The Kinetics of Microcirculatory Dysfunction During Paclitaxel Application in an In Vivo Mouse Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Model
2.2. Medication
2.3. Microscopy
2.4. Statistical Analysis
2.5. Experimental Protocol
3. Results
Intravital Fluorescence Microscopic Analysis
4. Discussion
5. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARRIVE | Animal Research Reporting of In Vivo Experiments |
CIPN | Chemotherapy-induced peripheral neuropathy |
FITC-dextran | Fluorescein isothiocyanate-labeled dextran |
FCD | Functional capillary density |
IVM | Intravital fluorescence microscopy |
MPT | Mitochondrial permeability transition pore |
MV | Molecular volume |
NETs | Neutrophil extracellular traps |
ROS | Reactive oxygen species |
References
- Lustberg, M.B.; Kuderer, N.M.; Desai, A.; Bergerot, C.; Lyman, G.H. Mitigating long-term and delayed adverse events associated with cancer treatment: Implications for survivorship. Nat. Rev. Clin. Oncol. 2023, 20, 527–542. [Google Scholar] [CrossRef] [PubMed]
- Salat, K. Chemotherapy-induced peripheral neuropathy: Part 1-current state of knowledge and perspectives for pharmacotherapy. Pharmacol. Rep. 2020, 72, 486–507. [Google Scholar] [CrossRef] [PubMed]
- Stubblefield, M.D.; Burstein, H.J.; Burton, A.W.; Custodio, C.M.; Deng, G.E.; Ho, M.; Junck, L.; Morris, G.S.; Paice, J.A.; Tummala, S.; et al. NCCN task force report: Management of neuropathy in cancer. J. Natl. Compr. Cancer Netw. 2009, 7, S-1–S-26. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Juranek, J.K.; Zygulska, A.L. Chemotherapy-induced neuropathies—A growing problem for patients and health care providers. Brain Behav. 2016, 7, e00558. [Google Scholar] [CrossRef]
- Cioroiu, C.; Weimer, L.H. Update on chemotherapy-induced peripheral neuropathy. Curr. Neurol. Neurosci. Rep. 2017, 17, 47. [Google Scholar] [CrossRef]
- Flatters, S.J.L.; Dougherty, P.M.; Colvin, L.A. Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): A narrative review. Br. J. Anaesth. 2017, 119, 737–749. [Google Scholar] [CrossRef]
- Seretny, M.; Currie, G.L.; Sana, E.S.; Ramnarine, S.; Grant, R.; MacLeod, M.R.; Colvin, L.A.; Fallon, M. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 2014, 155, 2461–2470. [Google Scholar] [CrossRef]
- Colvin, L.A. Chemotherapy-induced peripheral neuropathy (CIPN): Where are we now? Pain 2019, 160 (Suppl. S1), S1–S10. [Google Scholar] [CrossRef]
- Fallon, M.T. Neuropathic pain in cancer. Br. J. Anaesth. 2018, 111, 105–111. [Google Scholar] [CrossRef]
- Argyriou, A.A.; Bruna, J.; Marmiroli, P.; Cavaletti, G. Chemotherapy-induced peripheral neurotoxicity (CIPN): An update. Crit. Rev. Oncol. Hematol 2012, 82, 51–77. [Google Scholar] [CrossRef]
- Bernhardson, B.M.; Tishelman, C.; Rutqvist, L.E. Chemosensory changes experienced by patients undergoing cancer chemotherapy: A qualitative interview study. J. Pain Symptom Manag. 2007, 34, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Staff, N.P.; Grisold, A.; Grisold, W.; Windebank, A.J. Chemotherapy-Induced Peripheral Neuropathy: A Current Review. Ann. Neurol. 2017, 81, 772–781. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, R.S.; Alvarez, G.A.M.; Dombovy-Johnson, M.; Eller, J.; Abd-Elsayed, A. Evidence-Based Treatment of Pain in Chemotherapy-Induced Peripheral Neuropathy. Curr. Pain Headache Rep. 2023, 27, 99–116. [Google Scholar] [CrossRef] [PubMed]
- Reeves, B.N.; Dakhil, S.R.; Sloan, J.A.; Wolf, S.L.; Burger, K.N.; Kamal, A.; Le-Lindqwister, N.A.; Soori, G.S.; Jaslowski, A.J.; Kelaghan, J. Further data supporting that paclitaxel-associated acute pain syndrome is associated with development of peripheral neuropathy: North Central Cancer Treatment Group trial N08C1. Cancer 2012, 118, 5171–5178. [Google Scholar] [CrossRef]
- Loprinzi, C.L.; Reeves, B.N.; Dakhil, S.R.; Sloan, J.A.; Wolf, S.L.; Burger, K.N.; Kamal, A.; Le-Lindqwister, N.A.; Soori, G.S.; Jaslowski, A.J.; et al. Natural history of paclitaxel-associated acute pain syndrome: Prospective cohort study NCCTG N08C1. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 1472–1478. [Google Scholar] [CrossRef]
