Differential Scanning Calorimetry as a Monitoring Tool for the Effectiveness of Therapeutic Plasma Exchange in Anti-AChR Myasthenia Gravis, Anti-MuSK Myasthenia Gravis, and Myasthenic Syndrome: A Case Series
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Therapeutic Plasma Exchange
2.3. Preparation of Blood Plasma
2.4. DSC Measurements
2.5. Monitoring of Clinical Results
3. Results
3.1. Case Report 1
3.2. Case Report 2
3.3. Case Report 3
4. Discussion
4.1. Synopsis of the DSC Results
4.2. Possible Origin of the Notable DSC Peaks in the Immunoglobulin (IG) Area
4.3. Potential Uses of DSC in MG and MSyn
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MG | Myasthenia gravis |
MSyn | Myasthenic syndrome |
AChR MG | Myasthenia gravis with antibodies against the acetylcholine receptors |
MuSK MG | Myasthenia gravis with antibodies against the muscle-specific kinase |
AchR | Acetylcholine receptors |
MuSK | Muscle-specific kinase |
LRP 4 | Lipoprotein receptor-related protein 4 |
DSC | Differential scanning calorimetry |
TPE | Therapeutic plasma exchange |
PBS | Phosphate-buffered saline |
IgG | Immunoglobulin G |
Alb | Albumin |
Fbg | Fibrinogen |
MS | Multiple Sclerosis |
References
- Dresser, L.; Wlodarski, R.; Rezania, K.; Soliven, B. Myasthenia Gravis: Epidemiology, Pathophysiology and Clinical Manifestations. J. Clin. Med. 2021, 10, 2235. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S. Treating myasthenia gravis beyond the eye clinic. Eye 2024, 38, 2422–2436. [Google Scholar] [CrossRef]
- Phillips, W.D.; Vincent, A. Pathogenesis of myasthenia gravis: Update on disease types, models, and mechanisms. F1000Research 2016, 5, 1513. [Google Scholar] [CrossRef]
- Sathasivam, S. Current and emerging treatments for the management of myasthenia gravis. Ther. Clin. Risk Manag. 2011, 7, 313–323. [Google Scholar] [CrossRef]
- Koneczny, I.; Herbst, R. Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells 2019, 8, 671. [Google Scholar] [CrossRef]
- Losen, M.; Martínez-Martínez, P.; Molenaar, P.; Lazaridis, K.; Tzartos, S.J.; Brenner, T.; Duan, R.; Luo, J.; Lindstrom, J.; Kusner, L. Standardization of the Experimental Autoimmune Myasthenia Gravis (EAMG) Model by Immunization of Rats with Torpedo Californica Acetylcholine Receptors-Recommendations for Methods and Experimental Designs. Exp. Neurol. 2015, 270, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Koneczny, I.; Vincent, A. Myasthenia Gravis with Antibodies Against Muscle Specific Kinase: An Update on Clinical Features, Pathophysiology and Treatment. Front. Mol. Neurosci. 2020, 13, 159. [Google Scholar] [CrossRef] [PubMed]
- Tüzün, E.; Christadoss, P. Complement associated pathogenic mechanisms in myasthenia gravis. Autoimmun. Rev. 2013, 12, 904–911. [Google Scholar] [CrossRef]
- Morren, J.A.; Li, Y. Myasthenia gravis: Frequently asked questions. Clevel. Clin. J. Med. 2023, 90, 103–113. [Google Scholar] [CrossRef]
- Guptill, J.T.; Sanders, D.B.; Evoli, A. Anti-musk antibody myasthenia gravis: Clinical findings and response to treatment in two large cohorts. Muscle Nerve 2011, 44, 36–40. [Google Scholar] [CrossRef]
