Pharmacogenetic Implications for Antidepressant Therapy in Major Depression: A Systematic Review Covering 2019–2024
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Selection Criteria
2.3. Data Extraction
2.4. Level of Evidence and Risk of Bias
- Study Design: Randomized controlled trials (RCTs) were considered high quality; observational studies were deemed lower quality.
- Consistency: Quality increased when findings were consistent across studies.
- Precision: Higher weight was given to studies with narrow confidence intervals and large sample sizes.
- Risk of Bias: Studies employing randomization and blinding were rated higher.
- Directness: Evidence directly applicable to the research question was considered higher quality.
2.5. Subgroup Analysis
3. Results
3.1. Study Selection
3.2. Study Types, Quality and Risk of Bias
3.3. Participants
3.4. Antidepressant Treatments
3.5. Pharmacogenetic Determinations
3.5.1. CYP2C19
3.5.2. CYP2D6
3.5.3. SLC6A4
3.5.4. Combinatorial Pharmacogenetic Testing
3.5.5. Other Genetic Variants
- TSPYL1 (rs3828743): One study [42] found that this variant enhanced CYP2C19 expression, resulting in lower escitalopram plasma levels and poorer clinical outcomes.
- BDNF: The Val66Met polymorphism (rs6265), studied in the context of ketamine response [32], did not demonstrate a significant association, though other studies suggest it may impact neuroplasticity and SSRI outcomes.
- COMT: Variants in catechol-O-methyltransferase, such as rs4680 (Val158Met), may influence dopamine metabolism and treatment response to bupropion, with Val carriers responding better to higher doses [39].
- Rare variants: Whole-exome sequencing in one study [23] identified rare functional variants across 35 genes with significant associations to treatment remission (FDR < 0.01), highlighting the potential role of polygenic risk profiles.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Description |
AD | Antidepressants |
b1-AR | Beta-1 Adrenergic Receptor |
BDI | Beck Depression Inventory |
BNDF | Brain-Derived Neurotrophic Factor |
CES-D | Center for Epidemiologic Studies Depression Scale |
CGI | Clinical Global Impressions |
COMT | Catechol-O-Methyltransferase |
EAC | Randomized Controlled Trials (RCTs) |
GRS | Genetic Risk Score |
GWAS | Genome-Wide Association Study |
HAMD-17 | Hamilton Depression Rating Scale-17 |
HDRS-21 | Hamilton Depression Rating Scale-21 |
IM | Intermediate Metabolizer |
ISRS | Selective Serotonin Reuptake Inhibitors (SSRIs) |
MDD | Major Depressive Disorder |
MDE | Major Depressive Episode |
NM | Normal Metabolizers |
NDRI | Norepinephrine-Dopamine Reuptake Inhibitor |
OMS | World Health Organization (WHO) |
PM | Poor Metabolizers |
QIDS-C | Quick Inventory of Depressive Symptomatology |
SNP | Single Nucleotide Polymorphism |
SNRI | Serotonin-Norepinephrine Reuptake Inhibitor |
TCA | Tricyclic Antidepressants |
TLR | Toll-Like Receptor |
TSES | Toronto Side Effects Scale |
TSPYL | Testis-Specific Y-Encoded-Like Protein |
UM | Ultrarapid Metabolizers |
References
- World Health Organization (WHO). Depression [Internet]. 2023. Available online: https://www.who.int/es/news-room/fact-sheets/detail/depression (accessed on 15 May 2025).
- Korten, N.C.M.; Comijs, H.C.; Lamers, F.; Penninx, B.W.J.H. Early and late onset depression in young and middle aged adults: Differential symptomatology, characteristics and risk factors? J. Affect. Disord. 2012, 138, 259–267. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Zheng, K.; Ablitip, A.; Wang, D.; Chen, C.; Liu, Y.; Chen, Y.; Ma, X. Life’s Essential 8 and Depression: A National Cross-Sectional Analysis in US Emerging Adults. J. Adolesc. Health 2025, 77, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Agudelo Baena, L.M.; Cordoba-Rojas, R.; Ferro, E.; Kanevsky, G.; Perocco, S. Treatment-Resistant Depression in Colombia: Results from a Longitudinal Analysis of the TRAL Study. Rev. Colomb. Psiquiatr. 2023, in press. [Google Scholar] [CrossRef]
- Servei Català de la Salut (CatSalut). Guidelines for the Harmonization of Pharmacological Treatment of Major Depression in Adults [Internet]; CatSalut: Barcelona, Spain, 2022; Available online: https://catsalut.gencat.cat/web/.content/minisite/catsalut/proveidors_professionals/medicaments_farmacia/harmonitzacio/pautes/depressio-major/pauta_depressio_major_PHFAPC.pdf (accessed on 15 May 2025).