- Meregalli, C.; Fumagalli, G.; Alberti, P.; Canta, A.; Carozzi, V.A.; Chiorazzi, A.; Monza, L.; Pozzi, E.; Sandelius, Å.; Blennow, K.; et al. Neurofilament light chain as disease biomarker in a rodent model of chemotherapy induced peripheral neuropathy. Exp. Neurol. 2018, 307, 129–132. [Google Scholar] [CrossRef]
- Meregalli, C.; Fumagalli, G.; Alberti, P.; Canta, A.; Chiorazzi, A.; Monza, L.; Pozzi, E.; Carozzi, V.A.; Blennow, K.; Zetterberg, H.; et al. Neurofilament light chain: A specific serum biomarker of axonal damage severity in rat models of Chemotherapy-Induced Peripheral Neurotoxicity. Arch. Toxicol. 2020, 94, 2517–2522. [Google Scholar] [CrossRef]
- Huehnchen, P.; Schinke, C.; Bangemann, N.; Dordevic, A.D.; Kern, J.; Maierhof, S.K.; Hew, L.; Nolte, L.; Körtvelyessy, P.; Göpfert, J.C.; et al. Neurofilament proteins as a potential biomarker in chemotherapy-induced polyneuropathy. JCI Insight 2022, 7, e154395. [Google Scholar] [CrossRef]
- Areti, A.; Yerra, V.G.; Naidu, V.G.M.; Kumar, A. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biol. 2014, 2, 289–295. [Google Scholar] [CrossRef]
- Reuter, S.; Bajorat, R.; Müller-Graf, F.; Zitzmann, A.R.; Müller, V.; Pickhardt, A.L.; Reuter, D.A.; Böhm, S.H.; Vollmar, B. The role of microcirculatory dysfunction during paclitaxel treatment as a critical co-factor for the development of chemotherapy-induced peripheral neuropathy. Geburtshilfe Und Frauenheilkd. 2025, 85, 710–723. [Google Scholar] [CrossRef]
- TierSchG. Available online: https://www.gesetze-im-internet.de/tierschg/ (accessed on 1 April 2025).
- European Animal Research Association. EU Regulations on Animal Research. Available online: https://www.eara.eu/animal-research-law (accessed on 1 April 2025).
- Barker, J.H.; Hammersen, F.; Bondàr, I.; Uhl, E.; Galla, T.J.; Menger, M.D.; Messmer, K. The hairless mouse ear for in vivo studies of skin microcirculation. Plast. Reconstr. Surg. 1989, 83, 948–959. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, E.; Boykin, J.V.; Pittman, R.N. Method for in vivo microscopy of the cutaneous microcirculation of the hairless mouse ear. Microvasc. Res. 1980, 19, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Klyscz, T.; Jünger, M.; Jung, F.; Zeintl, H. Cap image—A new kind of computer-assisted video image analysis system for dynamic capillary microscopy. Biomed. Tech. 1997, 42, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Vollmar, B.; El-Gibaly, A.M.; Scheuer, C.; Strik, M.W.; Bruch, H.P.; Menger, M.D. Acceleration of cutaneous wound healing by transient p53 inhibition. Lab. Investig. 2002, 82, 1063–1071. [Google Scholar] [CrossRef]
- Arora, N.; Islam, S.; Wafa, K.; Zhou, J.; Toguri, J.T.; Cerny, V.; Lehmann, C. Evaluation of iris functional capillary density in experimental local and systemic inflammation. J. Microsc. 2017, 266, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Vollmar, B.; Morgenthaler, M.; Amon, M.; Menger, M.D. Skin microvascular adaptations during maturation and aging of hairless mice. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, H1591–H1599. [Google Scholar] [CrossRef]
- Sehnert, B.; Gierer, P.; Ibrahim, S.; Kühl, A.; Voll, R.; Nandakumar, K.S.; Holmdahl, R.; Hallmann, R.; Vollmar, B.; Burkhardt, H. Modulation of granulocyte-endothelium interactions by antileukoproteinase: Inhibition of anti-type II collagen antibody-induced leukocyte attachment to the synovial endothelium. Arthritis Res. Ther. 2006, 8, R95. [Google Scholar] [CrossRef]
- Lenth, R.V. Statistical power calculations. J. Anim. Sci. 2007, 85, E24–E29. [Google Scholar] [CrossRef]
- NSW Department of Primary Industries and Animal Research Review Panel. Replacement, Reduction and Refinement (3 Rs). Available online: https://www.dpi.nsw.gov.au/dpi/animals/animal-ethics-infolink/three-rs (accessed on 1 April 2025).
