Prevalence, Outcomes and Healthcare Costs of Postoperative ARDS Compared with Medical ARDS
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Data Source
2.2. Study Variables
2.3. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Prevalence
3.3. Hospital Mortality
3.4. Mean Costs per ARDS Patient
3.5. Effect of COVID-19 Pandemic
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARDS | acute respiratory distress syndrome |
DRG | diagnosis-related groups |
ECMO | extracorporeal membrane oxygenation |
ICD | international classification of diseases |
ICU | intensive care unit |
LoS | length of hospital stay |
MBDS | minimum basic dataset |
MV | mechanical ventilation |
PEEP | positive end-expiratory pressure |
PARF | postoperative acute respiratory failure |
PPCs | postoperative pulmonary complications |
SD | standard deviation |
References
- Lusquinhos, J.; Tavares, M.; Abelha, F. Postoperative Pulmonary Complications and Perioperative Strategies: A Systematic Review. Cureus 2023, 15, e38786. [Google Scholar] [CrossRef]
- Stocking, J.C.; Drake, C.; Aldrich, J.M.; Ong, M.K.; Amin, A.; Marmor, R.A.; Godat, L.; Cannesson, M.; Gropper, M.A.; Romano, P.S.; et al. Outcomes and risk factors for delayed-onset postoperative respiratory failure: A multi-center case-control study by the University of California Critical Care Research Collaborative (UC3RC). BMC Anesthesiol. 2022, 22, 146. [Google Scholar] [CrossRef]
- Fernandez-Bustamante, A.; Frendl, G.; Sprung, J.; Kor, D.J.; Subramaniam, B.; Martinez Ruiz, R.; Lee, J.-W.; Henderson, W.G.; Moss, A.; Mehdiratta, N.; et al. Postoperative Pulmonary Complications, Early Mortality, and Hospital Stay Following Noncardiothoracic Surgery: A Multicenter Study by the Perioperative Research Network Investigators. JAMA Surg. 2017, 152, 157–166. [Google Scholar] [CrossRef]
- Canet, J.; Gallart, L.; Gomar, C.; Paluzie, G.; Vallès, J.; Castillo, J.; Sabaté, S.; Mazo, V.; Briones, Z.; Sanchis, J.; et al. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology 2010, 113, 1338–1350. [Google Scholar] [CrossRef]
- Blum, J.M.; Stentz, M.J.; Dechert, R.; Jewell, E.; Engoren, M.; Rosenberg, A.L.; Park, P.K. Preoperative and intraoperative predictors of postoperative acute respiratory distress syndrome in a general surgical population. Anesthesiology 2013, 118, 19–29. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, H.; Alam, A.; Mi, E.; Eguchi, S.; Yao, S.; Ma, D. Postoperative remote lung injury and its impact on surgical outcome. BMC Anesthesiol. 2019, 19, 30. [Google Scholar] [CrossRef] [PubMed]
- Giannakoulis, V.G.; Papoutsi, E.; Kaldis, V.; Tsirogianni, A.; Kotanidou, A.; Siempos, I.I. Postoperative acute respiratory distress syndrome in randomized controlled trials. Surgery 2023, 174, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Kor, D.J.; Warner, D.O.; Alsara, A.; Fernández-Pérez, E.R.; Malinchoc, M.; Kashyap, R.; Li, G.; Gajic, O. Derivation and diagnostic accuracy of the surgical lung injury prediction model. Anesthesiology 2011, 115, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, K.W.; Peltan, I.D.; Brown, S.M. The Epidemiology of Acute Respiratory Distress Syndrome Before and After Coronavirus Disease 2019. Crit. Care Clin. 2021, 37, 703–716. [Google Scholar] [CrossRef]
- Bardají-Carrillo, M.; López-Herrero, R.; Aguilar, G.; Arroyo-Hernantes, I.; Gómez-Sánchez, E.; Camporota, L.; Villar, J.; Tamayo, E. Epidemiological trends of mechanically ventilated acute respiratory distress syndrome in the twenty-first century: A nationwide, population-based retrospective study. J. Intensive Care 2025, 13, 9. [Google Scholar] [CrossRef]
- Ministerio de Sanidad—Sanidad en datos—Registro de Altas de los Hospitales del Sistema Nacional de Salud. CMBD. Available online: https://www.sanidad.gob.es/estadEstudios/estadisticas/cmbdhome.htm (accessed on 13 June 2024).
