter-2 inhibitors: Real-world data analysis. Diabetes Obes. Metab. 2019, 21, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Gabriel, N.; Hernandez, I.; Vouri, S.M.; Kimmel, S.E.; Bian, J.; Guo, J. Identifying Patients at Risk of Acute Kidney Injury Among Medicare Beneficiaries with Type 2 Diabetes Initiating SGLT2 Inhibitors: A Machine Learning Approach. Front. Pharmacol. 2022, 13, 834743. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.M.; Dewan, P.; Anand, I.S.; Belohlavek, J.; Bengtsson, O.; de Boer, R.A.; Bohm, M.; Boulton, D.W.; Chopra, V.K.; DeMets, D.L.; et al. Dapagliflozin and Diuretic Use in Patients with Heart Failure and Reduced Ejection Fraction in DAPA-HF. Circulation 2020, 142, 1040–1054. [Google Scholar] [CrossRef] [PubMed]
- Rahhal, A.; Najim, M.; Abusweireh, A.; Habra, M.; Elgassim, L.; Ali, M.O.; Habib, M.B.; Tahtouh, R.; Al-Awad, M.; Aljundi, A.H.; et al. A Comparative Study of Safety Outcomes of Sodium Glucose Cotransporter-2 Inhibitors and Loop Diuretics Among Diabetic Patients Using Real-world Data. Curr. Probl. Cardiol. 2022, 47, 100995. [Google Scholar] [CrossRef] [PubMed]
- Palmiero, G.; Cesaro, A.; Vetrano, E.; Pafundi, P.C.; Galiero, R.; Caturano, A.; Moscarella, E.; Gragnano, F.; Salvatore, T.; Rinaldi, L.; et al. Impact of SGLT2 Inhibitors on Heart Failure: From Pathophysiology to Clinical Effects. Int. J. Mol. Sci. 2021, 22, 5863. [Google Scholar] [CrossRef] [PubMed]
- Cesaro, A.; Gragnano, F.; Paolisso, P.; Bergamaschi, L.; Gallinoro, E.; Sardu, C.; Mileva, N.; Foa, A.; Armillotta, M.; Sansonetti, A.; et al. In-hospital arrhythmic burden reduction in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: Insights from the SGLT2-I AMI PROTECT study. Front. Cardiovasc. Med. 2022, 9, 1012220. [Google Scholar] [CrossRef] [PubMed]
- Mariani, M.V.; Manzi, G.; Pierucci, N.; Laviola, D.; Piro, A.; D’Amato, A.; Filomena, D.; Matteucci, A.; Severino, P.; Miraldi, F.; et al. SGLT2i effect on atrial fibrillation: A network meta-analysis of randomized controlled trials. J. Cardiovasc. Electrophysiol. 2024, 35, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
Non-Initial Dip | Initial Dip | p Value | ||
---|---|---|---|---|
(n = 58) | (n = 65) | |||
Age (years old) | 65.3 (17.6) | 70.5 (14.1) | 0.07 | |
Sex (female, %) | 22 (37.9) | 21 (32.3) | 0.57 | |
Body mass index (kg/m2) | 24.2 (4.37) | 24.1 (4.86) | 0.84 | |
AST (U/L) | 30.0 (16.8) | 38.0 (67.6) | 0.38 | |
ALT (U/L) | 30.9 (23.7) | 32.4 (28.5) | 0.75 | |
Albumin (g/dL) | 3.74 (0.70) | 3.60 (0.52) | 0.26 | |
BUN (mg/dL) | 30.5 (16.2) | 22.1 (11.2) | <0.01 | |
eGFR (mL/min/1.73 m2) | 44.7 (22.6) | 59.4 (21.3) | <0.01 | |
Uric acid (mg/dL) | 7.66 (2.83) | 6.74 (1.78) | 0.04 | |
Glucose (mg/dL) | 136.3 (59.8) | 127.4 (49.1) | 0.50 | |
Sodium (mmol/L) | 138.8 (2.84) | 139.5 (4.10) | 0.28 | |
Potassium (mmol/L) | 4.34 (0.55) | 4.15 (0.50) | 0.04 | |
CRP (mg/dL) | 1.98 (3.71) | 1.56 (2.62) | 0.50 | |
Comorbidities | ||||
Hypertension | 35 (60.3) | 52 (80.0) | 0.02 | |
Diabetes mellitus | 26 (44.8) | 42 (64.6) | 0.03 | |
Dyslipidemia | 25 (43.1) | 32 (49.2) | 0.59 | |
Chronic kidney disease | 44 (75.9) | 35 (53.8) | 0.01 | |
Infection | 7 (12.1) | 8 (12.3) | 1.00 | |
Immune disease | 5 (8.62) | 6 (9.23) | 1.00 | |
Infiltrative diseases (sarcoidosis, amyloidosis) | 9 (15.5) | 6 (9.23) | 0.41 | |
Endocrine diseases | 10 (17.2) | 11 (16.9) | 1.00 | |
Concomitant medications | ||||
ACE inhibitors | 20 (34.5) | 29 (44.6) | 0.27 | |
ARB | 17 (29.3) | 20 (30.8) | 1.00 | |
Thiazide diuretics | 1 (1.72) | 1 (1.54) | 1.00 | |
