Ki-67 as a Predictor of Metastasis in Adrenocortical Carcinoma: Artificial Intelligence Insights from Retrospective Imaging Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Statistical Analysis
2.3. Artificial Intelligence
2.4. Model Performance Comparison
2.5. Model Evaluation Metrics
3. Results
3.1. Descriptive Characteristics
3.2. Analysis Association Between Ki-67 and Clinical Variables
3.3. Comparison of Ki-67 Index by Metastasis and Other Clinical Features
3.4. Logistic Regression Model for Metastasis
3.5. Random Forest Classifier with and Without SMOTE
4. Discussion
4.1. Principal Findings
4.2. Comparison with Prior Literature
4.3. Methodological Considerations
4.4. Clinical Implications
4.5. Limitations
4.6. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, E.; Dahal, S.; Sharma, P.; Bhandari, A.; Gupta, V.; Amgai, B.; Dahal, S. The characteristics and trends in adrenocortical carcinoma: A United States population-based study. J. Clin. Med. Res. 2018, 10, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Rowell, N.P. Oncological Management of Adrenocortical Carcinoma: An Update and Critical Review. Oncol. Ther. 2025, 13, 307–323. [Google Scholar] [CrossRef] [PubMed]
- Clay, M.R.; Pinto, E.M.; Fishbein, L.; Else, T.; Kiseljak-Vassiliades, K. Pathological and genetic stratification for management of adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 2022, 107, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Thampi, A.; Shah, E.; Elshimy, G.; Correa, R. Adrenocortical carcinoma: A literature review. Transl. Cancer Res. 2020, 9, 1253–1264. [Google Scholar] [CrossRef]
- Fassnacht, M.; Puglisi, S.; Kimpel, O.; Terzolo, M. Adrenocortical Carcinoma: A Practical Guide for Clinicians. Lancet Diabetes Endocrinol. 2025, 13, 438–452. [Google Scholar] [CrossRef]
- Shariq, O.A.; McKenzie, T.J. Adrenocortical Carcinoma: Current State of the Art, Ongoing Controversies, and Future Directions in Diagnosis and Treatment. Ther. Adv. Chronic Dis. 2021, 12, 20406223211033103. [Google Scholar] [CrossRef]
- Rossi, L.; Becucci, C.; Ambrosini, C.E.; Puccini, M.; Vasquez, M.C.; Gjeloshi, B.; Materazzi, G. Surgical Management of Adrenocortical Carcinoma: A Literature Review. J. Clin. Med. 2022, 11, 5754. [Google Scholar] [CrossRef]
- Angelousi, A.; Kyriakopoulos, G.; Athanasouli, F.; Dimitriadi, A.; Kassi, E.; Aggeli, C.; Zografos, G.; Kaltsas, G. The Role of Immunohistochemical Markers for the Diagnosis and Prognosis of Adrenocortical Neoplasms. J. Pers. Med. 2021, 11, 208. [Google Scholar] [CrossRef]
- Dojcinovic, T.; Tomsic, K.Z.; Vodanovic, I.D.; Dusek, T.; Kraljevic, I.; Nekic, A.B.; Polovina, T.S.; Knezevic, N.; Alduk, A.M.; Golubic, Z.A.; et al. Treatment outcomes in patients with recurrent adrenocortical carcinoma. Endocr. Res. 2025, 50, 43–49. [Google Scholar] [CrossRef]
- Beuschlein, F.; Weigel, J.; Saeger, W.; Kroiss, M.; Wild, V.; Daffara, F.; Libé, R.; Ardito, A.; Al Ghuzlan, A.; Papotti, M.; et al. Major Prognostic Role of Ki-67 in Localized Adrenocortical Carcinoma After Complete Resection. J. Clin. Endocrinol. Metab. 2015, 100, 841–849. [Google Scholar] [CrossRef]
