Soluble Urokinase Plasminogen Activator Receptor (suPAR) Plasma Concentration Is Reduced Using Minimized Extracorporeal Circulation: Results of a Secondary Analysis of a Prospective Observational Study
Abstract
1. Background
2. Methods
2.1. Study Design
2.2. Study Endpoints and Definition of Outcome Parameters
2.3. Patient Recruitment
2.4. Management of Cardiopulmonary Bypass
2.5. Sample Processing
2.6. Quantification of suPAR
2.7. Statistical Analysis
3. Results
3.1. Study Cohort
3.2. Primary Endpoint Analysis
3.3. Secondary Endpoint Analysis
3.3.1. Acute Kidney Injury
3.3.2. Postoperative Delirium
3.3.3. Infectious Complications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gygax, E.; Kaeser, H.; Stalder, M.; Gahl, B.; Rieben, R.; Carrel, T.; Erdoes, G. Type II Minimal-Invasive Extracorporeal Circuit for Aortic Valve Replacement: A Randomized Controlled Trial. Artif. Organs 2018, 42, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, M.; Baryshnikova, E. Inflammation and coagulation following minimally invasive extracorporeal circulation technologies. J. Thorac. Dis. 2019, 11, S1480–S1488. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadis, K.; Murkin, J.; Antonitsis, P.; Bauer, A.; Ranucci, M.; Gygax, E.; Schaarschmidt, J.; Fromes, Y.; Philipp, A.; Eberle, B.; et al. Use of minimal invasive extracorporeal circulation in cardiac surgery: Principles, definitions and potential benefits. A position paper from the Minimal invasive Extra-Corporeal Technologies international Society (MiECTiS). Interact. Cardiovasc. Thorac. Surg. 2016, 22, 647–662. [Google Scholar] [CrossRef] [PubMed]
- Angelini, G.D.; Reeves, B.C.; Evans, J.; Culliford, L.A.; Maishmanet, R.; Rogers, C.A.; Anastasiadis, K.; Antonitsis, P.; Argiriadou, H.; Carrel, T.; et al. Conventional versus minimally invasive extracorporeal circulation in patients undergoing cardiac surgery: Protocol for a randomised controlled trial (COMICS). Perfusion 2021, 36, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Liebold, A.; Albrecht, G. Minimized extracorporeal circulation in non-coronary surgery. J. Thorac. Dis. 2019, 11, S1498–S1506. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.J.H.; Petersen, J.E.V.; Eugen-Olsen, J. Soluble Urokinase Plasminogen Activator Receptor (suPAR) as a Biomarker of Systemic Chronic Inflammation. Front. Immunol. 2021, 12, 780641. [Google Scholar] [CrossRef] [PubMed]
- Sudhini, Y.R.; Wei, C.; Reiser, J. suPAR: An Inflammatory Mediator for Kidneys. Kidney Dis. 2022, 8, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.R.; Nielsen, R.V.; Møgelvang, R.; Ostrowski, S.R.; Ravn, H.B. Prognostic value of suPAR and hsCRP on acute kidney injury after cardiac surgery. BMC Nephrol. 2021, 22, 120. [Google Scholar] [CrossRef] [PubMed]
- Backes, Y.; Van Der Sluijs, K.F.; Mackie, D.P.; Tacke, F.; Koch, A.; Tenhunen, J.J.; Schultz, M.J. Usefulness of suPAR as a biological marker in patients with systemic inflammation or infection: A systematic review. Intensiv. Care Med. 2012, 38, 1418–1428. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Hayek, S.S. Role of Soluble Urokinase-Type Plasminogen Activator Receptor in Cardiovascular Disease. Curr. Cardiol. Rep. 2023, 25, 1797–1810. [Google Scholar] [CrossRef] [PubMed]
- Mossanen, J.C.; Pracht, J.; Jansen, T.U.; Buendgens, L.; Stoppe, C.; Goetzenich, A.; Struck, J.; Autschbach, R.; Marx, G.; Tacke, F. Elevated soluble urokinase plasminogen activator receptor and proenkephalin serum levels predict the development of acute kidney injury after cardiac surgery. Int. J. Mol. Sci. 2017, 18, 1662. [Google Scholar] [CrossRef] [PubMed]