- Shalimova, A.; Babasieva, V.; Chubarev, V.N.; Tarasov, V.V.; Schiöth, H.B.; Mwinyi, J. Therapy response prediction in major depressive disorder: Current and novel genomic markers influencing pharmacokinetics and pharmacodynamics. Pharmacogenomics 2021, 22, 485–503. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Pain, O.; Fabbri, C.; Wong, W.L.E.; Lo, C.W.H.; Ripke, S.; Cattaneo, A.; Souery, D.; Dernovsek, M.Z.; Henigsberg, N.; et al. Metabolic activity of CYP2C19 and CYP2D6 on antidepressant response from 13 clinical studies using genotype imputation: A meta-analysis. Transl. Psychiatry 2024, 14, 296. [Google Scholar] [CrossRef] [PubMed]
- Lorvellec, M.A.; Sipahimalani, G.; Lahutte, B.; Delacour, H.; Baldacci, A.; Saguin, E. Pharmacogenetics testing for poor response to antidepressants: A transnosographic case series. Front. Pharmacol. 2024, 15, 1440523. [Google Scholar] [CrossRef] [PubMed]
- Shiroma, P.R.; Drews, M.S.; Geske, J.R.; Mrazek, D.A. SLC6A4 polymorphisms and age of onset in late-life depression on treatment outcomes with citalopram: A Sequenced Treatment Alternatives to Relieve Depression (STAR*D) report. Am. J. Geriatr. Psychiatry 2014, 22, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Bousman, C.A.; Stevenson, J.M.; Ramsey, L.B.; Sangkuhl, K.; Hicks, J.K.; Strawn, J.R.; Singh, A.B.; Ruaño, G.; Mueller, D.J.; Tsermpini, E.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A Genotypes and Serotonin Reuptake Inhibitor Antidepressants. Clin. Pharmacol. Ther. 2023, 114, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Altar, C.A.; Carhart, J.M.; Allen, J.D.; Hall-Flavin, D.K.; Dechairo, B.M.; Winner, J.G. Clinical validity: Combinatorial pharmacogenomics predicts antidepressant responses and healthcare utilizations better than single gene phenotypes. Pharmacogenom. J. 2015, 15, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Aguayo-Albasini, J.L.; Flores-Pastor, B.; Soria-Aledo, V. Sistema GRADE: Clasificación de la calidad de la evidencia y graduación de la fuerza de la recomendación. Cir. Esp. 2014, 92, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality if Nonrandomized Studies in Meta-Analyses. 2014. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm (accessed on 5 July 2025).