- Wang, C.Y.; Lin, T.T.; Hu, L.; Xu, C.J.; Hu, F.; Wan, L.; Yang, X.; Wu, X.F.; Zhang, X.T.; Li, Y.; et al. Neutrophil extracellular traps as a unique target in the treatment of chemotherapy-induced peripheral neuropathy. EBioMedicine 2023, 90, 104499. [Google Scholar] [CrossRef]
- Peterson, E.R.; Crain, S.M. Nerve growth factor attenuates neurotoxic effects of Taxol on spinal cord-ganglion explants from fetal mice. Science 1982, 217, 377–379. [Google Scholar] [CrossRef]
- Wiernik, P.H.; Schwartz, E.L.; Strauman, J.J.; Dutcher, J.P.; Lipton, R.B.; Paietta, E. Phase I clinical and pharmacokinetic study of Taxol. Cancer Res. 1987, 47, 2486–2493. [Google Scholar] [PubMed]
- Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Ischemia/Reperfusion. Compr. Physiol. 2016, 7, 113–170. [Google Scholar] [CrossRef] [PubMed]
- Burda, R.; Burda, J.; Morochovič, R. Ischemic Tolerance-A Way to Reduce the Extent of Ischemia-Reperfusion Damage. Cells 2023, 12, 884. [Google Scholar] [CrossRef] [PubMed]
- Panés, J.; Perry, M.; Granger, D.N. Leukocyte-endothelial cell adhesion: Avenues for therapeutic intervention. Br. J. Pharmacol. 1999, 126, 537–550. [Google Scholar] [CrossRef]
- Toma, W.; Kyte, S.L.; Bagdas, D.; Alkhlaif, Y.; Alsharari, S.D.; Lichtman, A.H.; Chen, Z.J.; Del Fabbro, E.; Bigbee, J.W.; Gewirtz, D.A.; et al. Effects of paclitaxel on the development of neuropathy and affective behaviors in the mouse. Neuropharmacology 2017, 117, 305–315. [Google Scholar] [CrossRef]
Parameter | Group | Day 0 | Day 11 |
---|---|---|---|
arteriolar diameter [µm] | (1) 180 min saline | 28.5 ± 5.0 | 36.3 ± 5.7 |
(2) 0 min paclitaxel | 27.9 ± 4.2 | 32.7 ± 3.4 | |
(3) 60 min paclitaxel | 27.6 ± 4.7 | 31.6 ± 5.4 | |
(4) 120 min paclitaxel | 30.1 ± 3.9 | 33.5 ± 6.2 | |
(5) 180 min paclitaxel | 29.3 ± 4.9 | 31.3 ± 6.2 | |
venular diameter [µm] | (1) 180 min saline | 52.6 ± 9.0 | 58.1 ± 7.4 |
(2) 0 min paclitaxel | 63.6 ± 9.4 | 62.9 ± 6.2 | |
(3) 60 min paclitaxel | 55.9 ± 9.8 | 49.7 ± 5.8 | |
(4) 120 min paclitaxel | 62.6 ± 7.6 | 64.5 ± 8.4 | |
(5) 180 min paclitaxel | 59.3 ± 10.6 | 58.0 ± 17.3 | |
body weight [g] | (1) 180 min saline | 21.1 ± 0.5 | 22.0 ± 0.2 |
(2) 0 min paclitaxel | 24.7 ± 3.7 | 24.4 ± 3.6 | |
(3) 60 min paclitaxel | 24.7 ± 2.4 | 25.7 ± 2.7 | |
(4) 120 min paclitaxel | 25.5 ± 1.5 | 26.3 ± 1.6 | |
(5) 180 min paclitaxel | 24.4 ± 1.3 | 25.0 ± 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reuter, S.; Bajorat, R.; Müller-Graf, F.; Zitzmann, A.R.; Böhm, S.H.; Reuter, D.A.; Vollmar, B. The Kinetics of Microcirculatory Dysfunction During Paclitaxel Application in an In Vivo Mouse Model. J. Clin. Med. 2025, 14, 4815. https://doi.org/10.3390/jcm14144815
Reuter S, Bajorat R, Müller-Graf F, Zitzmann AR, Böhm SH, Reuter DA, Vollmar B. The Kinetics of Microcirculatory Dysfunction During Paclitaxel Application in an In Vivo Mouse Model. Journal of Clinical Medicine. 2025; 14(14):4815. https://doi.org/10.3390/jcm14144815
Chicago/Turabian StyleReuter, Susanne, Rika Bajorat, Fabian Müller-Graf, Amelie R. Zitzmann, Stephan H. Böhm, Daniel A. Reuter, and Brigitte Vollmar. 2025. "The Kinetics of Microcirculatory Dysfunction During Paclitaxel Application in an In Vivo Mouse Model" Journal of Clinical Medicine 14, no. 14: 4815. https://doi.org/10.3390/jcm14144815
APA StyleReuter, S., Bajorat, R., Müller-Graf, F., Zitzmann, A. R., Böhm, S. H., Reuter, D. A., & Vollmar, B. (2025). The Kinetics of Microcirculatory Dysfunction During Paclitaxel Application in an In Vivo Mouse Model. Journal of Clinical Medicine, 14(14), 4815. https://doi.org/10.3390/jcm14144815