Hemostasis Laboratory Diagnostics in Newborns
Abstract
1. Hemostatic System Evolution—Trend of Procoagulants and Anticoagulants
1.1. Introduction: “Developmental Hemostasis”
1.2. Fetal Hemostasis
1.2.1. Fetal Primary Hemostasis
1.2.2. Fetal Coagulation System
1.2.3. Fetal Fibrinolysis
1.3. Neonatal Hemostasis
1.3.1. Neonatal Primary Hemostasis
1.3.2. Neonatal Coagulation
1.3.3. Neonatal Fibrinolysis
1.4. Hemostasis of the Healthy Preterm Neonate
2. Preanalytical Variables: Role of Hematocrit
3. The Dynamic Hemostatic System of the Newborn and Its Effect on Laboratory Tests
4. Sensitivity of Reagents to Absolute and Relative Factor Deficiencies
5. Viscoelastic Coagulation Test in Newborns
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VWF | Von Willebrand Factor |
WHO | World Health Organization |
GA | Gestational Age |
HCT | Hematocrit |
PT | Prothrombin Time |
APTT | partial thromboplastin time |
RBCs | Red Blood Cells |
PB | Peripheral Blood |
CB | Umbilical Cord Blood |
CLSI | Clinical and Laboratory Standards Institute |
ISTH | International Society on Thrombosis and Hemostasis |
VCT | Viscoelastic Coagulation Tests |
TEG | Thromboelastography |
ROTEM | Rotational Thromboelastometry |
CT | Clotting Time |
CFT | Clot Formation Time |
NICU | Neonatal Intensive Care Unit |
References
- Saracco, P.; Rivers, R.P.A. Pathophysiology of Coagulation and Deficiencies of Coagulation Factors in Newborn. In Neonatology; Springer International Publishing: Cham, Switzerland, 2018; pp. 1431–1453. [Google Scholar]
- Andrew, M.; Paes, B.; Milner, R.; Johnston, M.; Mitchell, L.; Tollefsen, D.M.; Powers, P. Development of the human coagulation system in the full-term infant. Blood 1987, 70, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Andrew, M.; Paes, B.; Milner, R.; Johnston, M.; Mitchell, L.; Tollefsen, D.M.; Castle, V.; Powers, P. Development of the human coagulation system in the healthy premature infant. Blood 1988, 72, 1651–1657. [Google Scholar] [CrossRef] [PubMed]
- Toulon, P. Developmental hemostasis: Laboratory and clinical implications. Int. J. Lab. Hematol. 2016, 38 (Suppl. S1), 66–77. [Google Scholar] [CrossRef] [PubMed]
- Manco-Johnson, M.J. Development of hemostasis in the fetus. Thromb. Res. 2005, 115 (Suppl. S1), 55–63. [Google Scholar] [PubMed]
- Manco-Johnson, M.J. Development of hemostasis in the fetus and neonate. Thromb. Res. 2007, 119, S4–S5. [Google Scholar] [CrossRef]
- Warren, B.B.; Moyer, G.C.; Manco-Johnson, M.J. Hemostasis in the Pregnant Woman, the Placenta, the Fetus, and the Newborn Infant. Semin. Thromb. Hemost. 2023, 49, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Monagle, P.; Massicotte, P. Developmental hemostasis: Secondary hemostasis. Semin. Fetal. Neonatal. Med. 2011, 16, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Kuhle, S.; Male, C.; Mitchell, L. Developmental Hemostasis: Pro- and Anticoagulant Systems during Childhood. Semin. Thromb. Hemost. 2003, 29, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Van Den Helm, S.; McCafferty, C.; Letunica, N.; Chau, K.Y.; Monagle, P.; Ignjatovic, V. Platelet function in neonates and children. Thromb. Res. 2023, 231, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Stokhuijzen, E.; Koornneef, J.M.; Nota, B.; van den Eshof, B.L.; van Alphen, F.P.J.; van den Biggelaar, M.; van der Zwaan, C.; Kuijk, C.; Mertens, K.; Fijnvandraat, K.; et al. Differences between Platelets Derived from Neonatal Cord Blood and Adult Peripheral Blood Assessed by Mass Spectrometry. J. Proteome. Res. 2017, 16, 3567–3575. [Google Scholar] [CrossRef] [PubMed]
- Grevsen, A.K.; Hviid, C.V.B.; Hansen, A.K.; Hvas, A.M. Platelet count and function in umbilical cord blood versus peripheral blood in term neonates. Platelets 2021, 32, 626–632. [Google Scholar] [CrossRef] [PubMed]
- WHO Recommendations for Care of the Preterm or Low-Birth-Weight Infant. Available online: https://www.who.int/publications/i/item/9789240058262 (accessed on 29 April 2025).