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Kanders, S.H.; Pisanu, C.; Bandstein, M.; Jonsson, J.; Castelao, E.; Pistis, G.; Gholam-Rezaee, M.; Eap, C.B.; Preisig, M.; Schiöth, H.B.; et al. A pharmacogenetic risk score for the evaluation of major depression severity under treatment with antidepressants. Drug Dev. Res. 2020, 81, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, C.; Liu, Z.; Li, X.; Liu, M.; Wang, Y.; Zhang, K.; Sun, N. Association of the TLR4 gene with depressive symptoms and antidepressant efficacy in major depressive disorder. Neurosci. Lett. 2020, 736, 135292. [Google Scholar] [CrossRef] [PubMed]
- Firouzabadi, N.; Asadpour, R.; Zomorrodian, K. Association Study of the Beta-Adrenergic Receptor Genetic Variant Gly389Arg and Fluoxetine Response in Major Depression. Galen. Med. J. 2020, 9, e1781. [Google Scholar] [CrossRef] [PubMed]
- Zastrozhin, M.S.; Petukhov, A.E.; Pankratenko, T.Y.; Grishina, E.A.; Ryzhikova, K.A.; Skryabin, V.Y.; Sychev, D.A. Impact of Polymorphism of CYP2D6 on Equilibrium Concentration of Duloxetine in Patients Suffering from Major Depressive Disorder. Psychopharmacol. Bull. 2020, 50, 47–57. [Google Scholar] [PubMed]
- Bi, Y.; Ren, D.; Guo, Z.; Ma, G.; Xu, F.; Chen, Z.; An, L.; Zhang, N.; Ji, L.; Yuan, F.; et al. Influence and interaction of genetic, cognitive, neuroendocrine and personalistic markers to antidepressant response in Chinese patients with major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 104, 110036. [Google Scholar] [CrossRef] [PubMed]
- Zastrozhin, M.S.; Skryabin, V.Y.; Rwere, F.; Petukhov, A.E.; Pankratenko, E.P.; Pozdniakov, S.A.; Ivanchenko, V.A.; Noskov, V.V.; Zaytsev, I.A.; Vinokurova, N.V.; et al. Influence of CYP2C19*17 Genetic Polymorphism on the Steady-State Concentration of Escitalopram in Patients with Recurrent Depressive Disorder. Psychopharmacol. Bull. 2022, 52, 8–19. [Google Scholar] [PubMed]
- Simoons, M.; Mulder, H.; Appeldoorn, J.T.Y.; Risselada, A.J.; Schene, A.H.; van Schaik, R.H.N.; van Roon, E.N.; Ruhé, E.G. Modification of the association between paroxetine serum concentration and SERT-occupancy by ABCB1 (P-glycoprotein) polymorphisms in major depressive disorder. Psychiatr. Genet. 2020, 30, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Arcos-Burgos, M.; Liu, S.; Licinio, A.; Yu, C.; Chin, E.; Yao, W.D.; Lu, X.Y.; Bornstein, S.R.; Licinio, J. Rare Functional Variants Associated with Antidepressant Remission in Mexican-Americans: Short title: Antidepressant remission and pharmacogenetics in Mexican-Americans. J. Affect. Disord. 2021, 279, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Jarčušková, D.; Tkáč, I.; Hlaváčová, N.; Yaluri, A.S.; Kozárová, M.; Habalová, V.; Klimčáková, L.; Židzik, J.; Javorský, M.; Bednářová, A. Serotonin transporter 5-HTTLPR polymorphism and escitalopram treatment response in patients with major depressive disorder. BMC Psychiatry 2024, 24, 690. [Google Scholar] [CrossRef] [PubMed]
- Schiele, M.A.; Zwanzger, P.; Schwarte, K.; Arolt, V.; Baune, B.T.; Domschke, K. Serotonin Transporter Gene Promoter Hypomethylation as a Predictor of Antidepressant Treatment Response in Major Depression: A Replication Study. Int. J. Neuropsychopharmacol. 2021, 24, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Chappell, K.; Ait Tayeb, A.E.K.; Colle, R.; Bouligand, J.; El-Asmar, K.; Gressier, F.; Trabado, S.; David, D.J.; Feve, B.; Becquemont, L.; et al. The association of ARRB1 polymorphisms with response to antidepressant treatment in depressed patients. Front. Pharmacol. 2022, 13, 974570. [Google Scholar] [CrossRef] [PubMed]