- Martins-Filho, S.N.; Almeida, M.Q.; Soares, I.; Wakamatsu, A.; Alves, V.A.F.; Fragoso, M.C.B.V.; Zerbini, M.C.N. Clinical Impact of Pathological Features Including the Ki-67 Labeling Index on Diagnosis and Prognosis of Adult and Pediatric Adrenocortical Tumors. Endocr. Pathol. 2021, 32, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Ciaramella, P.D.; Vertemati, M.; Petrella, D.; Bonacina, E.; Grossrubatscher, E.; Duregon, E.; Volante, M.; Papotti, M.; Loli, P. Analysis of histological and immunohistochemical patterns of benign and malignant adrenocortical tumors by computerized morphometry. Pathol. Res. Pract. 2017, 213, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Libé, R.; Borget, I.; Ronchi, C.L.; Zaggia, B.; Kroiss, M.; Kerkhofs, T.; Bertherat, J.; Volante, M.; Quinkler, M.; Chabre, O.; et al. Prognostic factors in stage III–IV adrenocortical carcinomas (ACC): An European Network for the Study of Adrenal Tumor (ENSAT) study. Ann. Oncol. 2015, 26, 2119–2125. [Google Scholar] [CrossRef] [PubMed]
- Renaudin, K.; Smati, S.; Wargny, M.; Al Ghuzlan, A.; Aubert, S.; Leteurtre, E.; Patey, M.; Sibony, M.; Sturm, N.; Tissier, F.; et al. Clinicopathological Description of 43 Oncocytic Adrenocortical Tumors: Importance of Ki-67 in Histoprognostic Evaluation. Mod. Pathol. 2018, 31, 1708–1716. [Google Scholar] [CrossRef]
- Wei, D.-M.; Chen, W.-J.; Meng, R.-M.; Zhao, N.; Zhang, X.-Y.; Liao, D.-Y.; Chen, G. Augmented Expression of Ki-67 Is Correlated with Clinicopathological Characteristics and Prognosis for Lung Cancer Patients: An Up-Dated Systematic Review and Meta-Analysis with 108 Studies and 14,732 Patients. Respir. Res. 2018, 19, 150. [Google Scholar] [CrossRef]
- Song, C.; Chen, J.; Zhao, C.; Song, S.; Yang, T.; Huang, A.; Liu, R.; Pan, Y.; Xu, C.; Chen, C.; et al. Prediction of Ki-67 Expression in HIV-Associated Lung Adenocarcinoma Patients Using Multiple Machine Learning Models Based on CT Imaging Radiomics. Cancer Manag. Res. 2025, 17, 881–892. [Google Scholar] [CrossRef]
- Prior, F.; Smith, K.; Sharma, A.; Kirby, J.; Tarbox, L.; Clark, K.; Bennett, W.; Nolan, T.; Freymann, J. The public cancer radiology imaging collections of The Cancer Imaging Archive. Sci. Data 2017, 4, 170124. [Google Scholar] [CrossRef]
- Moawad, A.W.; Ahmed, A.A.; ElMohr, M.; Eltaher, M.; Habra, M.A.; Fisher, S.; Perrier, N.; Zhang, M.; Fuentes, D.; Elsayes, K. Voxel-Level Segmentation of Pathologically-Proven Adrenocortical Carcinoma with Ki-67 Expression (Adrenal-ACC-Ki67-Seg) [Data Set]. Cancer Imaging Arch. 2023. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Elmohr, M.M.; Fuentes, D.; Boldrini, L.; Cusumano, D.; Issa, M.Y.; Elsayes, K.M.; Elshafie, M.L. Radiomic Mapping Model for Prediction of Ki-67 Expression in Adrenocortical Carcinoma. Clin. Radiol. 2020, 75, 479.e17–479.e22. [Google Scholar] [CrossRef]
- Li, C.; Fu, Y.; Yi, X.; Zhang, Y.; Zhang, X.; Wu, P. Application of radiomics in adrenal incidentaloma: A literature review. Discov. Oncol. 2022, 13, 112. [Google Scholar] [CrossRef]
