How Action Shapes Temporal Judgments: A Study in Brain Damaged Patients Through Immersive Virtual Reality
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Neuropsychological Assessment
2.3. Procedure
2.3.1. Experiment 1
Time Estimation Computerized Task
Time Reproduction Computerized Task
2.3.2. Experiment 2
Time Estimation Virtual Reality Task
Time Reproduction Virtual Reality Task
2.4. Data Analysis
2.4.1. Experiment 1
Time Estimation Computerized Task
Time Reproduction Computerized Task
2.4.2. Experiment 2
Time Estimation Virtual Reality Task
Time Reproduction Virtual Reality Task
2.4.3. Regression Analyses
2.4.4. Correlation Analyses
Computerized Tasks
Virtual Reality Tasks
2.5. Lesion Mapping
3. Results
3.1. Experiment 1
3.1.1. Time Estimation Computerized Task
3.1.2. Time Reproduction Computerized Task
3.2. Experiment 2
3.2.1. Time Estimation Virtual Reality Task
3.2.2. Time Reproduction Virtual Reality Task
3.3. Regression Analyses
3.4. Correlation Analyses
3.4.1. Computerized Tasks
RBD Group
LBD Group
3.4.2. Virtual Reality Tasks
RBD Group
LBD Group
3.5. Lesion Mapping
3.5.1. Time Estimation Computerized Task
3.5.2. Time Reproduction Computerized Task
3.5.3. Time Estimation Virtual Reality Task
3.5.4. Time Reproduction Virtual Reality Task
4. Discussion
5. Limitations
6. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Kock, R.; Gladhill, K.A.; Ali, M.N.; Joiner, W.M.; Wiener, M. How movements shape the perception of time. Trends Cogn. Sci. 2021, 25, 950–963. [Google Scholar] [CrossRef] [PubMed]
- Wiener, M.; Zhou, W.; Bader, F.; Joiner, W.M. Movement Improves the Quality of Temporal Perception and Decision-Making. eNeuro 2019, 6, ENEURO.0042-19.2019. [Google Scholar] [CrossRef] [PubMed]
- van Wassenhove, V. Minding time in an amodal representational space. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2009, 364, 1815–1830. [Google Scholar] [CrossRef]
- Teghil, A.; Boccia, M.; D’Antonio, F.; Di Vita, A.; de Lena, C.; Guariglia, C. Neural substrates of internally-based and externally-cued timing: An activation likelihood estimation (ALE) meta-analysis of fMRI studies. Neurosci. Biobehav. Rev. 2019, 96, 197–209. [Google Scholar] [CrossRef]
- Teghil, A.; Di Vita, A.; Pietranelli, V.; Matano, A.; Boccia, M. Duration reproduction in regular and irregular contexts after unilateral brain damage: Evidence from voxel-based lesion-symptom mapping and atlas-based hodological analysis. Neuropsychologia 2020, 147, 107577. [Google Scholar] [CrossRef]
- Cantarella, G.; Vianello, G.; Vezzadini, G.; Frassinetti, F.; Ciaramelli, E.; Candini, M. Time Bisection and Reproduction: Evidence for a slowdown of the internal clock in right brain damaged patients. Cortex 2023, 167, 303–317. [Google Scholar] [CrossRef]
- Danckert, J.; Ferber, S.; Pun, C.; Broderick, C.; Striemer, C.; Rock, S.; Stewart, D. Neglected time: Impaired temporal perception of multisecond intervals in unilateral neglect. J. Cogn. Neurosci. 2007, 19, 1706–1720. [Google Scholar] [CrossRef]
- Hosseini, A.; Rezaei, S.; Saberi, A. Direct and indirect timing functions in unilateral hemispheric lesions. Basic Clin. Neurosci. 2020, 11, 301–312. [Google Scholar] [CrossRef]
- Low, E.; Crewther, S.G.; Perre, D.L.; Ben, O.; Laycock, R.; Tu, H.; Wijeratne, T. Beyond neglect: Preliminary evidence of retrospective time estimation abnormalities in non-neglect stroke and transient ischemic attack patients. Sci. Rep. 2016, 6, 22598. [Google Scholar] [CrossRef]