- Chappell, K.; Colle, R.; Ait Tayeb, A.E.K.; Bouligand, J.; El-Asmar, K.; Deflesselle, E.; Fève, B.; Becquemont, L.; Corruble, E.; Verstuyft, C. The ERICH3 rs11580409 polymorphism is associated with 6-month antidepressant response in depressed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2022, 119, 110608. [Google Scholar] [CrossRef] [PubMed]
- Poinsignon, V.; Colle, R.; Asmar, K.E.; Mendez-David, I.; David, D.J.; Ait Tayeb, A.E.K.; Chappell, K.; Gressier, F.; Herrero, H.; Fève, B.; et al. The GG genotype of the serotonin 4 receptor genetic polymorphism, rs1345697, is associated with lower remission rates after antidepressant treatment: Findings from the METADAP cohort. J. Affect. Disord. 2022, 299, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Zastrozhin, M.S.; Smirnov, V.V.; Petukhov, A.E.; Torrado, M.V.; Pankratenko, E.P.; Grishina; Ryzhikova; Skryabin, V.; Vlasovskih; Bryun; et al. The Influence of Concentration of Micro-RNA hsa-miR-370-3p and CYP2D6*4 on Equilibrium Concentration of Mirtazapine in Patients With Major Depressive Disorder. Psychopharmacol. Bull. 2020, 50, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Zastrozhin, M.S.; Skryabin, V.Y.; Petukhov, A.E.; Torrado, M.V.; Pankratenko, E.P.; Zastrozhina, A.K.; Grishina, E.A.; Ryzhikova, K.A.; Shipitsyn, V.V.; Bryun, E.A.; et al. Effects of CYP2C19 genetic polymorphism on the steady-state concentration of citalopram in patients with major depressive disorder. Pharmacogenom. J. 2021, 21, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Squassina, A.; Paribello, P.; Pinna, M.; Contu, M.; Pisanu, C.; Congiu, D.; Severino, G.; Meloni, A.; Carta, A.; Conversano, C.; et al. A naturalistic retrospective evaluation of the utility of pharmacogenetic testing based on CYP2D6 e CYP2C19 profiling in antidepressants treatment in a cohort of patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2025, 137, 111292. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, N.B.; Chen-Li, D.; Di Vincenzo, J.D.; Juneja, A.; Pinder, B.D.; McIntyre, R.S.; Rosenblat, J.D. Brain-derived neurotrophic factor Val66Met and CYP2B6 polymorphisms as predictors for ketamine effectiveness in patients with treatment-resistant depression. J. Psychopharmacol. 2024, 38, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Shelton, R.C.; Parikh, S.V.; Law, R.A.; Rothschild, A.J.; Thase, M.E.; Dunlop, B.W.; DeBattista, C.; Conway, C.R.; Forester, B.P.; Macaluso, M.; et al. Combinatorial Pharmacogenomic Algorithm is Predictive of Citalopram and Escitalopram Metabolism in Patients with Major Depressive Disorder. Psychiatry Res. 2020, 290, 113017. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.V.; Law, R.A.; Hain, D.T.; Rothschild, A.J.; Thase, M.E.; Dunlop, B.W.; DeBattista, C.; Forester, B.P.; Shelton, R.C.; Macaluso, M.; et al. Combinatorial pharmacogenomic algorithm is predictive of sertraline metabolism in patients with major depressive disorder. Psychiatry Res. 2022, 308, 114354. [Google Scholar] [CrossRef] [PubMed]
- Joković, D.; Milosavljević, F.; Stojanović, Z.; Šupić, G.; Vojvodić, D.; Uzelac, B.; Jukić, M.M.; Ćurčin, A.P. CYP2C19 slow metabolizer phenotype is associated with lower antidepressant efficacy and tolerability. Psychiatry Res. 2022, 312, 114535. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.F.; Kuo, P.H.; Yu, Y.W.; Yang, A.C.; Lin, E.; Liu, Y.L.; Tsai, S.J. Gene-based association analysis suggests association of HTR2A with antidepressant treatment response in depressed patients. Front. Pharmacol. 2020, 11, 559601. [Google Scholar] [CrossRef] [PubMed]
- Jeleń, A.; Świechowski, R.; Żebrowska-Nawrocka, M.; Sałagacka-Kubiak, A.; Szmajda-Krygier, D.; Gałecki, P.; Balcerczak, E. Importance of selected ABCB1 SNPs for the level of severity of depressive symptoms and effectiveness of recurrent depressive disorder therapy. Gene 2023, 851, 147021. [Google Scholar] [CrossRef] [PubMed]