- Poralla, C.; Traut, C.; Hertfelder, H.J.; Oldenburg, J.; Bartmann, P.; Heep, A. The coagulation system of extremely preterm infants: Influence of perinatal risk factors on coagulation. J. Perinatol. 2012, 32, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Hochart, A.; Nuytten, A.; Pierache, A.; Bauters, A.; Rauch, A.; Wibaut, B.; Susen, S.; Goudemand, J. Hemostatic profile of infants with spontaneous prematurity: Can we predict intraventricular hemorrhage development? Ital. J. Pediatr. 2019, 45, 113. [Google Scholar] [CrossRef] [PubMed]
- Kitchen, S.; Adcock, D.M.; Dauer, R.; Kristoffersen, A.-H.; Lippi, G.; Mackie, I.; Marlar, R.A.; Nair, S. International Council for Standardisation in Haematology (ICSH) recommendations for collection of blood samples for coagulation testing. Int. J. Lab. Hematol. 2021, 43, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Marlar, R.A.; Potts, R.M.; Marlar, A.A. Effect on routine and special coagulation testing values of citrate anticoagulant adjustment in patients with high hematocrit values. Am. J. Clin. Pathol. 2006, 126, 400–405. [Google Scholar] [CrossRef] [PubMed]
- CLSI H21-A5—Collection, Transport, and Processing of Blood Specimens for Testing Plasma-Based Coagulation Assays and Molecular Hemostasis Assays; Approved Guideline-Fifth Edition. Available online: https://webstore.ansi.org/standards/clsi/clsih21a5?srsltid=AfmBOoqKconVXAchwBNfs7V5zdQM6_AyhicoI0u0L0KJ88tpb0J0mpYN (accessed on 2 November 2024).
- Siegel, J.E.; Swami, V.K.; Glenn, P.; Peterson, P. Effect (or lack of it) of severe anemia on PT and APTT results. Am. J. Clin. Pathol. 1998, 110, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Jaffray, J.; Young, G. Developmental hemostasis: Clinical implications from the fetus to the adolescent. Pediatr. Clin. North. Am. 2013, 60, 1407–1417. [Google Scholar] [CrossRef] [PubMed]
- Ignjatovic, V.; Ilhan, A.; Monagle, P. Evidence for age-related differences in human fibrinogen. Blood Coagul. Fibrinolysis 2011, 22, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Franchini, M.; Montagnana, M.; Guidi, G.C. Coagulation testing in pediatric patients: The young are not just miniature adults. Semin. Thromb. Hemost. 2007, 33, 816–820. [Google Scholar] [CrossRef] [PubMed]
- Monagle, P.; Barnes, C.; Ignjatovic, V.; Furmedge, J.; Newall, F.; Chan, A.; De Rosa, L.; Hamilton, S.; Ragg, P.; Robinson, S.; et al. Developmental haemostasis. Impact for clinical haemostasis laboratories. Thromb. Haemost. 2006, 95, 362–372. [Google Scholar] [PubMed]
- Toulon, P.; Berruyer, M.; Brionne-François, M.; Grand, F.; Lasne, D.; Telion, C.; Arcizet, J.; Giacomello, R.; De Pooter, N. Age dependency for coagulation parameters in paediatric populations. Results of a multicentre study aimed at defining the age-specific reference ranges. Thromb. Haemost. 2016, 116, 9–16. [Google Scholar] [PubMed]
- Attard, C.; van der Straaten, T.; Karlaftis, V.; Monagle, P.; Ignjatovic, V. Developmental hemostasis: Age- specific differences in the levels of hemostatic proteins. J. Thromb. Haemost. 2013, 11, 1850–1854. [Google Scholar] [CrossRef] [PubMed]