Loop diuretics | 34 (58.6) | 39 (60.0) | 1.00 | |
MRA | 42 (72.4) | 50 (76.9) | 0.68 | |
V2RA | 22 (37.9) | 26 (40.0) | 0.85 | |
Statins | 26 (44.8) | 32 (49.2) | 0.72 | |
Antidiabetic drugs | 16 (27.6) | 17 (26.2) | 1.00 | |
Immunosuppressants | 10 (17.2) | 11 (16.9) | 1.00 | |
Antimicrobial agents | 9 (15.5) | 8 (12.3) | 0.61 | |
NSAIDs | 2 (3.45) | 4 (6.15) | 0.68 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Odds Ratio | 95% CI | p Value | Odds Ratio | 95% CI | p Value | |
Age (years old) | 1.02 | 1.00, 1.05 | 0.08 | 1.06 | 1.02, 1.09 | <0.01 |
Sex (female, %) | 0.78 | 0.37, 1.64 | 0.51 | |||
Body mass index (kg/m2) | 0.99 | 0.92, 1.07 | 0.84 | |||
eGFR (mL/min/1.73 m2) | 1.03 | 1.01, 1.05 | <0.01 | 1.07 | 1.04, 1.09 | <0.01 |
CRP (mg/dL) | 0.96 | 0.85, 1.08 | 0.50 | |||
Hypertension | 2.63 | 1.18, 5.87 | 0.02 | 3.24 | 1.18, 8.95 | 0.02 |
Diabetes mellitus | 2.25 | 1.09, 4.04 | 0.03 | 2.61 | 1.09, 6.25 | 0.03 |
Dyslipidemia | 1.28 | 0.63, 2.61 | 0.50 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Predicted Value | 95% CI | p Value | Predicted Value | 95% CI | p Value | |
Age (years old) | −0.41 | −0.60, −0.23 | <0.01 | −0.29 | −0.47, −0.11 | <0.01 |
Sex (female, %) | −0.22 | −7.58, 7.15 | 0.95 | |||
Body mass index (kg/m2) | 0.14 | −0.54, 0.82 | 0.68 | |||
Hypertension | −13.12 | −20.39, −5.86 | <0.01 | −4.58 | −11.80, 2.63 | 0.21 |
Diabetes mellitus | −6.47 | −13.23, 0.30 | 0.06 | −2.39 | −8.16, 3.39 | 0.41 |
Dyslipidemia | −1.28 | −8.20, 5.64 | 0.71 | |||
Chronic kidney disease | −2.28 | −9.55, 5.00 | 0.53 | |||
Initial dip | −14.01 | −20.11, −7.91 | <0.01 | −9.92 | −16.01, −3.83 | <0.01 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Predicted Value | 95% CI | p Value | Predicted Value | 95% CI | p Value | |
Age (years old) | −0.47 | −0.71, −0.23 | <0.01 | −0.37 | −0.61, −0.13 | <0.01 |
Sex (female, %) | −2.59 | −12.33, 7.14 | 0.60 | |||
Body mass index (kg/m2) | −0.31 | −1.37, 0.74 | 0.56 | |||
Hypertension | −13.75 | −23.04, −4.46 | <0.01 | −5.19 | −14.30, 3.92 | 0.26 |
Diabetes mellitus | −5.14 | −13.78, 3.51 | 0.24 | |||
Dyslipidemia | 0.51 | −8.36, 9.38 | 0.91 | |||
Chronic kidney disease | −0.52 | −10.11, 9.07 | 0.91 | |||
Initial dip | −13.98 | −21.91, −6.05 | <0.01 | −10.90 | −18.39, −3.42 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogata, R.; Kotaki, T.; Tanaka, K.; Higuchi, K.; Kumano, N.; Furukawa, K.; Fukumoto, Y. Initial Dip in Estimated Glomerular Filtration Rate After Dapagliflozin Affects Renal Function in Chronic Phase in Chronic Heart Failure. J. Clin. Med. 2025, 14, 5246. https://doi.org/10.3390/jcm14155246
Ogata R, Kotaki T, Tanaka K, Higuchi K, Kumano N, Furukawa K, Fukumoto Y. Initial Dip in Estimated Glomerular Filtration Rate After Dapagliflozin Affects Renal Function in Chronic Phase in Chronic Heart Failure. Journal of Clinical Medicine. 2025; 14(15):5246. https://doi.org/10.3390/jcm14155246
Chicago/Turabian StyleOgata, Raisa, Takato Kotaki, Kozue Tanaka, Kyoko Higuchi, Natsumi Kumano, Kyoji Furukawa, and Yoshihiro Fukumoto. 2025. "Initial Dip in Estimated Glomerular Filtration Rate After Dapagliflozin Affects Renal Function in Chronic Phase in Chronic Heart Failure" Journal of Clinical Medicine 14, no. 15: 5246. https://doi.org/10.3390/jcm14155246
APA StyleOgata, R., Kotaki, T., Tanaka, K., Higuchi, K., Kumano, N., Furukawa, K., & Fukumoto, Y. (2025). Initial Dip in Estimated Glomerular Filtration Rate After Dapagliflozin Affects Renal Function in Chronic Phase in Chronic Heart Failure. Journal of Clinical Medicine, 14(15), 5246. https://doi.org/10.3390/jcm14155246