- Calabro, M.; Fabbri, C.; Kasper, S.; Zohar, J.; Souery, D.; Montgomery, S.; Albani, D.; Forloni, G.; Ferentinos, P.; Rujescu, D.; et al. Metabolizing status of CYP2C19 in response and side effects to medications for depression: Results from a naturalistic study. Eur. Neuropsychopharmacol. 2022, 56, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Fawver, J.; Flanagan, M.; Smith, T.; Drouin, M.; Mirro, M. The association of COMT genotype with buproprion treatment response in the treatment of major depressive disorder. Brain Behav. 2020, 10, e01692. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.L.E.; Fabbri, C.; Laplace, B.; Li, D.; van Westrhenen, R.; Lewis, C.M.; Dawe, G.S.; Young, A.H. The Effects of CYP2C19 Genotype on Proxies of SSRI Antidepressant Response in the UK Biobank. Pharmaceuticals 2023, 16, 1277. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lim, S.W.; Myung, W.; Park, I.; Jang, H.J.; Kim, S.; Lee, M.-S.; Chang, H.S.; Yum, D.; Suh, Y.-L.; et al. Whole-genome sequencing reveals KRTAP1-1 as a novel genetic variant associated with antidepressant treatment outcomes. Sci. Rep. 2021, 11, 4552. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Eugene, A.R.; Liu, D.; Zhang, L.; Neavin, D.; Biernacka, J.M.; Yu, J.; Weinshilboum, R.M.; Wang, L. Dual Roles for the TSPYL Family in Mediating Serotonin Transport and the Metabolism of Selective Serotonin Reuptake Inhibitors in Patients with Major Depressive Disorder. Clin. Pharmacol. Ther. 2020, 107, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Mahajna, M.; Abu Fanne, R.; Berkovitch, M.; Tannous, E.; Vinker, S.; Green, I.; Matok, I. Effect of CYP2C19 Pharmacogenetic Testing on Predicting Citalopram and Escitalopram Tolerability and Efficacy: A Retrospective, Longitudinal Cohort Study. Biomedicines 2023, 11, 3245. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.H.; Kao, C.F.; Tsai, S.J.; Li, C.T.; Lin, W.C.; Hong, C.J.; Bai, Y.-M.; Tu, P.-C.; Su, T.-P. Treatment response to low-dose ketamine infusion for treatment-resistant depression: A gene-based genome-wide association study. Genomics 2021, 113, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, C.; Serretti, A. Genetics of Treatment Outcomes in Major Depressive Disorder: Present and Future. Clin. Psychopharmacol. Neurosci. 2020, 18, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jukic, M.; Milosavljević, F.; Molden, E.; Ingelman-Sundberg, M. Pharmacogenomics in treatment of depression and psychosis: An update. Trends Pharmacol. Sci. 2022, 43, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.K.; Bishop, J.R.; Sangkuhl, K.; Müller, D.J.; Ji, Y.; Leckband, S.G.; Leeder, J.S.; Graham, R.L.; Chiulli, D.L.; Llerena, A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin. Pharmacol. Ther. 2015, 98, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.K.; Sangkuhl, K.; Swen, J.J.; Ellingrod, V.L.; Müller, D.J.; Shimoda, K.; Bishop, J.R.; Kharasch, E.D.; Skaar, T.C.; Gaedigk, A.; et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin. Pharmacol. Ther. 2017, 102, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Shiroma, P.R.; Geda, Y.E.; Mrazek, D.A. Pharmacogenomic implications of variants of monoaminergic-related genes in geriatric psychiatry. Pharmacogenomics 2010, 11, 1305–1330. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.C.; Stanton, J.D.; Bharthi, K.; Maruf, A.A.; Müller, D.J.; Bousman, C.A. Pharmacogenomic Testing and Depressive Symptom Remission: A Systematic Review and Meta-Analysis of Prospective, Controlled Clinical Trials. Clin. Pharmacol. Ther. 2022, 112, 1303–1317. [Google Scholar] [CrossRef] [PubMed]
Database | Search Terms | Results |