- Appel, I.M.; Grimminck, B.; Geerts, J.; Stigter, R.; Cnossen, M.H.; Beishuizen, A. Age dependency of coagulation parameters during childhood and puberty. J. Thromb. Haemost. 2012, 10, 2254–2263. [Google Scholar] [CrossRef] [PubMed]
- Monagle, P.; Ignjatovic, V.; Savoia, H. Hemostasis in neonates and children: Pitfalls and dilemmas. Blood Rev. 2010, 2, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Reverdiau-Moalic, P.; Delahousse, B.; Body, G.; Bardos, P.; Leroy, J.; Gruel, Y. Evolution of blood coagulation activators and inhibitors in the healthy human fetus. Blood 1996, 88, 900–906. [Google Scholar] [CrossRef] [PubMed]
- Ignjatovic, V.; Kenet, G.; Monagle, P. Perinatal and Paediatric Haemostasis Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Developmental hemostasis: Recommendations for laboratories reporting pediatric samples. J. Thromb. Haemost. 2012, 10, 298–300. [Google Scholar] [CrossRef] [PubMed]
- Di Felice, G.; Vidali, M.; Parisi, G.; Pezzi, S.; Di Pede, A.; Deidda, G.; D’Agostini, M.; Carletti, M.; Ceccarelli, S.; Porzio, O. Reference Intervals for Coagulation Parameters in Developmental Hemostasis from Infancy to Adolescence. Diagnostics 2022, 12, 2552. [Google Scholar] [CrossRef] [PubMed]
- Sokou, R.; Parastatidou, S.; Konstantinidi, A.; Tsantes, A.G.; Iacovidou, N.; Piovani, D.; Bonovas, S.; Tsantes, A.E. Contemporary tools for evaluation of hemostasis in neonates. Where are we and where are we headed? Blood Rev. 2024, 64, 101157. [Google Scholar] [CrossRef] [PubMed]
- Toulon, P.; Eloit, Y.; Smahi, M.; Sigaud, C.; Jambou, D.; Fischer, F.; Appert-Flory, A. In vitro sensitivity of different activated partial thromboplastin time reagents to mild clotting factor deficiencies. Int. J. Lab. Hematol. 2016, 38, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Marlar, R.A.; Strandberg, K.; Shima, M.; Adcock, D.M. Clinical utility and impact of the use of the chromogenic vs one-stage factor activity assays in haemophilia A and B. Eur. J. Haematol. 2020, 104, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Wikkelsø, A.; Wetterslev, J.; Møller, A.M.; Afshari, A. Thromboelastography (TEG) or thromboelastometry (ROTEM) to monitor haemostatic treatment versus usual care in adults or children with bleeding. Cochrane Database Syst. Rev. 2016, 2016, CD007871. [Google Scholar] [CrossRef] [PubMed]
- Theodoraki, M.; Sokou, R.; Valsami, S.; Iliodromiti, Z.; Pouliakis, A.; Parastatidou, S.; Karavana, G.; Ioakeimidis, G.; Georgiadou, P.; Iacovidou, N.; et al. Reference Values of Thrombolastometry Parameters in Healthy Term Neonates. Children 2020, 7, 259. [Google Scholar] [CrossRef] [PubMed]