- Magnani, B.; Oliveri, M.; Mancuso, G.; Galante, E.; Frassinetti, F. Time and spatial attention: Effects of prism adaptation on temporal deficits in brain damaged patients. Neuropsychologia 2011, 49, 1016–1023. [Google Scholar] [CrossRef]
- Merrifield, C.; Hurwitz, M.; Danckert, J. Multimodal temporal perception deficits in a patient with left spatial neglect. Cogn. Neurosci. 2010, 1, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, M.; Magnani, B.; Filipelli, A.; Avanzi, S.; Frassinetti, F. Prismatic adaptation effects on spatial representation of time in neglect patients. Cortex 2013, 49, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.W. Time, change, and motion: The effects of stimulus movement on temporal perception. Percept. Psychophys. 1995, 1, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Kanai, R.; Paffen, C.L.; Hogendoorn, H.; Verstraten, F.A. Time dilation in dynamic visual display. J. Vis. 2006, 6, 1421–1430. [Google Scholar] [CrossRef]
- Kaneko, S.; Murakami, I. Perceived duration of visual motion increases with speed. J. Vis. 2009, 9, 14. [Google Scholar] [CrossRef]
- Kanai, R.; Watanabe, M. Visual onset expands subjective time. Percept. Psychophys. 2006, 68, 1113–1123. [Google Scholar] [CrossRef]
- Nather, F.C.; Bueno, J.L. Static images with different induced intensities of human body movements affect subjective time. Percept. Mot. Ski. 2011, 113, 157–170. [Google Scholar] [CrossRef]
- Sasaki, K.; Yamamoto, K.; Miura, K. The difference in speed sequence influences perceived duration. Perception 2013, 42, 198–207. [Google Scholar] [CrossRef]
- Giorjiani, G.M.; Biazoli, C.E., Jr.; Caetano, M.S. Differences in perceived durations between plausible biological and non-biological stimuli. Exp. Brain Res. 2021, 239, 161–173. [Google Scholar] [CrossRef]
- De Kock, R.; Zhou, W.; Joiner, W.M.; Wiener, M. Slowing the body slows down time perception. eLife 2021, 10, e63607. [Google Scholar] [CrossRef]
- Pacella, V.; Scandola, M.; Bà, M.; Smania, N.; Beccherle, M.; Rossato, E.; Volpe, D.; Moro, V. Temporal judgments of actions following unilateral brain damage. Sci. Rep. 2022, 12, 21668. [Google Scholar] [CrossRef] [PubMed]
- Bailenson, J.N.; Blascovich, J.; Beall, A.C.; Loomis, J.M. Interpersonal distance in immersive virtual environments. Personal. Soc. Psychol. Bull. 2003, 29, 819–833. [Google Scholar] [CrossRef] [PubMed]
- Iachini, T.; Coello, Y.; Frassinetti, F.; Senese, V.P.; Galante, F.; Ruggiero, G. Peripersonal and interpersonal space in virtual and real environments: Effects of gender and age. J. Environ. Psychol. 2016, 45, 154–164. [Google Scholar] [CrossRef]
- Loomis, J.; Blascovich, J.; Beall, A. Immersive virtual environment technology as a basic research tool in psychology. Behav. Res. Methods Instrum. Comput. 1999, 31, 557–564. [Google Scholar] [CrossRef]
- Freeman, D.; Reeve, S.; Robinson, A.; Ehlers, A.; Clark, D.; Spanlang, B.; Slater, M. Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychol. Med. 2017, 47, 2393–2400. [Google Scholar] [CrossRef]
- Iachini, T.; Maffei, L.; Masullo, M.; Senese, V.P.; Rapuano, M.; Pascale, A.; Sorrentino, F.; Ruggiero, G. The experience of virtual reality: Are individual differences in mental imagery associated with sense of presence? Cogn. Process. 2019, 20, 291–298. [Google Scholar] [CrossRef]