---|---|---|
PubMed | ((pharmacogenetics [Medical Subject Headings (MeSH) Terms] OR pharmacogenomics OR “genetic variability”) AND (antidepressives [MeSH Terms] OR antidepressants OR “selective serotonin reuptake inhibitors” OR SSRIs OR “tricyclic antidepressants”)) AND (depressive disorder [MeSH Terms] OR depression OR “major depressive disorder” OR “late-life depression”) | 305 |
Scifinder | (pharmacogenetics OR pharmacogenomics OR “genetic variability”) AND (antidepressives OR antidepressants OR “selective serotonin reuptake inhibitors” OR SSRIs OR “tricyclic antidepressants”) AND (depressive disorder OR depression OR “major depressive disorder” OR “late-life depression”) | 285 |
Cochrane | (pharmacogenetics OR pharmacogenomics OR “genetic variability”) AND (antidepressives OR antidepressants OR “selective serotonin reuptake inhibitors” OR SSRIs OR “tricyclic antidepressants”) AND (depressive disorder OR depression OR “major depressive disorder” OR “late-life depression”) | 203 |
Inclusion Criteria | Exclusion Criteria |
---|---|
Adults diagnosed with late-life depression (>60 years) or major depressive disorder | Patients with other psychiatric or medical conditions |
Observational, prospective, or clinical trial designs | Meta-analyses, systematic reviews, case reports, protocols, guidelines, and other non-original research |
Use of antidepressant pharmacotherapy | Use of non-pharmacological treatments |
Assessment of pharmacogenetic influence on treatment response, pharmacokinetics and/or safety | No evaluation of pharmacogenetic impact on clinical outcomes |
Presence of pharmacogenetic data (genotypes or polymorphisms) | Absence of pharmacogenetic data |
Phenotype | Genetic Variant (Polymorphism/SNP/Change) | Genotype/Allele |
---|---|---|
Ultrarapid metabolizer | CYP2C19*17—c.-806C>T (rs12248560) | *17/*17 or *1/*17 |
Normal (extensive) metabolizer | CYP2C19*1—wild-type allele | *1/*1 |
Intermediate metabolizer | CYP2C19*2—c.681G>A (rs4244285) | *1/*2 |
CYP2C19*3—c.636G>A (rs4986893) | *1/*3 | |
Poor metabolizer | CYP2C19*2—c.681G>A (rs4244285) | *2/*2 |
Phenotype | Genetic Variant (Polymorphism/SNP/Change) | Genotype/Allele |
---|---|---|
Better treatment response | CYP2D6*1 functional allel | G/G |
Poor treatment response | CYP2D6*4—rs3892097 (1846G>A) | G/A, A/A |
Phenotype | Genetic Variant (Polymorphism/SNP/Change) | Genotype/Allele |
---|---|---|
Poorer treatment response | 5-HTTLPR (44-bp insertion/deletion in promoter region) | L/S or S/S |
Better treatment response | 5-HTTLPR (44-bp insertion/deletion in promoter region) | L/L |
Lower treatment efficacy | rs6354 (C>T) in SLC6A4 | C allele |
Lower treatment efficacy | rs12150214 (G>T) in SLC6A4 | G allele |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fornaguera, A.; Miarons, M. Pharmacogenetic Implications for Antidepressant Therapy in Major Depression: A Systematic Review Covering 2019–2024. J. Clin. Med. 2025, 14, 5102. https://doi.org/10.3390/jcm14145102
Fornaguera A, Miarons M. Pharmacogenetic Implications for Antidepressant Therapy in Major Depression: A Systematic Review Covering 2019–2024. Journal of Clinical Medicine. 2025; 14(14):5102. https://doi.org/10.3390/jcm14145102
Chicago/Turabian StyleFornaguera, Anna, and Marta Miarons. 2025. "Pharmacogenetic Implications for Antidepressant Therapy in Major Depression: A Systematic Review Covering 2019–2024" Journal of Clinical Medicine 14, no. 14: 5102. https://doi.org/10.3390/jcm14145102
APA StyleFornaguera, A., & Miarons, M. (2025). Pharmacogenetic Implications for Antidepressant Therapy in Major Depression: A Systematic Review Covering 2019–2024. Journal of Clinical Medicine, 14(14), 5102. https://doi.org/10.3390/jcm14145102