Diabetes Mellitus Is Associated with Distinctive Aortic Wall Degeneration During Acute Type A Aortic Dissection
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement and Study Design
2.2. Surgery
2.3. Histopathology and Immunohistochemistry
2.4. Follow-Up Protocol
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Description of ATAAD
3.3. Operative Techniques
3.4. Postoperative Findings
3.5. Aortic Reoperations and Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATAAD | acute type A aortic dissection |
CT | computer tomography |
SD | standard deviation |
STJ | sinotubular junction |
References
- Mehta, R.H.; Suzuki, T.; Hagan, P.G.; Bossone, E.; Gilon, D.; Llovet, A.; Maroto, L.C.; Cooper, J.V.; Smith, D.E.; Armstrong, W.F.; et al. Predicting death in patients with acute type A aortic dissection. Circulation 2002, 105, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Sun, Z.; Zhang, Y.; Wu, W.; Liu, M.; Yang, Y.; Wang, J.; Lv, Q.; Zhang, L.; Li, Y.; et al. Clinical Analysis of Risk Factors for Mortality in Type A Acute Aortic Dissection: A Single Study from China. Front. Cardiovasc. Med. 2021, 8, 728568. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cabasa, A.; Pochettino, A. Surgical management and outcomes of type A dissection—The Mayo Clinic experience. Ann. Cardiothorac. Surg. 2015, 5, 296–309. [Google Scholar] [CrossRef]
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Jia, G.; Sowers, J.R. Hypertension in Diabetes: An Update of Basic Mechanisms and Clinical Disease. Hypertension 2021, 78, 1197–1205. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lorenz, V.; Muzzi, L.; Neri, E. Diabetes is not a negative prognostic factor for 30-days mortality after surgery for acute type A aortic dissection. Cardiovasc. Endocrinol. Metab. 2024, 13, 1–6. [Google Scholar] [CrossRef]
- Liu, S.; Song, C.; Cui, K.; Bian, X.; Wang, H.; Fu, R.; Zhang, R.; Yan, S.; Dou, K. Prevalence and prognostic impact of stress-induced hyperglycemia in patients with acute type A aortic dissection. Diabetes Res. Clin. Pract. 2023, 203, 110815. [Google Scholar] [CrossRef]
- Li, S.; Zhang, L.; Zhu, G.; Feng, R.; Zhou, J.; Jing, Z. Diabetes mellitus lowers the risk of aortic dissection: A systematic review and meta-analysis. Ann. Vasc. Surg. 2021, 74, 209–219. [Google Scholar] [CrossRef]
- Chaudhry, H.; Dargham, S.; Jayyousi, A.; Al Suwaidi, J.; Khalil, C.A. Diabetes does not increase in-hospital or short-term mortality in patients undergoing surgical repair for type A aortic dissection: Insight from the national readmission database. Cardiovasc. Diabetol. 2024, 23, 436. [Google Scholar] [CrossRef]
- Leone, O.; Pacini, D.; Foà, A.; Corsini, A.; Agostini, V.; Corti, B.; Di Marco, L.; Leone, A.; Lorenzini, M.; Reggiani, L.B.; et al. Redefining the histopathologic profile of acute aortic syndromes: Clinical and prognostic implications. J. Thorac. Cardiovasc. Surg. 2018, 156, 1776–1785. [Google Scholar] [CrossRef]
- Buja, L.M.; Zhao, B.; Sadaf, H.; McDonald, M.; Segura, A.M.; Li, L.; Cecchi, A.; Prakash, S.K.; Afifi, R.O.; Miller, C.C.; et al. Insights from the histopathologic analysis of acquired and genetic thoracic aortic aneurysms and dissections. Tex. Heart Inst. J. 2024, 51, e238253. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Qiu, Z.; Chai, T.; He, J.; Zhang, Y.; Wang, C.; Ye, J.; Wu, X.; Li, Y.; Zhang, L.; et al. Insulin resistance promotes the formation of aortic dissection by inducing the phenotypic switch of vascular smooth muscle cells. Front. Cardiovasc. Med. 2022, 8, 732122. [Google Scholar] [CrossRef]