- Parsons, T.D. Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Front. Hum. Neurosci. 2015, 9, 660. [Google Scholar] [CrossRef]
- Basso, G.; Nichelli, P.; Frassinetti, F.; di Pellegrino, G. Time perception in a neglected space. Neuroreport 1996, 7, 2111–2114. [Google Scholar] [CrossRef]
- Gibbon, J.; Church, R.M.; Meck, W.H. Scalar timing in memory. Ann. N. Y. Acad. Sci. 1984, 423, 52–77. [Google Scholar] [CrossRef]
- Jeannerod, M. Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage 2001, 14 Pt 2, S103–S109. [Google Scholar] [CrossRef]
- Jeannerod, M. Motor Cognition: What Actions Tell the Self; Oxford University Press: Oxford, UK, 2006. [Google Scholar] [CrossRef]
- Craig, A.D. How do you feel now? The anterior insula and human awareness. Nat. Rev. Neurosci. 2009, 10, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, M.; Koike, T.; Morita, T.; Harada, T.; Le Bihan, D.; Sadato, N. Neural substrates of accurate perception of time duration: A functional magnetic resonance imaging study. Neuropsychologia 2022, 166, 108145. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.J.; Kanai, R.; Tanabe, H.C.; Yoshida, Y.; Carlson, S.; Walsh, V.; Sadato, N. Interaction of numerosity and time in prefrontal and parietal cortex. J. Neurosci. 2013, 33, 883–893. [Google Scholar] [CrossRef]
- Jiang, J.; Beck, J.; Heller, K.; Egner, T. An insula-frontostriatal network mediates flexible cognitive control by adaptively predicting changing control demands. Nat. Commun. 2015, 6, 8165. [Google Scholar] [CrossRef]
- Mella, N.; Bourgeois, A.; Perren, F.; Viaccoz, A.; Kliegel, M.; Picard, F. Does the insula contribute to emotion-related distortion of time? A neuropsychological approach. Hum. Brain Mapp. 2019, 40, 1470–1479. [Google Scholar] [CrossRef]
- Monfort, V.; Pfeuty, M.; Klein, M.; Collé, S.; Brissart, H.; Jonas, J.; Maillard, L. Distortion of time interval reproduction in an epileptic patient with a focal lesion in the right anterior insular/inferior frontal cortices. Neuropsychologia 2014, 64, 184–194. [Google Scholar] [CrossRef]
- Wittmann, M. The inner sense of time: How the brain creates a representation of duration. Nat. Rev. Neurosci. 2013, 14, 217–223. [Google Scholar] [CrossRef]
- Ionta, S.; Martuzzi, R.; Salomon, R.; Blanke, O. The brain network reflecting bodily self-consciousness: A functional connectivity study. Soc. Cogn. Affect. Neurosci. 2014, 9, 1904–1913. [Google Scholar] [CrossRef]
- Ionta, S.; Perruchoud, D.; Draganski, B.; Blanke, O. Body context and posture affect mental imagery of hands. PLoS ONE 2012, 7, e34382. [Google Scholar] [CrossRef]
- Patel, K.; Beaver, D.; Gruber, N.; Printezis, G.; Giannopulu, I. Mental imagery of whole-body motion along the sagittal-anteroposterior axis. Sci. Rep. 2022, 12, 14345. [Google Scholar] [CrossRef]
- Tomasino, B.; Gremese, M. Effects of stimulus type and strategy on mental rotation network: An activation likelihood estimation meta-analysis. Front. Hum. Neurosci. 2016, 9, 693. [Google Scholar] [CrossRef] [PubMed]
- Tomasino, B.; Toraldo, A.; Rumiati, R.I. Dissociation between the mental rotation of visual images and motor images in unilateral brain-damaged patients. Brain Cogn. 2003, 51, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Tomasino, B.; Werner, C.J.; Weiss, P.H.; Fink, G.R. Stimulus properties matter more than perspective: An fMRI study of mental imagery and silent reading of action phrases. NeuroImage 2007, 36, T128–T141. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Nichelli, P.; Leone, M.; Caronna, A.; Lmbornone, E.; Alberoni, M.; Zuffi, M.; Venneri, A. Taratura di un test di stime cognitive di impiego diagnostico in clinica: Stime dei tempi e dei pesi (STEP). Riv. Neurol. 2002, 12, 37–42. [Google Scholar]