- Ferro, A.; Bottosso, M.; Dieci, M.V.; Scagliori, E.; Miglietta, F.; Aldegheri, V.; Bonanno, L.; Caumo, F.; Guarneri, V.; Griguolo, G.; et al. Clinical Applications of Radiomics and Deep Learning in Breast and Lung Cancer: A Narrative Literature Review on Current Evidence and Future Perspectives. Crit. Rev. Oncol. Hematol. 2024, 203, 104479. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Imani, M.; Beikmohammadi, A.; Arabnia, H.R. Comprehensive Analysis of Random Forest and XGBoost Performance with SMOTE, ADASYN, and GNUS Under V incentive Imbalance Levels. Technologies 2025, 13, 88. [Google Scholar] [CrossRef]
- Wang, J.; Zeng, Z.; Li, Z.; Liu, G.; Zhang, S.; Luo, C.; Hu, S.; Wan, S.; Zhao, L. The clinical application of artificial intelligence in cancer precision treatment. J. Transl. Med. 2025, 23, 120. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Zhang, Z. Variable selection with stepwise and best subset approaches. Ann. Transl. Med. 2016, 4, 136. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Dahouda, M.K.; Joe, I. A Deep-Learned Embedding Technique for Categorical Features Encoding. IEEE Access 2021, 9, 114381–114391. [Google Scholar] [CrossRef]
- Disha, R.A.; Waheed, S. Performance Analysis of Machine Learning Models for Intrusion Detection System Using Gini Impurity-Based Weighted Random Forest. Cybersecurity 2022, 5, 1. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Ying, G.-S.; Maguire, M.G.; Glynn, R.J.; Rosner, B. Calculating Sensitivity, Specificity, and Predictive Values for Correlated Eye Data. Investig. Opthalmology Vis. Sci. 2020, 61, 29. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, J.; Bithell, J. Bootstrap Confidence Intervals: When, Which, What? A Practical Guide for Medical Statisticians. Stat. Med. 2000, 19, 1141–1164. [Google Scholar] [CrossRef]
- Kim, T.K. T test as a parametric statistic. Korean J. Anesthesiol. 2015, 68, 540–546. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive statistics and normality tests for statistical data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef]
- Salman, H.A.; Kalakech, A.; Steiti, A. Random Forest Algorithm Overview. Babylon. J. Mach. Learn. 2024, 2024, 69–79. [Google Scholar] [CrossRef]
- Salehi, M.; Khosravi, A.; Saeed, A.; Nahavandi, S. CSBBoost: Cluster-based Synthetic Boosting Framework for Class-Imbalanced Data Classification. Sci. Rep. 2024, 14, 5152. [Google Scholar] [CrossRef]
- La Rosa, S. Diagnostic, Prognostic, and Predictive Role of Ki67 Proliferative Index in Neuroendocrine and Endocrine Neoplasms: Past, Present, and Future. Endocr. Pathol. 2023, 34, 79–97. [Google Scholar] [CrossRef]
- Trevethan, R. Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice. Front. Public Health 2017, 5, 307. [Google Scholar] [CrossRef]
- Passaro, A.; Al Bakir, M.; Hamilton, E.G.; Kim, R.; Lopes, G.; Rolfo, C.; Andre, F. Cancer Biomarkers: Emerging Trends and Clinical Implications for Personalized Treatment. Cell 2024, 187, 1617–1635. [Google Scholar] [CrossRef] [PubMed]
- Abualigah, L.; Alomari, S.A.; Almomani, M.H.; Abu Zitar, R.; Saleem, K.; Migdady, H.; Snasel, V.; Smerat, A.; Ezugwu, A.E. Medicine: A machine learning framework for predicting disease outcomes and optimizing patient-centric care. J. Transl. Med. 2025, 23, 302. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.S.; Amorim-Lopes, M. Externally Validated and Clinically Useful Machine Learning Algorithms to Support Patient-Related Decision-Making in Oncology: A Scoping Review. BMC Med. Res. Methodol. 2025, 25, 45. [Google Scholar] [CrossRef] [PubMed]