- Westbury, S.K.; Lee, K.; Reilly-Stitt, C.; Tulloh, R.; Mumford, A.D. High haematocrit in cyanotic congenital heart disease affects how fibrinogen activity is determined by rotational thromboelastometry. Thromb Res. 2013, 132, e145–e151. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, Z.C.; Düzenli Kar, Y.; Gündüz, E.; Turhan, A.B.; Bör, Ö. Evaluation of hypercoagulability with rotational thromboelastometry in children with iron deficiency anemia. Hematology 2018, 23, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Amelio, G.S.; Raffaeli, G.; Amodeo, I.; Gulden, S.; Cortesi, V.; Manzoni, F.; Pesenti, N.; Ghirardello, S.; Mosca, F.; Cavallaro, G. Hemostatic Evaluation With Viscoelastic Coagulation Monitor: A Nicu Experience. Front. Pediatr. 2022, 10, 910646. [Google Scholar] [CrossRef] [PubMed]
- Raffaeli, G.; Tripodi, A.; Manzoni, F.; Scalambrino, E.; Pesenti, N.; Amodeo, I.; Cavallaro, G.; Villamor, E.; Peyvandi, F.; Mosca, F.; et al. Is placental blood a reliable source for the evaluation of neonatal hemostasis at birth? Transfusion 2020, 60, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Sokou, R.; Foudoulaki-Paparizos, L.; Lytras, T.; Konstantinidi, A.; Theodoraki, M.; Lambadaridis, I.; Gounaris, A.; Valsami, S.; Politou, M.; Gialeraki, A.; et al. Reference ranges of thromboelastometry in healthy full-term and pre-term neonates. Clin. Chem. Lab. Med. 2017, 55, 1592–1597. [Google Scholar] [CrossRef] [PubMed]
- Oswald, E.; Stalzer, B.; Heitz, E.; Weiss, M.; Schmugge, M.; Strasak, A.; Innerhofer, P.; Haas, T. Thromboelastometry (ROTEM®) in children: Age-related reference ranges and correlations with standard coagulation tests. Br. J. Anaesth. 2010, 105, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, F.; Raymo, L.; Bronzoni, V.C.; Tomaselli, A.; Ghirardello, S.; Fumagalli, M.; Cavallaro, G.; Raffaeli, G. The value of thromboelastography to neonatology. Semin. Fetal Neonatal Med. 2025, 30, 101610. [Google Scholar] [CrossRef] [PubMed]
- Raffaeli, G.; Pesenti, N.; Cavallaro, G.; Cortesi, V.; Manzoni, F.; Amelio, G.S.; Gulden, S.; Napolitano, L.; Macchini, F.; Mosca, F.; et al. Optimizing fresh-frozen plasma transfusion in surgical neonates through thromboelastography: A quality improvement study. Eur. J. Pediatr. 2022, 181, 2173–2182. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.; Al, M.; Westwood, M.; Ramos, I.C.; Ryder, S.; Armstrong, N.; Misso, K.; Ross, J.; Severens, J.; Kleijnen, J. Viscoelastic point-of-care testing to assist with the diagnosis, management and monitoring of haemostasis: A systematic review and cost-effectiveness analysis. Health Technol. Assess. (Rockv.) 2015, 19, 1–228. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, F.; Raffaeli, G.; Cortesi, V.; Amelio, G.S.; Amodeo, I.; Gulden, S.; Cervellini, G.; Tomaselli, A.; Colombo, M.; Artoni, A.; et al. Viscoelastic coagulation testing in Neonatal Intensive Care Units: Advantages and pitfalls in clinical practice. Blood Transfus. 2023, 21, 538–548. [Google Scholar] [PubMed]
- Katsaras, G.Ν.; Sokou, R.; Tsantes, A.G.; Piovani, D.; Bonovas, S.; Konstantinidi, A.; Ioakeimidis, G.; Parastatidou, S.; Gialamprinou, D.; Makrogianni, A.; et al. The use of thromboelastography (TEG) and rotational thromboelastometry (ROTEM) in neonates: A systematic review. Eur. J. Pediatr. 2021, 180, 3455–3470. [Google Scholar] [CrossRef] [PubMed]