- Evoli, A.; Alboini, P.E.; Bisonni, A.; Mastrorosa, A.; Bartocccioni, E. Management challenges in muscle-specific tyrosine kinase myasthenia gravis. Ann. N. Y. Acad. Sci. 2012, 1274, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, M.E.; Goodfellow, J.A. A Practical Approach to Managing Patients with Myasthenia Gravis—Opinions and a Review of the Literature. Front. Neurol. 2020, 11, 604. [Google Scholar] [CrossRef]
- Lipe, D.N.; Qdaisat, A.; Krishnamani, P.P.; Nguyen, T.D.; Chaftari, P.; Messiri, N.; Srinivasan, A.; Galvis-Carvajal, E.; Reyes-Gibby, C.C.; Wattana, M.K. Myocarditis, Myositis, and Myasthenia Gravis Overlap Syndrome Associated with Immune Checkpoint Inhibitors: A Systematic Review. Diagnostics 2024, 14, 1794. [Google Scholar] [CrossRef]
- Heldal, A.T.; Eide, G.E.; Romi, F.; Owe, J.F.; Gilhus, N.E. Repeated Acetylcholine Receptor Antibody-Concentrations and Association to Clinical Myasthenia Gravis Development. PLoS ONE 2014, 9, e114060. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luo, L.; Zhu, X.; Wen, C.; Guo, Y.; Yang, J.; Wei, D.; Yu, P.; Wan, M. Exploring the clinical significance of anti-acetylcholine receptor antibody titers, changes, and change rates in Myasthenia Gravis. Front. Neurol. 2025, 15, 1506845. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marcuse, F.; Brandts, L.; Moens, D.; Damoiseaux, J.; Hochstenbag, M.; Hoeijmakers, J.G.J.; Maessen, J.G.; De Baets, M. The association between anti-acetylcholine receptor antibody level and clinical improvement in myasthenia gravis. Eur. J. Neurol. 2022, 29, 1187–1197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garbett, N.C.; Miller, J.J.; Jenson, A.B.; Chaires, J.B. Calorimetry Outside the Box: A New Window into the Plasma Proteome. Biophys. J. 2008, 94, 1377–1383. [Google Scholar] [CrossRef]
- Garbett, N.C.; Mekmaysy, C.S.; Helm, C.W.; Jenson, A.B.; Chaires, J.B. Differential scanning calorimetry of blood plasma for clinical diagnosis and monitoring. Exp. Mol. Pathol. 2009, 86, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Garber, E.; Demarest, S.J. A broad range of Fab stabilities within a host of therapeutic IgGs. Biochem. Biophys. Res. Commun. 2007, 355, 751–757. [Google Scholar] [CrossRef]
- Garbett, N.C.; Merchant, M.L.; Helm, C.W.; Jenson, A.B.; Klein, J.B.; Chaires, J.B. Detection of Cervical Cancer Biomarker Patterns in Blood Plasma and Urine by Differential Scanning Calorimetry and Mass Spectrometry. PLoS ONE 2014, 9, e84710. [Google Scholar] [CrossRef]
- Todinova, S.; Krumova, S.; Radoeva, R.; Gartcheva, L.; Taneva, S.G. Calorimetric Markers of Bence Jones and Nonsecretory Multiple Myeloma Serum Proteome. Anal. Chem. 2014, 86, 12355–12361. [Google Scholar] [CrossRef]
- Todinova, S.; Krumova, S.; Gartcheva, L.; Robeerst, C.; Taneva, S.G. Microcalorimetry of Blood Serum Proteome: A Modified Interaction Network in the Multiple Myeloma Case. Anal. Chem. 2011, 83, 7992–7998. [Google Scholar] [CrossRef] [PubMed]
- Krumova, S.; Todinova, S.; Danailova, A.; Petkova, V.; Dimitrova, K.; Gartcheva, L.; Taneva, S.G. Calorimetric features of IgM gammopathies. Implication for patient’s diagnosis and monitoring. Thermochim. Acta 2015, 615, 23–29. [Google Scholar] [CrossRef]