- BOE-A-2015-1235 Real Decreto 69/2015, de 6 de Febrero, por el que se Regula el Registro de Actividad de Atención Sanitaria Especializada. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2015-1235 (accessed on 13 June 2024).
- The Web’s Free ICD-9-CM & ICD-10-CM Medical Coding Reference. Available online: http://www.icd9data.com/ (accessed on 13 June 2024).
- The Web’s Free 2024 ICD-10-CM/PCS Medical Coding Reference. Available online: https://www.icd10data.com/ (accessed on 13 June 2024).
- Ministerio de Sanidad—Sanidad en datos—Intervenciones Quirúgicas Realizadas en Hospitales del Sistema Nacional de Salud (SNS), Frecuentación por 1.000 Habitantes, Porcentaje de Intervenciones de Cirugía Mayor Ambulatoria (C.M.A.) Sobre el Total de Intervenciones y Días de Espera para Intervenciones no Urgentes Según Comunidad Autónoma. Available online: https://www.sanidad.gob.es/estadEstudios/sanidadDatos/tablas/tabla26.htm (accessed on 26 August 2024).
- Ministerio de Sanidad—Sanidad en datos—Estadística de Centros Sanitarios de Atención Especializada. Available online: https://www.sanidad.gob.es/estadEstudios/estadisticas/EstabSanitReginInternado/EST_CENT_SANIT_AT_ESP.htm (accessed on 27 August 2024).
- MacLaren, R.; Bond, C.A.; Martin, S.J.; Fike, D. Clinical and economic outcomes of involving pharmacists in the direct care of critically ill patients with infections. Crit. Care Med. 2008, 36, 3184. [Google Scholar] [CrossRef]
- Esper, A.M.; Moss, M.; Lewis, C.A.; Nisbet, R.; Mannino, D.M.; Martin, G.S. The role of infection and comorbidity: Factors that influence disparities in sepsis. Crit. Care Med. 2006, 34, 2576–2582. [Google Scholar] [CrossRef]
- Dombrovskiy, V.Y.; Martin, A.A.; Sunderram, J.; Paz, H.L. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: A trend analysis from 1993 to 2003. Crit. Care Med. 2007, 35, 1244. [Google Scholar] [CrossRef]
- Bateman, B.T.; Schmidt, U.; Berman, M.F.; Bittner, E.A. Temporal Trends in the Epidemiology of Severe Postoperative Sepsis after Elective Surgery: A Large, Nationwide Sample. Anesthesiology 2010, 112, 917–925. [Google Scholar] [CrossRef]
- Wang, H.E.; Shapiro, N.I.; Angus, D.C.; Yealy, D.M. National estimates of severe sepsis in United States emergency departments. Crit. Care Med. 2007, 35, 1928. [Google Scholar] [CrossRef] [PubMed]
- Angus, D.C.; Linde-Zwirble, W.T.; Lidicker, J.; Clermont, G.; Carcillo, J.; Pinsky, M.R. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 2001, 29, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.-N.; Lu, C.-L.; Yang, H.-H. Epidemiologic Trend of Severe Sepsis in Taiwan From 1997 Through 2006. Chest 2010, 138, 298–304. [Google Scholar] [CrossRef] [PubMed]
- López-Herrero, R.; Sánchez-de Prada, L.; Tamayo-Velasco, A.; Lorenzo-López, M.; Gómez-Pesquera, E.; Sánchez-Quirós, B.; de la Varga-Martínez, O.; Gómez-Sánchez, E.; Resino, S.; Tamayo, E.; et al. Epidemiology of bacterial co-infections and risk factors in COVID-19-hospitalized patients in Spain: A nationwide study. Eur. J. Public Health 2023, 33, 675–681. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 30 June 2025).