- Cannata, G.; Mariotti Zani, E.; Argentiero, A.; Caminiti, C.; Perrone, S.; Esposito, S. TEG® and ROTEM® Traces: Clinical Applications of Viscoelastic Coagulation Monitoring in Neonatal Intensive Care Unit. Diagnostics 2021, 11, 1642. [Google Scholar] [CrossRef] [PubMed]
Hemostasis Phase | Component | Time of Appearance in Fetal Period | Neonatal Period | Normalization | Effect on Neonatal Hemostasis |
---|---|---|---|---|---|
Primary hemostasis | Platelet | 11 weeks; normal expression of surface receptors | Reduced activity | 1 year | Enhanced primary hemostasis |
VWF | 4 weeks; increased activity with increased ultra-large multimers | Increased activity with increased ultra-large and high-molecular-weight multimers | 3 months | ||
Coagulation | FII, FVII, FIX, FX | 10–11 weeks; 10–20% of adult levels at midge station | Decreased (40–60% of adult levels at birth) | 9–12 months | Decreased coagulation activity |
FXI, FXII, PK, HMWK | 10–11 weeks | Decreased | 6 months | ||
FVIII | 4–8 weeks | Normal or increased | 1 month | ||
FV | 10–11 weeks | Normal or slightly decreased | 1 year | ||
Fibrinogen | 4–8 weeks | Normal or slightly decreased | 1 year | ||
Factor XIII | 10–11 weeks | Normal | / | ||
Antithrombin | 10–11 weeks | Decreased (50% of adult levels at birth) | 3 months | Decreased coagulation inhibition | |
Protein C | 10–11 weeks | Decreased (50% of adult levels at birth) | 13–14 years | ||
Protein S | 10–11 weeks | Decreased (30–40% of adult levels at birth) | 3 months | ||
Fibrinolysis | Plasminogen | 10–11 weeks | Decreased (50% of adult levels at birth) | 6 months | Increased fibrinolysis |
tPA | 10–11 weeks | Increased | 1 week |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorio, C.; Molinari, A.C.; Martini, T.; Ferretti, A.; Albrici, G.; Carracchia, G.; Ierardi, A.; Leotta, M.; Portesi, N.; Sacco, M.; et al. Hemostasis Laboratory Diagnostics in Newborns. J. Clin. Med. 2025, 14, 5068. https://doi.org/10.3390/jcm14145068
Gorio C, Molinari AC, Martini T, Ferretti A, Albrici G, Carracchia G, Ierardi A, Leotta M, Portesi N, Sacco M, et al. Hemostasis Laboratory Diagnostics in Newborns. Journal of Clinical Medicine. 2025; 14(14):5068. https://doi.org/10.3390/jcm14145068
Chicago/Turabian StyleGorio, Chiara, Angelo Claudio Molinari, Tiziano Martini, Antonietta Ferretti, Giulia Albrici, Giulia Carracchia, Antonella Ierardi, Marzia Leotta, Nicola Portesi, Monica Sacco, and et al. 2025. "Hemostasis Laboratory Diagnostics in Newborns" Journal of Clinical Medicine 14, no. 14: 5068. https://doi.org/10.3390/jcm14145068
APA StyleGorio, C., Molinari, A. C., Martini, T., Ferretti, A., Albrici, G., Carracchia, G., Ierardi, A., Leotta, M., Portesi, N., Sacco, M., Strangio, A., Mancuso, M. E., & Santoro, R. C., on behalf of AICE (Associazione Italiana Centri Emofilia). (2025). Hemostasis Laboratory Diagnostics in Newborns. Journal of Clinical Medicine, 14(14), 5068. https://doi.org/10.3390/jcm14145068