- Garbett, N.C.; Miller, J.J.; Jenson, A.B.; Miller, D.M.; Chaires, J.B. Interrogation of the Plasma Proteome with Differential Scanning Calorimetry. Clin. Chem. 2007, 53, 2012–2014. [Google Scholar] [CrossRef] [PubMed]
- Michnik, A.; Drzazga, Z.; Michalik, K.; Barczyk, A.; Santura, I.; Sozańska, E.; Pierzchała, W. Differential scanning calorimetry study of blood serum in chronic obstructive pulmonary disease. J. Therm. Anal. Calorim. 2010, 102, 57–60. [Google Scholar] [CrossRef]
- Szalai, Z.; Molnár, T.F.; Lőrinczy, D. Role of differential scanning calorimetry (DSC) in the staging of COPD. J. Therm. Anal. Calorim. 2017, 127, 1231–1238. [Google Scholar] [CrossRef]
- Chagovetz, A.A.; Quinn, C.; Damarse, N.; Hansen, L.D.; Chagovetz, A.M.; Jensen, R.L. Differential Scanning Calorimetry of Gliomas: A new tool in brain cancer diagnostics? Neurosurgery 2013, 73, 289–295. [Google Scholar] [CrossRef]
- Krumova, S.; Rukova, B.; Todinova, S.; Gartcheva, L.; Milanova, V.; Toncheva, D.; Taneva, S.G. Calorimetric monitoring of the serum proteome in schizophrenia patients. Thermochim. Acta 2013, 572, 59–64. [Google Scholar] [CrossRef]
- Koynova, R.; Antonova, B.; Sezanova, B.; Tenchov, B. Beneficial effect of sequential chemotherapy treatments of lung cancer patients revealed by calorimetric monitoring of blood plasma proteome denaturation. Thermochim. Acta 2018, 659, 1–7. [Google Scholar] [CrossRef]
- Zapf, I.; Moezzi, M.; Fekecs, T.; Nedvig, K.; Lőrinczy, D.; Ferencz, A. Influence of oxidative injury and monitoring of blood plasma by DSC on breast cancer patients. J. Therm. Anal. Calorim. 2016, 123, 2029–2035. [Google Scholar] [CrossRef]
- Ferencz, A.; Zapf, I.; Lőrinczy, D. Harmful effect of neoadjuvant chemotherapy monitoring by DSC on breast cancer patients’ blood plasma. J. Therm. Anal. Calorim. 2016, 126, 55–59. [Google Scholar] [CrossRef]
- Tenchov, B.; Koynova, R.; Antonova, B.; Zaharinova, S.; Abarova, S.; Tsonchev, Z.; Komsa-Penkova, R.; Momchilova, A. Blood plasma thermal behavior and protein oxidation as indicators of multiple sclerosis clinical status and plasma exchange therapy progression. Thermochim. Acta 2019, 671, 193–199. [Google Scholar] [CrossRef]
- Schwartz, J.; Winters, J.L.; Padmanabhan, A.; Balogun, R.A.; Delaney, M.; Linenberger, M.L.; Szczepiorkowski, Z.M.; Williams, M.E.; Wu, Y.; Shaz, B.H. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice—Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Sixth Special Issue. J. Clin. Apher. 2013, 28, 145–284. [Google Scholar] [CrossRef]
- Kenarov, P.N.; Petrov, N.; Georgiev, S. National consensus for the intensive treatment of diseases by therapeutic apheresis. Anesthesiol. Intens. Care 2014, 2, 5–17. [Google Scholar]
- Takahashi, K.; Sturtevant, J.M. Thermal denaturation of Streptomyces subtilisin inhibitor, subtilisin BPN’, and the inhibitor-subtilisin complex. Biochemistry 1981, 20, 6185–6190. [Google Scholar] [CrossRef]