- Koller, L.; Steinacher, E.; Hofer, F.; Hammer, A.; Kazem, N.; Laufer, G.; Fleck, T.; Steinlechner, B.; Wojta, J.; Richter, B.; et al. Soluble urokinase plasminogen activator receptor and survival in elective cardiac surgery. Eur. J. Clin. Investig. 2023, 53, e13953. [Google Scholar] [CrossRef] [PubMed]
- Zajonz, T.S.; Kunzemann, C.; Schreiner, A.L.; Beckert, F.; Schneck, E.; Boening, A.; Markmann, M.; Sander, M.; Koch, C. Potentials of Acetylcholinesterase and Butyrylcholinesterase Alterations in On-Pump Coronary Artery Bypass Surgery in Postoperative Delirium: An Observational Trial. J. Clin. Med. 2023, 12, 5245. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki. JAMA 2013, 310, 2191. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Lameire, N. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, N.; Dubois, M.-J.; Dumont, M.; Dial, S.; Skrobik, Y. Intensive Care Delirium Screening Checklist: Evaluation of a new screening tool. Intensiv. Care Med. 2001, 27, 859–864. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, J.B.; Shaw, A.D. Predicting, preventing, and identifying delirium after cardiac surgery. Perioper. Med. 2016, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- American Medical Association. ICD-10-CM 2021: The Complete Official Codebook with Guidelines; American Medical Association: Chicago, IL, USA, 2020. [Google Scholar]
- Anastasiadis, K.; Antonitsis, P.; Punjabi, P. MiECC reloaded. Perfusion 2024, 40, 535–536. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadis, K.; Antonitsis, P.; Kostarellou, G.; Kleontas, A.; Deliopoulos, A.; Grosomanidis, V.; Argiriadou, H. Minimally invasive extracorporeal circulation improves quality of life after coronary artery bypass grafting. Eur. J. Cardio-Thoracic Surg. 2016, 50, 1196–1203. [Google Scholar] [CrossRef] [PubMed]
- Angelini, G.D.; Reeves, B.C.; Culliford, L.A.; Maishman, R.; Rogers, C.A.; Anastasiadis, K.; Antonitsis, P.; Argiriadou, H.; Carrel, T.; Keller, D.; et al. Conventional versus minimally invasive extra-corporeal circulation in patients undergoing cardiac surgery: A randomized controlled trial (COMICS). Perfusion 2024, 40, 730–741. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadis, K.; Antonitsis, P.; Papazisis, G.; Haidich, B.; Liebold, A.; Punjabi, P.; Gunaydin, S.; El-Essawi, A.; Rao, V.; Serrick, C.; et al. Minimally invasive extracorporeal circulation versus conventional cardiopulmonary bypass in patients undergoing cardiac surgery (MiECS): Rationale and design of a multicentre randomised trial. Perfusion 2024, 40, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Ohata, T.; Mitsuno, M.; Yamamura, M.; Tanaka, H.; Kobayashi, Y.; Ryomoto, M.; Yoshioka, Y.; Miyamoto, Y. Minimal cardiopulmonary bypass attenuates neutrophil activation and cytokine release in coronary artery bypass grafting. J. Artif. Organs 2007, 10, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Immer, F.F.; Ackermann, A.; Gygax, E.; Stalder, M.; Englberger, L.; Eckstein, F.S.; Tevaearai, H.T.; Schmidli, J.; Carrel, T.P. Minimal Extracorporeal Circulation is a Promising Technique for Coronary Artery Bypass Grafting. Ann. Thorac. Surg. 2007, 84, 1515–1521. [Google Scholar] [CrossRef] [PubMed]