- De Renzi, E.; Vignolo, L.A. The token test: A sensitive test to detect receptive disturbances in aphasics. Brain 1962, 85, 665–678. [Google Scholar] [CrossRef]
- Wilson, B.; Cockburn, J.; Halligan, P. Behavioural Inattention Test; Thames Valley Test Company: Titchfield, UK, 1987. [Google Scholar]
- Vallar, G.; Rusconi, M.L.; Fontana, S.; Musicco, M. Tre test di esplorazione visuo-spaziale: Taratura su 212 soggetti normali. Arch. Psicol. Neurol. Psichiatr. 1994, 55, 827–841. [Google Scholar]
- Mancuso, M.; Rosadoni, S.; Capitani, D.; Bickerton, W.L.; Humphreys, G.W.; De Tanti, A.; Zampolini, M.; Galardi, G.; Caputo, M.; De Pellegrin, S.; et al. Italian standardization of the Apples Cancellation Test. Neurol. Sci. 2015, 36, 1233–1240. [Google Scholar] [CrossRef]
- Appollonio, I.; Leone, M.; Isella, V.; Piamarta, F.; Consoli, T.; Villa, M.L.; Forapani, E.; Russo, A.; Nichelli, P. The Frontal Assessment Battery (FAB): Normative values in an Italian population sample. Neurol. Sci. 2005, 26, 108–116. [Google Scholar] [CrossRef]
- Tesio, L.; Granger, C.V.; Perucca, L.; Franchignoni, F.P.; Battaglia, M.A.; Russell, C.F. The FIM instrument in the United States and Italy: A comparative study. Am. J. Phys. Med. Rehabil. 2002, 81, 168–176. [Google Scholar] [CrossRef]
- Candini, M.; D’Angelo, M.; Frassinetti, F. Time interaction with two spatial dimensions: From left/right to near/far. Front. Hum. Neurosci. 2022, 15, 796799. [Google Scholar] [CrossRef] [PubMed]
- Magnani, B.; Pavani, F.; Frassinetti, F. Changing auditory time with prismatic goggles. Cognition 2012, 125, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Bonato, M.; Zorzi, M.; Umiltà, C. When time is space: Evidence for a mental time line. Neurosci. Biobehav. Rev. 2012, 36, 2257–2273. [Google Scholar] [CrossRef] [PubMed]
- Vallesi, A.; McIntosh, A.R.; Stuss, D.T. Temporal preparation in aging: A functional MRI study. Neuropsychologia 2009, 47, 2876–2881. [Google Scholar] [CrossRef]
- Vicario, C.M.; Pecoraro, P.; Turriziani, P.; Koch, G.; Caltagirone, C.; Oliveri, M. Relativistic compression and expansion of experiential time in the left and right space. PLoS ONE 2008, 3, e1716. [Google Scholar] [CrossRef]
- Glicksohn, J.; Hadad, Y. Sex differences in time production revisited. J. Individ. Differ. 2012, 33, 35–42. [Google Scholar] [CrossRef]
- Rorden, C.; Karnath, H.O.; Bonilha, L. Improving lesion-symptom mapping. J. Cogn. Neurosci. 2007, 19, 1081–1088. [Google Scholar] [CrossRef]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 2002, 15, 273–289. [Google Scholar] [CrossRef]
- Brunner, E.; Munzel, U. The nonparametric behrens-fisher problem: Asymptotic theory and a small-sample approximation. Biom. J. 2000, 42, 17–25. [Google Scholar] [CrossRef]
- Medina, J.; Kimberg, D.Y.; Chatterjee, A.; Coslett, H.B. Inappropriate usage of the Brunner-Munzel test in recent voxel-based lesion-symptom mapping studies. Neuropsychologia 2010, 48, 341–343. [Google Scholar] [CrossRef]
- Rorden, C.; Brett, M. Stereotaxic display of brain lesions. Behav. Neurol. 2000, 12, 191–200. [Google Scholar] [CrossRef]