- Bardají-Carrillo, M.; Martín-Fernández, M.; López-Herrero, R.; Priede-Vimbela, J.M.; Heredia-Rodríguez, M.; Gómez-Sánchez, E.; Gómez-Pesquera, E.; Lorenzo-López, M.; Jorge-Monjas, P.; Poves-Álvarez, R.; et al. Post-operative sepsis-induced acute respiratory distress syndrome: Risk factors for a life-threatening complication. Front. Med. 2024, 11, 1338542. [Google Scholar] [CrossRef]
- López-Herrero, R.; Sánchez-de Prada, L.; Tamayo-Velasco, A.; Heredia-Rodríguez, M.; Bardají Carrillo, M.; Jorge Monjas, P.; de la Varga-Martínez, O.; Resino, S.; Sarmentero-López de Quintana, G.; Gómez-Sánchez, E.; et al. Epidemiology of fungal infection in COVID 19 in Spain during 2020 and 2021: A nationwide study. Sci. Rep. 2024, 14, 5203. [Google Scholar] [CrossRef]
- Gao, Y.; Ding, M.; Dong, X.; Zhang, J.; Kursat Azkur, A.; Azkur, D.; Gan, H.; Sun, Y.; Fu, W.; Li, W.; et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy 2021, 76, 428–455. [Google Scholar] [CrossRef] [PubMed]
- Beloncle, F.; Studer, A.; Seegers, V.; Richard, J.-C.; Desprez, C.; Fage, N.; Merdji, H.; Pavlovsky, B.; Helms, J.; Cunat, S.; et al. Longitudinal changes in compliance, oxygenation and ventilatory ratio in COVID-19 versus non-COVID-19 pulmonary acute respiratory distress syndrome. Crit. Care 2021, 25, 248. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Zong, R.; Yu, W.; Wu, F.; Li, Y. Novel models for early prediction and prevention of acute respiratory distress syndrome in patients following hepatectomy: A clinical translational study based on 1,032 patients. Front. Med. 2022, 9, 1025764. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-W.; Chang, C.-H.; Chu, P.-H.; Chen, T.-H.; Wu, V.C.-C.; Huang, Y.-K.; Liao, C.-H.; Wang, S.-Y.; Lin, P.-J.; Tsai, F.-C. Risk factor analysis of postoperative acute respiratory distress syndrome in valvular heart surgery. J. Crit. Care 2016, 31, 139–143. [Google Scholar] [CrossRef]
- Hamedani, A.G.; Blank, L.; Thibault, D.P.; Willis, A.W. Impact of ICD-9 to ICD-10 Coding Transition on Prevalence Trends in Neurology. Neurol. Clin. Pract. 2021, 11, e612. [Google Scholar] [CrossRef]
- Salemi, J.L.; Tanner, J.P.; Kirby, R.S.; Cragan, J.D. The impact of the ICD-9-CM to ICD-10-CM transition on the prevalence of birth defects among infant hospitalizations in the United States. Birth Defects Res. 2019, 111, 1365. [Google Scholar] [CrossRef]
- Máca, J.; Jor, O.; Holub, M.; Sklienka, P.; Burša, F.; Burda, M.; Janout, V.; Ševčík, P. Past and Present ARDS Mortality Rates: A Systematic Review. Respir. Care 2017, 62, 113–122. [Google Scholar] [CrossRef]
- Wanderer, J.P.; Ehrenfeld, J.M.; Epstein, R.H.; Kor, D.J.; Bartz, R.R.; Fernandez-Bustamante, A.; Vidal Melo, M.F.; Blum, J.M. Temporal trends and current practice patterns for intraoperative ventilation at U.S. academic medical centers: A retrospective study. BMC Anesthesiol. 2015, 15, 40. [Google Scholar] [CrossRef]