- Remadi, J.P.; Rakotoarivelo, Z.; Marticho, P.; Benamar, A. Prospective randomized study comparing coronary artery bypass grafting with the new mini-extracorporeal circulation Jostra System or with a standard cardiopulmonary bypass. Am. Heart J. 2006, 151, 198.e1–198.e7. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, U.; Özaslan, F.; Risteski, P.S.; Martens, S.; Moritz, A.; Al Daraghmeh, A.; Keller, H.; Wimmer-Greinecker, G. Initial Experience with a Minimized Extracorporeal Bypass System: Is There a Clinical Benefit? Ann. Thorac. Surg. 2005, 80, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Fromes, Y. Reduction of the inflammatory response following coronary bypass grafting with total minimal extracorporeal circulation. Eur. J. Cardio-Thorac. Surg. 2002, 22, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, N.; Campana, L.; Gavina, M.; Covino, C.; De Metrio, M.; Panciroli, C.; Maiuri, L.; Maseri, A.; D’ANgelo, A.; Bianchi, M.E.; et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J. Thromb. Haemost. 2014, 12, 2074–2088. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef] [PubMed]
- Jorch, S.K.; Kubes, P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med. 2017, 23, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Wlazeł, R.N.; Migała, M.; Zielińska, M.; Pawlicki, L.; Rośniak-Bąk, K.; Szadkowska, I. Soluble urokinase plasminogen activator receptor in one-year prediction of major adverse cardiac events in patients after first myocardial infarction treated with primary percutaneous coronary intervention. Arch. Med. Sci. 2019, 15, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Lyngbæk, S.; Marott, J.L.; Møller, D.V.; Christiansen, M.; Iversen, K.K.; Clemmensen, P.M.; Eugen-Olsen, J.; Jeppesen, J.L.; Hansen, P.R. Usefulness of soluble urokinase plasminogen activator receptor to predict repeat myocardial infarction and mortality in patients with st-segment elevation myocardial infarction undergoing primary percutaneous intervention. Am. J. Cardiol. 2012, 110, 1756–1763. [Google Scholar] [CrossRef] [PubMed]
- Brady, K.; Hogue, C.W. Intraoperative Hypotension and Patient Outcome. Anesthesiology 2013, 119, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Mohr, N.; Hulde, N.; Krannich, A.; Storm, C.; von Dossow, V. Intraoperative hypotension and its association with acute kidney injury in patients undergoing elective cardiac surgery: A large retrospective cohort study. Eur. J. Anaesthesiol. Intensiv. Care 2024, 3, e0048. [Google Scholar] [CrossRef] [PubMed]
- Kulthinee, S.; Warhoover, M.; Puis, L.; Navar, L.G.; Gohar, E.Y. Cardiac surgery-associated acute kidney injury in cardiopulmonary bypass: A focus on sex differences and preventive strategies. Am. J. Physiol. Physiol. 2024, 327, F994–F1004. [Google Scholar] [CrossRef] [PubMed]
- Hayek, S.S.; Sever, S.; Ko, Y.-A.; Trachtman, H.; Awad, M.; Wadhwani, S.; Altintas, M.M.; Wei, C.; Hotton, A.L.; French, A.L.; et al. Soluble Urokinase Receptor and Chronic Kidney Disease. N. Engl. J. Med. 2015, 373, 1916–1925. [Google Scholar] [CrossRef] [PubMed]
- Hahm, E.; Wei, C.; Fernandez, I.; Li, J.; Tardi, N.J.; Tracy, M.; Wadhwani, S.; Cao, Y.; Peev, V.; Zloza, A.; et al. Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nat. Med. 2017, 23, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, Y.; He, J.; Li, Y.; Feng, Y. Advances in the diagnosis of early biomarkers for acute kidney injury: A literature review. BMC Nephrol. 2025, 26, 115. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Shi, T.; Kong, G. Acute Kidney Injury Prognosis Prediction Using Machine Learning Methods: A Systematic Review. Kidney Med. 2025, 7, 100936. [Google Scholar] [CrossRef] [PubMed]