- Coelho, P.; Rodrigues, J.A.; Nascimento Alves, P.; Fonseca, A.C. Time perception changes in stroke patients: A systematic literature review. Front. Neurol. 2022, 13, 938367. [Google Scholar] [CrossRef] [PubMed]
- Nani, A.; Manuello, J.; Liloia, D.; Duca, S.; Costa, T.; Cauda, F. The Neural Correlates of Time: A Meta-analysis of Neuroimaging Studies. J. Cogn. Neurosci. 2019, 31, 1796–1826. [Google Scholar] [CrossRef] [PubMed]
- Radua, J.; Del Pozo, N.O.; Gómez, J.; Guillen-Grima, F.; Ortuño, F. Meta-analysis of functional neuroimaging studies indicates that an increase of cognitive difficulty during executive tasks engages brain regions associated with time perception. Neuropsychologia 2014, 58, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Mottaghy, F.M.; Gangitano, M.; Krause, B.J.; Pascual-Leone, A. Chronometry of parietal and prefrontal activations in verbal working memory revealed by transcranial magnetic stimulation. NeuroImage 2003, 18, 565–575. [Google Scholar] [CrossRef]
- Craig, A.D. How do you feel? Interoception: The sense of the physiological condition of the body. Nat. Rev. Neurosci. 2002, 3, 655–666. [Google Scholar] [CrossRef]
- Critchley, H.D.; Wiens, S.; Rotshtein, P.; Ohman, A.; Dolan, R.J. Neural systems supporting interoceptive awareness. Nat. Neurosci. 2004, 7, 189–195. [Google Scholar] [CrossRef]
- Matell, M.S.; Meck, W.H. Neuropsychological mechanisms of interval timing behavior. BioEssays 2000, 22, 94–103. [Google Scholar] [CrossRef]
- Matell, M.S.; Meck, W.H. Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cogn. Brain Res. 2004, 21, 139–170. [Google Scholar] [CrossRef]
- Harrington, D.L.; Haaland, K.Y.; Knight, R.T. Cortical networks underlying mechanisms of time perception. J. Neurosci. 1998, 18, 1085–1095. [Google Scholar] [CrossRef]
- Oliveri, M.; Koch, G.; Salerno, S.; Torriero, S.; Lo Gerfo, E.; Caltagirone, C. Representation of time intervals in right posterior parietal cortex: Implication for a mental timeline. NeuroImage 2009, 46, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Bueti, D.; Walsh, V.; Frith, C.; Rees, G. Different brain circuits underlie motor and perceptual representations of temporal intervals. J. Cogn. Neurosci. 2008, 20, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Coull, J.T.; Vidal, F.; Nazarian, B.; Macar, F. Functional anatomy of the attentional modulation of time estimation. Science 2004, 303, 1506–1508. [Google Scholar] [CrossRef]
- Hayashi, M.J.; Ivry, R.B. Duration selectivity in right parietal cortex reflects the subjective experience of time. J. Neurosci. 2020, 40, 7749–7758. [Google Scholar] [CrossRef]
- Lewis, P.A.; Miall, R.C. Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Curr. Opin. Neurobiol. 2003, 13, 250–255. [Google Scholar] [CrossRef]
- Livesey, A.C.; Wall, M.B.; Smith, A.T. Time perception: Manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia 2007, 45, 321–331. [Google Scholar] [CrossRef]
- Wiener, M.; Turkeltaub, P.; Coslett, H.B. The image of time: A voxel-wise meta-analysis. NeuroImage 2010, 49, 1728–1740. [Google Scholar] [CrossRef]
- Binetti, N.; Hagura, N.; Fadipe, C.; Tomassini, A.; Walsh, V.; Bestmann, S. Binding space and time through action. Proc. Biol. Sci. 2015, 282, 20150381. [Google Scholar] [CrossRef]