- Sanfilippo, F.; Palumbo, G.J.; Bignami, E.; Pavesi, M.; Ranucci, M.; Scolletta, S.; Pelosi, P.; Astuto, M. Acute Respiratory Distress Syndrome in the Perioperative Period of Cardiac Surgery: Predictors, Diagnosis, Prognosis, Management Options, and Future Directions. J. Cardiothorac. Vasc. Anesth. 2022, 36, 1169–1179. [Google Scholar] [CrossRef]
- Kiyatkin, M.E.; Mladinov, D.; Jarzebowski, M.L.; Warner, M.A. Patient blood management, anemia, and transfusion optimization across surgical specialties. Anesthesiol. Clin. 2023, 41, 161–174. [Google Scholar] [CrossRef]
- Shivkumar, S.; Mehta, V.; Vaddamanu, S.K.; Shetty, U.A.; Alhamoudi, F.H.; Alwadi, M.A.M.; Aldosari, L.I.N.; Alshadidi, A.A.F.; Minervini, G. Surgical Protocols before and after COVID-19—A Narrative Review. Vaccines 2023, 11, 439. [Google Scholar] [CrossRef]
- Gasteiger, L.; Abram, J.; Klein, S.; Tscholl, P.; Hell, T.; Putzer, G.; Moser, B.; Joannidis, M.; Martini, J. Impact of COVID-19 on elective, emergency and oncological surgery during the first and the second wave in a tertiary university hospital: Have we learned the lessons? Wien. Klin. Wochenschr. 2022, 134, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Cano-Valderrama, O.; Morales, X.; Ferrigni, C.J.; Martín-Antona, E.; Turrado, V.; García, A.; Cuñarro-López, Y.; Zarain-Obrador, L.; Duran-Poveda, M.; Balibrea, J.M.; et al. Acute Care Surgery during the COVID-19 pandemic in Spain: Changes in volume, causes and complications. A multicentre retrospective cohort study. Int. J. Surg. 2020, 80, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Alelyani, R.H.; Alghamdi, A.H.; Mahrous, S.M.; Alamri, B.M.; Alhiniah, M.H.; Abduh, M.S.; Aldaqal, S.M. Impact of COVID-19 Pandemic Lockdown on the Prognosis, Morbidity, and Mortality of Patients Undergoing Elective and Emergency Abdominal Surgery: A Retrospective Cohort Study in a Tertiary Center, Saudi Arabia. Int. J. Environ. Res. Public Health 2022, 19, 15660. [Google Scholar] [CrossRef] [PubMed]
- Colosimo, C.; Ingram, B.; Weaver, J.; Offner, P.; Yon, J. Increased Complications of Emergent Surgical Procedures During the First Wave of COVID-19. J. Surg. Res. 2023, 286, 16–22. [Google Scholar] [CrossRef]
- Chan, S.L.; Zhang, A.Y.; Lam, S.S.W.; Rao, V.; Kanagalingam, D.; Tan, H.K.; Chow, P.K.H.; Mathur, S. The impact of elective surgery postponement during COVID-19 on emergency bellwether procedures in a large tertiary centre in Singapore. Int. J. Qual. Health Care 2024, 36, mzae022. [Google Scholar] [CrossRef]
- Yoshida, T.; Chude-Sokei, R.; Araji, T.; Adra, S. Impact of COVID-19 Pandemic Surge on Surgical Outcomes: A Retrospective Study. Am. Surg. 2024, 90, 1224–1233. [Google Scholar] [CrossRef]