- Uimonen, M.; Olsson, C.; Jeppsson, A.; Geirsson, A.; Chemtob, R.; Khalil, A.; Hjortdal, V.; Hansson, E.C.; Nozohoor, S.; Zindovic, I.; et al. Outcome after surgery for acute type A aortic dissection with or without primary tear resection. Ann. Thorac. Surg. 2022, 114, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Elefteriades, J.A. Thoracic Aortic Aneurysm: Reading the Enemy’s Playbook. Yale. J. Biol. Med. 2008, 81, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.; Robinson, N.B.; Farrington, W.J.; Rahouma, M.; Gambardella, I.; Gaudino, M.; Girardi, L.N. A tailored strategy for repair of acute type A aortic dissection. J. Thorac. Cardiovasc. Surg. 2022, 164, 1698–1707.e3. [Google Scholar] [CrossRef]
- Halushka, M.K.; Angelini, A.; Bartoloni, G.; Basso, C.; Batoroeva, L.; Bruneval, P.; Buja, L.M.; Butany, J.; D'AMati, G.; Fallon, J.T.; et al. Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: II. Noninflammatory degenerative diseases — nomenclature and diagnostic criteria. Cardiovasc. Pathol. 2016, 25, 247–257. [Google Scholar] [CrossRef]
- Stone, J.R.; Bruneval, P.; Angelini, A.; Bartoloni, G.; Basso, C.; Batoroeva, L.; Buja, L.M.; Butany, J.; D'AMati, G.; Fallon, J.T.; et al. Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: I. Inflammatory diseases. Cardiovasc. Pathol. 2015, 24, 267–278. [Google Scholar] [CrossRef]
- Grewal, N.; Dolmaci, O.; Jansen, E.; Klautz, R.; Driessen, A.; Lindeman, J.; Poelmann, R.E. Are acute type A aortic dissections atherosclerotic? Front. Cardiovasc. Med. 2023, 9, 1032755. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Obel, L.M.; Diederichsen, A.C.; Steffensen, F.H.; Frost, L.; Lambrechtsen, J.; Bust, M.; Urbonaviciene, G.; Egstrup, K.; Karon, M.; Rasmussen, L.M.; et al. Population-based risk factors for ascending, arch, descending, and abdominal aortic dilatations for 60-74-year-old individuals. J. Am. Coll. Cardiol. 2021, 78, 201–211. [Google Scholar] [CrossRef]
- Sievers, H.-H.; Rylski, B.; Czerny, M.; Baier, A.L.M.; Kreibich, M.; Siepe, M.; Beyersdorf, F. Aortic dissection reconsidered: Type, entry site, malperfusion classification adding clarity and enabling outcome prediction. Interact. Cardiovasc. Thorac. Surg. 2020, 30, 451–457. [Google Scholar] [CrossRef]
- Osada, H.; Kyogoku, M.; Matsuo, T.; Kanemitsu, N. Histopathological evaluation of aortic dissection: A comparison of congenital versus acquired aortic wall weakness. Interact. Cardiovasc. Thorac. Surg. 2018, 27, 277–283. [Google Scholar] [CrossRef]
- Grewal, N.; Velders, B.J.J.; de Groot, A.C.G.; Poelmann, R.; Klautz, R.J.M.; Van Brakel, T.J.; Lindeman, J.H.N. A Systematic histopathologic evaluation of type-A aortic dissections implies a uniform multiple-hit causation. J. Cardiovasc. Dev. Dis. 2021, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Achneck, H.; Modi, B.; Shaw, C.; Rizzo, J.; Albornoz, G.; Fusco, D.; Elefteriades, J. Ascending thoracic aneurysms are associated with decreased systemic atherosclerosis. Chest 2005, 128, 1580–1586. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Kholova, I.; Paavonen, T.; Mennander, A. The proximal extension of acute type A aortic dissection is associated with ascending aortic wall degeneration. J. Thorac. Dis. 2023, 16, 4155–4164. [Google Scholar] [CrossRef] [PubMed]