- Gavazzi, G.; Bisio, A.; Pozzo, T. Time perception of visual motion is tuned by the motor representation of human actions. Sci. Rep. 2013, 3, 1168. [Google Scholar] [CrossRef]
- Jovanovic, L.; López-Moliner, J.; Mamassian, P. Contrasting contributions of movement onset and duration to self-evaluation of sensorimotor timing performance. Eur. J. Neurosci. 2021, 54, 5092–5111. [Google Scholar] [CrossRef]
- Schwartze, M.; Rothermich, K.; Kotz, S.A. Functional dissociation of pre-SMA and SMA-proper in temporal processing. NeuroImage 2012, 60, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Hanakawa, T.; Immisch, I.; Toma, K.; Dimyan, M.A.; Van Gelderen, P.; Hallett, M. Functional properties of brain areas associated with motor execution and imagery. J. Neurophysiol. 2003, 89, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Hétu, S.; Grégoire, M.; Saimpont, A.; Coll, M.P.; Eugène, F.; Michon, P.E.; Jackson, P.L. The neural network of motor imagery: An ALE meta-analysis. Neurosci. Biobehav. Rev. 2013, 37, 930–949. [Google Scholar] [CrossRef]
- Kilteni, K.; Andersson, B.J.; Houborg, C.; Ehrsson, H.H. Motor imagery involves predicting the sensory consequences of the imagined movement. Nat. Commun. 2018, 9, 1617. [Google Scholar] [CrossRef]
- Lotze, M.; Montoya, P.; Erb, M.; Hülsmann, E.; Flor, H.; Klose, U.; Birbaumer, N.; Grodd, W. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: An fMRI study. J. Cogn. Neurosci. 1999, 11, 491–501. [Google Scholar] [CrossRef]
- Naito, E.; Roland, P.E.; Ehrsson, H.H. I feel my hand moving: A new role of the primary motor cortex in somatic perception of limb movement. Neuron 2002, 36, 979–988. [Google Scholar] [CrossRef]
- Lotze, M.; Heymans, U.; Birbaumer, N.; Veit, R.; Erb, M.; Flor, H.; Halsband, U. Differential cerebral activation during observation of expressive gestures and motor acts. Neuropsychologia 2006, 44, 1787–1795. [Google Scholar] [CrossRef]
- Jeannerod, M.; Decety, J. Mental motor imagery: A window into the representational stages of action. Curr. Opin. Neurobiol. 1995, 5, 727–732. [Google Scholar] [CrossRef]
- Ferri, F.; Frassinetti, F.; Ardizzi, M.; Costantini, M.; Gallese, V. A sensorimotor network for the bodily self. J. Cogn. Neurosci. 2012, 24, 1584–1595. [Google Scholar] [CrossRef]
- Magnani, B.; Musetti, A.; Frassinetti, F. Neglect in temporal domain: Amelioration following a prismatic adaptation treatment and implications in everyday life. A single case study. Brain Cogn. 2021, 150, 105712. [Google Scholar] [CrossRef]
- Eaves, D.L.; Riach, M.; Holmes, P.S.; Wright, D.J. Motor imagery during action observation: A brief review of evidence, theory and future research opportunities. Front. Neurosci. 2016, 10, 514. [Google Scholar] [CrossRef] [PubMed]
- Maggio, M.G.; Latella, D.; Maresca, G.; Sciarrone, F.; Manuli, A.; Naro, A.; De Luca, R.; Calabrò, R.S. Virtual Reality and Cognitive Rehabilitation in People with Stroke: An Overview. J. Neurosci. Nurs. 2019, 51, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Pedroli, E.; Serino, S.; Cipresso, P.; Pallavicini, F.; Riva, G. Assessment and rehabilitation of neglect using virtual reality: A systematic review. Front. Behav. Neurosci. 2015, 9, 226. [Google Scholar] [CrossRef] [PubMed]
- Dasic, D.; Morgan, L.; Panezai, A.; Syrmos, N.; Ligarotti, G.K.I.; Zaed, I.; Chibbaro, S.; Khan, T.; Prisco, L.; Ganau, M. A scoping review on the challenges, improvement programs, and relevant output metrics for neurotrauma services in major trauma centers. Surg. Neurol. Int. 2022, 13, 171. [Google Scholar] [CrossRef]