- Hoogma, D.F.; Milisen, K.; Rex, S.; Al Tmimi, L. Postoperative delirium: Identifying the patient at risk and altering the course. Eur. J. Anaesthesiol. Intensiv. Care 2023, 2, e0022. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.G.; Hughes, C.G.; DeMatteo, A.; O’Neal, J.B.; McNeil, J.B.; Shotwell, M.S.; Morse, J.; Petracek, M.R.; Shah, A.S.; Brown, N.J.; et al. Intraoperative Oxidative Damage and Delirium after Cardiac Surgery. Anesthesiology 2020, 132, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, J.R. Delirium pathophysiology: An updated hypothesis of the etiology of acute brain failure. Int. J. Geriatr. Psychiatry 2018, 33, 1428–1457. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Li, Y.; Zhang, Y.; Wang, H.; Lang, J.; Han, L.; Liu, H.; Xiong, X.; Gu, L.; Wu, X. Effects of inflammation and oxidative stress on postoperative delirium in cardiac surgery. Front. Cardiovasc. Med. 2022, 9, 1049600. [Google Scholar] [CrossRef] [PubMed]
- Guttenthaler, V.; Fidorra, J.; Wittmann, M.; Menzenbach, J. Predictiveness of preoperative laboratory values for postoperative delirium. Health Sci. Rep. 2024, 7, e2219. [Google Scholar] [CrossRef] [PubMed]
- Gianella, S.; Letendre, S.L.; Iudicello, J.; Franklin, D.; Gaufin, T.; Zhang, Y.; Porrachia, M.; Vargas-Meneses, M.; Ellis, R.J.; Finkelman, M.; et al. Plasma (1→3)-β-d-glucan and suPAR levels correlate with neurocognitive performance in people living with HIV on antiretroviral therapy: A CHARTER analysis. J. Neurovirol. 2019, 25, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Roca, N.; Jatem, E.; Martín, M.L.; Muñoz, M.; Molina, M.; Martínez, C.; Segarra, A. Relationship between soluble urokinase-type plasminogen activator receptor and serum biomarkers of endothelial activation in patients with idiopathic nephrotic syndrome. Clin. Kidney J. 2021, 14, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, E.; Bousiou, Z.; Batsis, I.; Vardi, A.; Mallouri, D.; Koravou, E.-E.; Konstantinidou, G.; Spyridis, N.; Karavalakis, G.; Noli, F.; et al. Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) and Growth Differentiation Factor-15 (GDF-15) Levels Are Significantly Associated with Endothelial Injury Indices in Adult Allogeneic Hematopoietic Cell Transplantation Recipients. Int. J. Mol. Sci. 2023, 25, 231. [Google Scholar] [CrossRef] [PubMed]
- Writing Committee for the VISION Study Investigators; Devereaux, P.J.; Biccard, B.M.; Sigamani, A.; Xavier, D.; Chan, M.T.V.; Srinathan, S.K.; Walsh, M.; Abraham, V.; Pearse, R.; et al. Association of postoperative high-sensitivity troponin levels with myocardial injury and 30-day mortality among patients undergoing noncardiac surgery. JAMA 2017, 317, 1642–1651. [Google Scholar]
- Delgado-Rizo, V.; Martínez-Guzmán, M.A.; Iñiguez-Gutierrez, L.; García-Orozco, A.; Alvarado-Navarro, A.; Fafutis-Morris, M. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front. Immunol. 2017, 8, 81. [Google Scholar] [CrossRef] [PubMed]
Parameters | All Patients (n = 79) | miECC (n = 41) | cCPB (n = 38) | p Value |
---|---|---|---|---|
Age (years) | 64 [57–71] | 60 [56–71] | 68 [62–73] | 0.06 |
Male sex, n (%) | 69 (87.3) | 37 (90.2) | 32 (84.2) | 0.51 |
BMI (kg/m2) | 28.7 [25.9–32.6] | 29.1 [27.7–32.0] | 28.4 [25.0–33.0] | 0.48 |
EuroSCORE | 1.09 [0.78–1.41] | 1.07 [0.79–1.29] | 1.13 [0.77–1.55] | 0.51 |
Pre-existing Diseases, n (%) | ||||
Angina pectoris | 53 (68.8) | 29 (72.5) | 24 (64.9) | 0.62 |
Arterial hypertension | 68 (87.2) | 37 (90.2) | 31 (83.8) | 0.50 |
Acute myocardial infarction | 20 (25.6) | 9 (22.0) | 11 (29.7) | 0.45 |
Myocardial infarction within the last 90 days prior to surgery | 18 (23.4) | 4 (10.0) | 14 (37.8) | 0.006 (**) |
Concurrent valvular disease | 16 (20.5) | 11 (26.8) | 5 (13.5) | 0.17 |
Stroke | 10 (12.8) | 2 (4.9) | 8 (21.6) | 0.041 (*) |
Diabetes | 32 (40.5) | 16 (39.0) | 16 (43.2) | 0.82 |
Chronic obstructive pulmonary disease (>1) | 10 (12.8) | 5 (12.2) | 5 (13.5) | 0.88 |
Smoker | 51 (65.4) | 26 (63.4) | 25 (67.6) | 0.81 |
Alcohol abuse | 1 (1.3) | 1 (2.4) | 0 (0) | 1.00 |
Outcome, n (%) | ||||