- Combes, A.; Peek, G.J.; Hajage, D.; Hardy, P.; Abrams, D.; Schmidt, M.; Dechartres, A.; Elbourne, D. ECMO for severe ARDS: Systematic review and individual patient data meta-analysis. Intensive Care Med. 2020, 46, 2048–2057. [Google Scholar] [CrossRef]
- Copeland, H.; Levine, D.; Morton, J.; Hayanga, J.W.A. Acute respiratory distress syndrome in the cardiothoracic patient: State of the art and use of veno-venous extracorporeal membrane oxygenation. JTCVS Open 2021, 8, 97–103. [Google Scholar] [CrossRef]
- Sanivarapu, R.R.; Osman, U.; Latha Kumar, A. A Systematic Review of Mortality Rates Among Adult Acute Respiratory Distress Syndrome Patients Undergoing Extracorporeal Membrane Oxygenation Therapy. Cureus 2023, 15, e43590. [Google Scholar] [CrossRef]
- Park, K.U.; Eichenhorn, M.; DiGiovine, B.; Ritz, J.; Jordan, J.; Rubinfeld, I. Different Harm and Mortality in Critically Ill Medical vs Surgical Patients: Retrospective Analysis of Variation in Adverse Events in Different Intensive Care Units. Perm. J. 2018, 22, 16–189. [Google Scholar] [CrossRef]
- Cálculo de Variaciones del Indice de Precios de Consumo. INE. Available online: https://www.ine.es/varipc/verVariaciones.do (accessed on 20 December 2024).
- Shari, G.; Kojicic, M.; Li, G.; Cartin-Ceba, R.; Alvarez, C.T.; Kashyap, R.; Dong, Y.; Poulose, J.T.; Herasevich, V.; Garza, J.A.C.; et al. Timing of the onset of acute respiratory distress syndrome: A population-based study. Respir. Care 2011, 56, 576–582. [Google Scholar] [CrossRef]
- Hoogervorst-Schilp, J.; Langelaan, M.; Spreeuwenberg, P.; de Bruijne, M.C.; Wagner, C. Excess length of stay and economic consequences of adverse events in Dutch hospital patients. BMC Health Serv. Res. 2015, 15, 531. [Google Scholar] [CrossRef]
- Reardon, P.M.; Fernando, S.M.; Van Katwyk, S.; Thavorn, K.; Kobewka, D.; Tanuseputro, P.; Rosenberg, E.; Wan, C.; Vanderspank-Wright, B.; Kubelik, D.; et al. Characteristics, Outcomes, and Cost Patterns of High-Cost Patients in the Intensive Care Unit. Crit. Care Res. Pract. 2018, 2018, 5452683. [Google Scholar] [CrossRef] [PubMed]
- Bardají-Carrillo, M.; Martín-Fernández, M.; López-Herrero, R.; Priede-Vimbela, J.M.; Arroyo-Hernantes, I.; Cobo-Zubia, R.; Prieto-Utrera, R.; Gómez-Sánchez, E.; Villar, J.; Tamayo, E. Chest radiographs in acute respiratory distress syndrome: An Achilles’ heel of the Berlin criteria? Front. Med. 2025, 12, 1554752. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.M.; Fan, E.; Rochwerg, B.; Burns, K.E.A.; Brochard, L.J.; Cook, D.J.; Walkey, A.J.; Ferguson, N.D.; Hough, C.L.; Brodie, D.; et al. Lung-Protective Ventilation and Associated Outcomes and Costs Among Patients Receiving Invasive Mechanical Ventilation in the ED. Chest 2021, 159, 606–618. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Gao, Y.; Qi, Y.; Zhi, Y.; Xu, J.; Wang, K.; Yang, Q.; Wang, C.; Zhao, M.; Meng, X. Accuracy of artificial intelligence algorithms in predicting acute respiratory distress syndrome: A systematic review and meta-analysis. BMC Med. Inform. Decis. Mak. 2025, 25, 44. [Google Scholar] [CrossRef]