- Lerario, A.M.; Mohan, D.R.; Hammer, G.D. Update on biology and genomics of adrenocortical carcinomas: Rationale for emerging therapies. Endocr. Rev. 2022, 43, 1051–1073. [Google Scholar] [CrossRef]
Variable | Non-Metastatic (n = 46) | Metastatic (n = 7) | Total (n = 53) |
---|---|---|---|
Age, years (mean ± SD) | 53.4 ± 13.6 | 48.9 ± 13.2 | 52.8 ± 13.5 |
Sex, n (%) | |||
Female | 27 (58.7) | 4 (57.1) | 31 (58.5) |
Male | 19 (41.3) | 3 (42.9) | 22 (41.5) |
Race, n (%) | |||
White | 36 (78.3) | 5 (71.4) | 41 (77.4) |
Black | 3 (6.5) | 1 (14.3) | 4 (7.5) |
Hispanic or Latino | 5 (10.9) | 1 (14.3) | 6 (11.3) |
Asian | 2 (4.3) | 0 (0.0) | 2 (3.8) |
Laterality, n (%) | |||
Right | 19 (41.3) | 5 (71.4) | 24 (45.3) |
Left | 27 (58.7) | 2 (28.6) | 29 (54.7) |
Tumor Size, cm (mean ± SD) | 11.9 ± 6.8 | 9.4 ± 2.8 | 11.5 ± 6.5 |
Ki-67 Index, % (mean ± SD) | 21.6 ± 16.1 | 39.4 ± 14.1 | 23.9 ± 18.4 |
Resection Margin, n (%) | |||
R0 (Negative) | 33 (71.7) | 2 (28.6) | 35 (66.0) |
R1 (Positive) | 7 (15.2) | 3 (42.9) | 10 (18.9) |
RX (Unknown) | 6 (13.0) | 2 (28.6) | 8 (15.1) |
T Staging, n (%) | |||
T1 | 4 (8.7) | 0 (0.0) | 4 (7.5) |
T2 | 20 (43.5) | 0 (0.0) | 20 (37.7) |
T3 | 19 (41.3) | 5 (71.4) | 24 (45.3) |
T4 | 3 (6.5) | 2 (28.6) | 5 (9.4) |
N Staging, n (%) | |||
N0 | 43 (93.5) | 3 (42.9) | 46 (86.8) |
N1 | 1 (2.2) | 3 (42.9) | 4 (7.5) |
NX | 2 (4.3) | 1 (14.3) | 3 (5.7) |
Days to Diagnosis (mean ± SD) | 34.7 ± 41.7 | 34.9 ± 17.1 | 34.7 ± 39.4 |
Model | AUC (95% CI) | Sensitivity % (95% CI) | Specificity % (95% CI) | PPV (95% CI) | NPV (95% CI) |
---|---|---|---|---|---|
Logistic Regression | 0.722 (0.644–0.790) | 0.458 (0.286–0.625) | 0.818 (0.767–0.869) | 0.275 (0.162–0.385) | 0.909 (0.867–0.945) |
RF (Ki-67 Only) | 0.660 (0.577–0.743) | 0.374 (0.229–0.531) | 0.789 (0.734–0.845) | 0.240 (0.138–0.343) | 0.876 (0.829–0.923) |
RF (no SMOTE) | 0.793 (0.726–0.861) | 0.572 (0.405–0.731) | 0.836 (0.788–0.882) | 0.345 (0.229–0.468) | 0.928 (0.892–0.959) |
RF + SMOTE | 0.994 (0.990–0.998) | 0.943 (0.911–0.972) | 0.974 (0.951–0.991) | 0.971 (0.946–0.990) | 0.949 (0.920–0.975) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goulian, A.J.; Yee, D.S. Ki-67 as a Predictor of Metastasis in Adrenocortical Carcinoma: Artificial Intelligence Insights from Retrospective Imaging Data. J. Clin. Med. 2025, 14, 4829. https://doi.org/10.3390/jcm14144829
Goulian AJ, Yee DS. Ki-67 as a Predictor of Metastasis in Adrenocortical Carcinoma: Artificial Intelligence Insights from Retrospective Imaging Data. Journal of Clinical Medicine. 2025; 14(14):4829. https://doi.org/10.3390/jcm14144829
Chicago/Turabian StyleGoulian, Andrew J., and David S. Yee. 2025. "Ki-67 as a Predictor of Metastasis in Adrenocortical Carcinoma: Artificial Intelligence Insights from Retrospective Imaging Data" Journal of Clinical Medicine 14, no. 14: 4829. https://doi.org/10.3390/jcm14144829
APA StyleGoulian, A. J., & Yee, D. S. (2025). Ki-67 as a Predictor of Metastasis in Adrenocortical Carcinoma: Artificial Intelligence Insights from Retrospective Imaging Data. Journal of Clinical Medicine, 14(14), 4829. https://doi.org/10.3390/jcm14144829