Postoperative delirium | 19 (24.1) | 9 (22.0) | 10 (26.3) | 0.79 |
Acute kidney disease (KDIGO > 1) | 25 (31.6) | 15 (36.6) | 10 (26.3) | 0.35 |
Pneumonia | 2 (2.5%) | 1 (2.4%) | 1 (2.6%) | 1.00 |
Process times | ||||
Duration of anesthesia (min) | 202 [177.0–232.0] | 193.5 [176.0–224.0] | 214.6 [185.0–247.5] | 0.12 |
Duration of CPB (min) | 82.5 [72–107.5] | 78.0 [71.5–91.5] | 90.0 [76.0–114.0] | 0.049 (*) |
Duration of ACC (min) | 57 [47–77] | 56 [47–66.5] | 60 [48–85] | 0.19 |
Duration of invasive ventilation (h) | 12.4 [10.4–18.2] | 12.8 [9.5–18.0] | 13.9 [11.0–19.1] | 0.30 |
n | suPAR (ng/mL) All Patients | n | suPAR (ng/mL) miECC | n | suPAR (ng/mL) cCPB | Two-Groups p-Value (WILCOX) | |
---|---|---|---|---|---|---|---|
T1 (preoperative) | 79 | 1.4 [1–1.8] | 41 | 1.3 [1–1.6] | 38 | 1.4 [1.03–2.12 | 0.29 |
T2 (15’ CPB)] | 76 | 1.8 [1.4–2.2] | 41 | 1.7 [1.4–2] | 35 | 1.9 [1.55–2.5] | 0.049 (*) |
T3 (60’ CPB) | 78 | 1.8 [1.52–2.28] | 40 | 1.7 [1.58–2] | 38 | 2 [1.52–2.58] | 0.12 |
T4 (15’ after end of CPB) | 78 | 1.7 [1.3–2.28] | 40 | 1.5 [1.3–2.1] | 38 | 1.9 [1.4–2.58] | 0.09 |
T5 (120’ after end of CPB) | 77 | 1.6 [1.2–2.3] | 41 | 1.5 [1.1–1.7] | 36 | 1.9 [1.3–2.96] | 0.008 (**) |
T6 (1st day postoperative) | 73 | 1.2 [0.9–1.7] | 40 | 1.25 [0.88–1.63] | 33 | 1.2 [1–1.9] | 0.44 |
All operative time points (T2–T4) | 232 | 1.7 [1.4–2.22] | 121 | 1.7 [1.4–2] | 111 | 1.9 [1.44–2.55] | 0.003 (**) |
All postop. time points (T5–T6) | 150 | 1.5 [1–2.08] | 81 | 1.4 [0.9–1.7] | 69 | 1.6 [1.1–2.6] | 0.02 (*) |
AKI/no AKI | POD/noPOD | miECC/cCBP | |
---|---|---|---|
Wilcox-Test | 0.003 (**) | 0.67 | <0.001 (***) |
ANOVA pVal | 0.001 (**) | 0.03 (*) | <0.001 (***) |
T1/preoperative | 0.98 | 1.00 | 1.00 |
T2/operative | 0.98 | 1.00 | 0.99 |
T3/operative | 1.00 | 1.00 | 0.78 |
T4/operative | 0.92 | 1.00 | 0.48 |
T5/postoperative | 0.82 | 1.00 | 0.11 |
T6/postoperative | 0.83 | 1.00 | 1.00 |
ANOVA pVal | <0.001 (***) | 0.02 (*) | <0.001 (***) |
preoperative | 0.79 | 1.00 | 0.98 |
operative | 0.26 | 1.00 | 0.03 (*) |
postOP | 0.13 | 0.88 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zajonz, T.S.; Edinger, F.; Götze, J.; Markmann, M.; Sander, M.; Koch, C.; Schneck, E. Soluble Urokinase Plasminogen Activator Receptor (suPAR) Plasma Concentration Is Reduced Using Minimized Extracorporeal Circulation: Results of a Secondary Analysis of a Prospective Observational Study. J. Clin. Med. 2025, 14, 5020. https://doi.org/10.3390/jcm14145020
Zajonz TS, Edinger F, Götze J, Markmann M, Sander M, Koch C, Schneck E. Soluble Urokinase Plasminogen Activator Receptor (suPAR) Plasma Concentration Is Reduced Using Minimized Extracorporeal Circulation: Results of a Secondary Analysis of a Prospective Observational Study. Journal of Clinical Medicine. 2025; 14(14):5020. https://doi.org/10.3390/jcm14145020
Chicago/Turabian StyleZajonz, Thomas S., Fabian Edinger, Juliane Götze, Melanie Markmann, Michael Sander, Christian Koch, and Emmanuel Schneck. 2025. "Soluble Urokinase Plasminogen Activator Receptor (suPAR) Plasma Concentration Is Reduced Using Minimized Extracorporeal Circulation: Results of a Secondary Analysis of a Prospective Observational Study" Journal of Clinical Medicine 14, no. 14: 5020. https://doi.org/10.3390/jcm14145020
APA StyleZajonz, T. S., Edinger, F., Götze, J., Markmann, M., Sander, M., Koch, C., & Schneck, E. (2025). Soluble Urokinase Plasminogen Activator Receptor (suPAR) Plasma Concentration Is Reduced Using Minimized Extracorporeal Circulation: Results of a Secondary Analysis of a Prospective Observational Study. Journal of Clinical Medicine, 14(14), 5020. https://doi.org/10.3390/jcm14145020