- van Walraven, C.; Austin, P. Administrative database research has unique characteristics that can risk biased results. J. Clin. Epidemiol. 2012, 65, 126–131. [Google Scholar] [CrossRef]
Medical ARDS (n = 36,393) | Postoperative ARDS (n = 31,820) | p-Value | |
---|---|---|---|
Characteristics | |||
Sex (male) [% (n)] | 65.1% (n = 23,700) | 65.0% (n = 20,692) | 0.045 |
Age (years) [mean (SD)] | 56.9 (20.8) | 60.3 (19.7) | <0.001 |
Charlson Index [mean (SD)] | 0.7 (0.9) | 0.9 (1.0) | <0.001 |
Comorbidities [% (n)] | |||
Diabetes mellitus | 10.3% (n = 3747) | 10.0% (n = 3166) | 0.138 |
Obesity | 4.9% (n = 1768) | 4.9% (1545) | 1 |
Chronic respiratory diseases | 12.6% (n = 4598) | 11.9% (3777) | 0.002 |
Arterial hypertension | 19.4% (n = 7046) | 21.5% (6834) | <0.001 |
Ischemic heart diseases | 5.7% (n = 2057) | 5.7% (1814) | 0.797 |
Cancer | 14.6% (n = 5305) | 22.5% (7160) | <0.001 |
HIV | 1.9% (n = 685) | 0.5% (164) | <0.001 |
Hepatic diseases | 4.7% (n = 1695) | 3.4% (1082) | <0.001 |
Renal diseases | 10.6% (n = 3874) | 19.2% (6089) | <0.001 |
Systemic candidiasis | 1.0% (n = 361) | 1.6% (492) | <0.001 |
General candidiasis | 6.9% (n = 2527) | 7.9% (2517) | <0.001 |
Aspergillosis | 1.1% (n = 401) | 0.6% (202) | <0.001 |
Influenza | 2.3% (n = 819) | 0.6% (179) | <0.001 |
Sites of infection [% (n)] | |||
Central nervous system | 1.2% (n = 439) | 1.0% (314) | 0.006 |
Circulatory | 0.6% (n = 210) | 0.9% (294) | <0.001 |
Digestive | 9.9% (n = 3618) | 18.1% (5753) | <0.001 |
Genitourinary | 9.0% (n = 3284) | 8.6% (2732) | 0.045 |
Respiratory | 46.0% (n = 16,737) | 37.4% (11,897) | <0.001 |
Skin | 2.1% (747) | 3.5% (1127) | <0.001 |
Others | 14.6% (5296) | 25.2% (8026) | <0.001 |
Outcomes | |||
LoS (days) [mean (SD)] | 29.7 (36.02) | 42.7 (45.83) | <0.001 |
Death [% (n)] | 49.9% (18,168) | 47.0% (14,943) | <0.001 |
Sepsis [% (n)] | 66.2% (24,091) | 66.0% (21,006) | 0.622 |
ECMO [% (n)] | 0.2% (63) | 0.4% (116) | <0.001 |
Medical ARDS (n = 16,198) | Postoperative ARDS (n = 8781) | p-Value | |
---|---|---|---|
Characteristics | |||
Sex (male) [% (n)] | 68.8% (n = 11,138) | 67.5% (n = 5926) | 0.048 |
Age (years) [mean (SD)] | 60.4 (14.26) | 60.0 (15.86) | 0.061 |
Charlson Index [mean (SD)] | 1.0 (1.4) | 1.3 (1.8) | <0.001 |
Comorbidities [% (n)] | |||
Diabetes mellitus | 22.5% (n = 3649) | 18.3% (n = 1605) | <0.001 |
Obesity | 20.7% (n = 3354) | 15.0% (n = 1314) | <0.001 |
Chronic respiratory diseases | 13.8% (n = 2241) | 12.3% (n = 1082) | <0.001 |
Arterial hypertension | 35.5% (n = 5749) | 28.4% (n = 2490) | <0.001 |