Case | Aetiology | TPL | MMSE | Token Test | BIT-C | BCT | AT | FAB | STEP | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OM | Left OM | Full Apples | Asymmetry | Time | Weight | |||||||
LBD 1 | H | 45 | 28.5 | 26.8 | 145 | 0 | 1 | 50 | 0 | 14.5 | 17 * | 11 * |
LBD 2 | I | 2 | 26.7 | NA | NA | NA | NA | NA | NA | NA | 22 | 26 |
LBD 3 | I | 25 | 30 | 33.5 | 145 | 0 | 0 | 47 | −2 | 14.8 | 27 | 20 |
LBD 4 | H | 12 | 19 * | NA | 139 | 5 | 0 | 50 | 0 | 11.5 * | NA | NA |
LBD 5 | I | 1 | 26 | 33.5 | 144 | NA | NA | 47 | −1 | 16.1 | 22 | 24 |
LBD 6 | I | 2 | 26 | 31.5 | 134 | 6 * | 3 | 45 | 1 | 12.4 * | 21 | 28 |
LBD 7 | I | 30 | 27.7 | 33 | 140 | 1 | 1 | 50 | 0 | 13.5 | 22 | 23 |
LBD 8 | I | 8 | 20.3 * | 27.8 | 143 | 1 | 1 | 50 | 0 | NA | 25 | 18 * |
LBD 9 | H | 10 | 30 | 34.3 | 143 | 0 | 0 | 49 | 0 | 16.1 | 27 | 23 |
LBD 10 | TBI | 5 | 26.2 | 30 | NA | 0 | 0 | 49 | −1 | 16.2 | 26 | 14 * |
LBD 11 | I | 1 | 27 | 35.3 | 140 | 1 | 0 | 48 | −1 | 15.8 | 24 | 24 |
LBD 12 | I | 1 | 29.3 | 33.3 | 145 | 3 | 1 | 45 | 2 | 16.4 | 22 | 25 |
LBD 13 | I | 1 | 26.3 | 32 | 144 | 6 * | 2 | 50 | 0 | 13.2 * | 24 | 24 |
LBD 14 | I | 67 | 28.7 | 32.5 | 143 | 1 | 1 | 49 | −1 | 12.5 * | 24 | 24 |
LBD 15 | I | 4 | 26 | 25.8 * | 143 | 2 | 0 | 49 | 1 | 14.4 | 22 | 26 |
LBD 16 | H | 4 | 24 | 32.8 | 140 | 5 | 3 | 50 | 0 | 15.4 | 21 | 24 |
RBD 1 | H | 37 | 27 | 33.3 | 143 | 2 | 1 | 50 | 0 | 14.1 | 28 | 26 |
RBD 2 | I | 1 | 24.7 | 30.3 | 140 | 4 | 2 | 41 * | −1 | 11.9 * | 17 * | 18 * |
RBD 3 | I | 16 | 25.9 | 30 | 143 | 1 | 1 | 49 | 1 | 17.7 | 25 | 24 |
RBD 4 | I | 82 | 28 | 35.8 | 144 | 0 | 0 | 48 | −1 | 13.2 * | 23 | 25 |
RBD 5 | I | 5 | 25.3 | 35 | 138 | 1 | 1 | 46 | −2 | 15.3 | 19 * | 28 |
RBD 6 | I | 1 | 30 | NA | NA | 2 | 0 | 48 | 1 | NA | 25 | 25 |
RBD 7 | I | 145 | 25.2 | 32.5 | 138 | 1 | 0 | 50 | 0 | 13.7 | 24 | 21 |
RBD 8 | I | 1 | 21.1 * | 30.5 | 137 | 0 | 0 | 49 | 1 | 12.5 * | 26 | 24 |
RBD 9 | H | 16 | 25.3 | 27.3 | 139 | 4 | 4 | 48 | 0 | 13.3 * | 22 | 27 |
RBD 10 | H | 117 | 27 | 34.2 | 138 | 1 | 1 | 49 | 1 | 10.9 * | 25 | 23 |
RBD 11 | I | 10 | 27 | 31.5 | 146 | 0 | 0 | 50 | 0 | 16.9 | 18 * | 28 |
RBD 12 | I + H | 34 | 27.2 | 32.5 | 136 | 3 | 0 | 46 | 0 | 13.2 * | 23 | 17 * |
RBD 13 | I | 90 | 26 | 33 | 137 | 1 | 0 | 50 | 0 | 12.9 * | 16 * | 21 |
RBD 14 | I | 18 | 25.2 | 31.8 | 144 | 0 | 0 | 50 | 0 | 15.9 | 19 * | 24 |
RBD 15 | I | 61 | 27 | 34.3 | 137 | 4 | 4 | 48 | 2 | 14.1 | 21 | 20 |
RBD 16 | N | 1 | 26.2 | 31.5 | 142 | 8 * | 5 * | 47 | 0 | 15.9 | 23 | 23 |
RBD 17 | H | 63 | 25.4 | 28 | 130 | 4 | 1 | 46 | 2 | 15.7 | 20 | 18 |
RBD 18 | I | 7 | 26.2 | 30 | 120 * | 2 | 1 | 45 | −1 | 16.7 | 22 | 17 * |
Case | Sex | MMSE | STEP | |
---|---|---|---|---|
Time | Weight | |||
HC 1 | F | 26.2 | 25 | 21 |
HC 2 | F | 26.2 | 26 | 23 |
HC 3 | F | 26.4 | 25 | 21 |
HC 4 | F | 26.4 | 25 | 16 * |
HC 5 | M | 30 | 24 | 13 * |
HC 6 | M | 30 | 25 | 25 |
HC 7 | F | 30 | 28 | 23 |
HC 8 | M | 30 | 22 | 22 |
HC 9 | F | 30 | 23 | 22 |
HC 10 | F | 28.3 | 24 | 23 |
HC 11 | M | 27 | 23 | 20 |
HC 12 | F | 26.2 | 22 | 26 |
HC 13 | F | 26.7 | 24 | 15 * |
HC 14 | F | 26.2 | 22 | 25 |
HC 15 | M | 23.2 | 23 | 19 * |
HC 16 | F | 30 | 21 | 20 |
HC 17 | F | 25.2 | 27 | 24 |
HC 18 | F | 30 | 23 | 25 |
HC 19 | F | 25.2 | 22 | 27 |
Execution Time of Estimation | Estimation Pre | Estimation Post | Execution Time of Reproduction | Reproduction | |