- Cortese, I.; Chaudhry, V.; So, Y.; Cantor, F.; Cornblath, D.; Rae-Grant, A. Evidence-based guideline update: Plasmapheresis in neurologic disorders: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2011, 76, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Konno, S.; Fujioka, T. Serum immunoglobulin G level reduction is a predictor of short-term improvement in patients with myasthenia gravis undergoing plasmapheresis. Ther. Apher. Dial. 2024, 28, 131–140. [Google Scholar] [CrossRef]
- Guptill, J.T.; Juel, V.C.; Massey, J.M.; Anderson, A.C.; Chopra, M.; Yi, J.S.; Esfandiari, E.; Buchanan, T.; Smith, B.; Atherfold, P.; et al. Effect of therapeutic plasma exchange on immunoglobulins in myasthenia gravis. Autoimmunity 2016, 49, 472–479. [Google Scholar] [CrossRef]
- Sanders, D.B.; Burns, T.M.; Cutter, G.R.; Massey, J.M.; Juel, V.C.; Hobson-Webb, L. The Muscle Study Group Does change in acetylcholine receptor antibody level correlate with clinical change in myasthenia gravis? Muscle Nerve 2014, 49, 483–486. [Google Scholar] [CrossRef]
- Newsom-Davis, J.; Pinching, A.J.; Vincent, A.; Wilson, S.G. Function of circulating antibody to acetylcholine receptor in myasthenia gravis: Investigation by plasma exchange. Neurology 1978, 28, 266. [Google Scholar] [CrossRef]
- Yeh, J.-H.; Chiu, H.-C. Comparison between double-filtration plasmapheresis and immunoadsorption plasmapheresis in the treatment of patients with myasthenia gravis. J. Neurol. 2000, 247, 510–513. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilieva, V.; Tenchov, B.; Virovska, D.; Nencheva, D.; Kalayanov, M.; Farfarov, A.; Yamakova, Y.; Abarova, S. Differential Scanning Calorimetry as a Monitoring Tool for the Effectiveness of Therapeutic Plasma Exchange in Anti-AChR Myasthenia Gravis, Anti-MuSK Myasthenia Gravis, and Myasthenic Syndrome: A Case Series. J. Clin. Med. 2025, 14, 4968. https://doi.org/10.3390/jcm14144968
Ilieva V, Tenchov B, Virovska D, Nencheva D, Kalayanov M, Farfarov A, Yamakova Y, Abarova S. Differential Scanning Calorimetry as a Monitoring Tool for the Effectiveness of Therapeutic Plasma Exchange in Anti-AChR Myasthenia Gravis, Anti-MuSK Myasthenia Gravis, and Myasthenic Syndrome: A Case Series. Journal of Clinical Medicine. 2025; 14(14):4968. https://doi.org/10.3390/jcm14144968
Chicago/Turabian StyleIlieva, Viktoria, Boris Tenchov, Daniela Virovska, Denitsa Nencheva, Maksim Kalayanov, Alexandar Farfarov, Yordanka Yamakova, and Silviya Abarova. 2025. "Differential Scanning Calorimetry as a Monitoring Tool for the Effectiveness of Therapeutic Plasma Exchange in Anti-AChR Myasthenia Gravis, Anti-MuSK Myasthenia Gravis, and Myasthenic Syndrome: A Case Series" Journal of Clinical Medicine 14, no. 14: 4968. https://doi.org/10.3390/jcm14144968
APA StyleIlieva, V., Tenchov, B., Virovska, D., Nencheva, D., Kalayanov, M., Farfarov, A., Yamakova, Y., & Abarova, S. (2025). Differential Scanning Calorimetry as a Monitoring Tool for the Effectiveness of Therapeutic Plasma Exchange in Anti-AChR Myasthenia Gravis, Anti-MuSK Myasthenia Gravis, and Myasthenic Syndrome: A Case Series. Journal of Clinical Medicine, 14(14), 4968. https://doi.org/10.3390/jcm14144968