Ischemic heart diseases | 1.4% (n = 226) | 2.8% (n = 248) | <0.001 |
Cancer | 6.8% (n = 1103) | 12.2% (n = 1075) | <0.001 |
HIV | 0.9% (n = 146) | 0.5% (n = 42) | <0.001 |
Hepatic diseases | 9.5% (n = 1530) | 9.4% (n = 828) | 0.945 |
Renal diseases | 6.7% (n = 1077) | 6.8% (n = 595) | 0.721 |
Systemic candidiasis | 1.4% (n = 229) | 2.7% (n = 239) | <0.001 |
General candidiasis | 12.1% (n = 1952) | 15.4% (n = 1350) | <0.001 |
Aspergillosis | 4.3% (n = 695) | 3.7% (n = 327) | 0.033 |
Influenza | 3.2% (n = 517) | 2.5% (n = 215) | <0.001 |
Sites of infection [% (n)] | |||
Central nervous system | 0.2% (n = 29) | 0.4% (n = 37) | <0.001 |
Circulatory | 0.6% (n = 93) | 1.1% (n = 97) | <0.001 |
Digestive | 1.6% (n = 253) | 12.3% (n = 1080) | <0.001 |
Genitourinary | 9.0% (n = 3284) | 8.6% (n = 2732) | 0.045 |
Respiratory | 85.3% (n = 13,822) | 65.8% (n = 5775) | <0.001 |
Skin | 1.0% (n = 166) | 3.1% (n = 269) | <0.001 |
Others | 15.3% (n = 2485) | 22.0% (n = 1934) | <0.001 |
Outcomes | |||
LoS (days) [mean (SD)] | 33.3 (29.0) | 45.6 (39.7) | <0.001 |
Death [% (n)] | 43.2% (n = 7004) | 42.7% (n = 3749) | 0.413 |
Sepsis [% (n)] | 48.9% (n = 7917) | 59.1% (n = 5186) | <0.001 |
ECMO [% (n)] | 2.2% (n = 350) | 3.8% (n = 335) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bardají-Carrillo, M.; López-Herrero, R.; Espinoza-Fernández, M.S.; Alonso-Villalobos, L.; Cobo-Zubia, R.; Prieto-Utrera, R.; Arroyo-Hernantes, I.; Gómez-Sánchez, E.; Camporota, L.; Villar, J.; et al. Prevalence, Outcomes and Healthcare Costs of Postoperative ARDS Compared with Medical ARDS. J. Clin. Med. 2025, 14, 5125. https://doi.org/10.3390/jcm14145125
Bardají-Carrillo M, López-Herrero R, Espinoza-Fernández MS, Alonso-Villalobos L, Cobo-Zubia R, Prieto-Utrera R, Arroyo-Hernantes I, Gómez-Sánchez E, Camporota L, Villar J, et al. Prevalence, Outcomes and Healthcare Costs of Postoperative ARDS Compared with Medical ARDS. Journal of Clinical Medicine. 2025; 14(14):5125. https://doi.org/10.3390/jcm14145125
Chicago/Turabian StyleBardají-Carrillo, Miguel, Rocío López-Herrero, Mario S. Espinoza-Fernández, Lucía Alonso-Villalobos, Rosa Cobo-Zubia, Rosa Prieto-Utrera, Irene Arroyo-Hernantes, Esther Gómez-Sánchez, Luigi Camporota, Jesús Villar, and et al. 2025. "Prevalence, Outcomes and Healthcare Costs of Postoperative ARDS Compared with Medical ARDS" Journal of Clinical Medicine 14, no. 14: 5125. https://doi.org/10.3390/jcm14145125
APA StyleBardají-Carrillo, M., López-Herrero, R., Espinoza-Fernández, M. S., Alonso-Villalobos, L., Cobo-Zubia, R., Prieto-Utrera, R., Arroyo-Hernantes, I., Gómez-Sánchez, E., Camporota, L., Villar, J., & Tamayo, E. (2025). Prevalence, Outcomes and Healthcare Costs of Postoperative ARDS Compared with Medical ARDS. Journal of Clinical Medicine, 14(14), 5125. https://doi.org/10.3390/jcm14145125