---|---|---|---|---|---|
HC | 1.845 | 2.414 | 2.379 | 2.079 | 2.889 |
0.664 | 0.686 | 0.713 | 0.509 | 0.989 | |
LBD | 3.276 | 4.225 | 3.878 | 2.891 | 3.636 |
0.951 | 1.432 | 1.035 | 1.183 | 0.809 | |
RBD | 2.965 | 4.072 | 3.558 | 3.802 | 4.252 |
1.373 | 1.449 | 1.318 | 1.792 | 1.727 |
STEP Time | STEP Weight | FIM | FAB | BIT−C | ||
---|---|---|---|---|---|---|
RBD | PSE | 0.0284 | −0.1918 | 0.0709 | 0.2602 | −0.4900 |
0.911 | 0.446 | 0.868 | 0.313 | 0.046 | ||
WR | −0.1590 | 0.0902 | −0.3521 | −0.3943 | 0.3159 | |
0.529 | 0.722 | 0.392 | 0.117 | 0.217 | ||
Mean reproduction | −0.4646 | −0.0857 | 0.134 | 0.3636 | 0.0871 | |
0.05 | 0.735 | 0.752 | 0.151 | 0.74 | ||
LBD | PSE | 0.1463 | −0.0694 | 0.1863 | −0.0863 | −0.0238 |
0.603 | 0.806 | 0.631 | 0.769 | 0.936 | ||
WR | −0.2410 | 0.0911 | −0.2301 | −0.5971 | −0.3095 | |
0.387 | 0.747 | 0.551 | 0.024 | 0.282 | ||
Mean reproduction | −0.3023 | 0.0486 | −0.1382 | 0.1411 | 0.0586 | |
0.273 | 0.863 | 0.723 | 0.63 | 0.842 |
STEP Time | STEP Weight | FIM | FAB | BIT−C | ||
---|---|---|---|---|---|---|
RBD | EEst | −0.0880 | −0.4955 | −0.4281 | −0.0111 | −0.1945 |
0.728 | 0.037 | 0.29 | 0.966 | 0.454 | ||
Estimation pre | 0.0775 | −0.0407 | −0.5936 | 0.0028 | 0.1344 | |
0.76 | 0.873 | 0.121 | 0.991 | 0.607 | ||
Estimation post | 0.0367 | −0.2274 | −0.5600 | 0.1075 | −0.0180 | |
0.885 | 0.364 | 0.149 | 0.681 | 0.945 | ||
ERepr | −0.1018 | −0.4402 | −0.7084 | −0.2527 | −0.1850 | |
0.688 | 0.068 | 0.049 | 0.328 | 0.477 | ||
Reproduction | −0.2274 | −0.4400 | −0.594 | −0.1541 | −0.2847 | |
0.364 | 0.068 | 0.121 | 0.555 | 0.268 | ||
LBD | EEst | −0.6821 | 0.1538 | −0.4104 | −0.4670 | −0.2212 |
0.005 | 0.584 | 0.273 | 0.092 | 0.447 | ||
Estimation pre | −0.6262 | 0.1885 | −0.4402 | −0.1418 | −0.3817 | |
0.013 | 0.501 | 0.236 | 0.629 | 0.178 | ||
Estimation post | −0.5763 | 0.2443 | −0.1384 | −0.2241 | −0.2061 | |
0.025 | 0.38 | 0.723 | 0.441 | 0.48 | ||
ERepr | −0.3783 | −0.1131 | −0.0097 | −0.4257 | −0.3007 | |
0.164 | 0.688 | 0.98 | 0.129 | 0.296 | ||
Reproduction | −0.4068 | 0.0987 | −0.0425 | −0.4524 | −0.0520 | |
0.132 | 0.726 | 0.914 | 0.104 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vianello, G.; Candini, M.; Vezzadini, G.; Varalta, V.; Ruggiero, G.; Iachini, T.; Frassinetti, F. How Action Shapes Temporal Judgments: A Study in Brain Damaged Patients Through Immersive Virtual Reality. J. Clin. Med. 2025, 14, 4825. https://doi.org/10.3390/jcm14144825
Vianello G, Candini M, Vezzadini G, Varalta V, Ruggiero G, Iachini T, Frassinetti F. How Action Shapes Temporal Judgments: A Study in Brain Damaged Patients Through Immersive Virtual Reality. Journal of Clinical Medicine. 2025; 14(14):4825. https://doi.org/10.3390/jcm14144825
Chicago/Turabian StyleVianello, Greta, Michela Candini, Giuliana Vezzadini, Valentina Varalta, Gennaro Ruggiero, Tina Iachini, and Francesca Frassinetti. 2025. "How Action Shapes Temporal Judgments: A Study in Brain Damaged Patients Through Immersive Virtual Reality" Journal of Clinical Medicine 14, no. 14: 4825. https://doi.org/10.3390/jcm14144825
APA StyleVianello, G., Candini, M., Vezzadini, G., Varalta, V., Ruggiero, G., Iachini, T., & Frassinetti, F. (2025). How Action Shapes Temporal Judgments: A Study in Brain Damaged Patients Through Immersive Virtual Reality. Journal of Clinical Medicine, 14(14), 4825. https://doi.org/10.3390/jcm14144825