- Leone, O.; Corsini, A.; Pacini, D.; Corti, B.; Lorenzini, M.; Laus, V.; Foà, A.; Reggiani, M.L.B.; Di Marco, L.; Rapezzi, C. The complex interplay among atherosclerosis, inflammation, and degeneration in ascending thoracic aortic aneurysms. J. Thorac. Cardiovasc. Surg. 2020, 160, 1434–1443. [Google Scholar] [CrossRef]
- Kirsch, E.M.; Radu, N.C.; Gervais, M.; Allaire, E.; Loisance, D.Y. Heterogeneity in the remodeling of aneurysms of the ascending aorta with tricuspid aortic valves. J. Thorac. Cardiovasc. Surg. 2006, 132, 1010–1016. [Google Scholar] [CrossRef]
Characteristics | All Patients | With Diabetes | Without Diabetes | p-Value |
---|---|---|---|---|
Number of patients, n | 123 | 11 | 112 | |
Age, years (SD) | 63.6 (13.3) | 69.7 (9.1) | 63.0 (13.5) | 0.099 |
Male, n | 78 (63.4%) | 5 (45.5%) | 73 (65.2%) | 0.208 |
BMI | 27.9 (4.8) | 28.9 (3.2) | 27.8 (4.9) | 0.402 |
Hypertension, n | 86 (69.9%) | 9 (81.8%) | 77 (68.8%) | 0.502 |
COPD, n | 9 (7.3%) | 0 | 9 (8.0%) | >0.99 |
Smoking, n | 20 (16.3%) | 3 (27.3%) | 17 (15.2%) | 0.384 |
Shock, n | 39 (31.7%) | 5 (45.5%) | 34 (30.4%) | 0.323 |
Previous aortic dilatation, n | 32 (26.0%) | 1 (9.1%) | 31 (27.7%) | 0.285 |
Previous cardiac surgery, n | 17 (13.8%) | 3 (27.3%) | 14 (12.5%) | 0.178 |
Previous percutaneous intervention, n | 10 (8.1%) | 1 (9.1%) | 9 (8.0%) | >0.99 |
Salvage, n | 8 (6.5%) | 0 | 8 (7.1%) | >0.99 |
Tamponade, n | 43 (35%) | 5 (45.5%) | 38 (33.9%) | 0.513 |
Malperfusion, n | 57 (46.3%) | 7 (63.6%) | 50 (44.6%) | 0.343 |
Coronary malperfusion, n | 20 (16.3%) | 2 (18.2%) | 18 (16.1%) | >0.99 |
Cerebral malperfusion, n | 13 (10.6%) | 2 (18.2%) | 11 (9.8%) | 0.328 |
Spinal malperfusion, n | 4 (3.3%) | 0 | 4 (3.6%) | >0.99 |
Renal malperfusion, n | 41 (33.3%) | 6 (54.5%) | 35 (31.3%) | 0.177 |
Visceral malperfusion, n | 11 (8.9%) | 1 (9.1%) | 10 (8.9%) | >0.99 |
Limb malperfusion, n | 23 (18.7%) | 2 (18.2%) | 21 (18.8%) | >0.99 |
Ascending aorta tear, n | 53 (43.1%) | 6 (54.5%) | 47 (42.0%) | 0.528 |
Aortic root tear, n | 59 (48.0%) | 5 (45.5%) | 54 (48.2%) | >0.99 |
Aortic arch tear, n | 4 (3.3%) | 0 | 4 (3.6%) | >0.99 |
Descending aorta tear, n | 1 (0.8%) | 0 | 1 (0.9%) | >0.99 |
Unknown tear location, n | 7 (5.7%) | 0 | 7 (6.3%) | >0.99 |
Aortic diameter, mm (SD) | 53.9 (11.8) | 58.3 (22.5) | 53.5 (11.0) | 0.718 |
AR, n | 74 (60.2%) | 7 (63.6%) | 67 (59.8%) | >0.99 |
BAV, n | 10 (8.1%) | 0 | 10 (8.9%) | 0.597 |
Creatinine | 92.5 (30.0) | 90.6 (29.1) | 92.7 (30.2) | 0.847 |
Lactate | 3.3 (3.4) | 4.3 (3.6) | 3.2 (3.4) | 0.105 |
Ejection fraction, % | 54 (50) | 45 (52) | 55 (50) | 0.531 |
Euroscore II | 20.9 (17.5) | 29.5 (27.7) | 20.3 (16.7) | 0.559 |
Details | All Patients | With Diabetes | Without Diabetes | p-Value |
---|---|---|---|---|
Number of patients, n | 123 | 11 | 112 | |
Conduit operation, n | 48 (39.0%) | 1 (9.1%) | 47 (42.0%) | 0.049 |
Mechanical conduit, n | 25 (20.3%) | 0 | 25 (22.3%) | 0.118 |
Biological conduit, n | 23 (18.7%) | 1 (9.1%) | 22 (19.6%) | 0.688 |
Graft replacement of ascending aorta, n | 75 (61.0%) | 10 (90.9%) | 65 * (58.0%) | 0.049 |
Mechanical valve + supracoronary prosthesis, n | 2 (1.6%) | 0 | 2 (1.8%) | >0.99 |
Biological valve + supracoronary prosthesis, n | 1 (0.8%) | 0 | 1 (0.9%) | >0.99 |
Frozen elephant trunk, n | 9 (7.3%) | 2 (18.2%) | 7 (6.3%) | 0.185 |
Concomitant surgery, n | 24 (19.5%) | 1 (9.1%) | 23 (20.5%) | 0.690 |
CABG, n | 22 (17.9%) | 1 (9.1%) | 21 (18.8%) | 0.687 |
Mitral surgery, n | 1 (0.8%) | 0 | 1 (0.9%) | >0.99 |
Hypothermic circulatory arrest, n | 109 (92.4%) | 9 (90.0%) | 100 (92.6%) | 0.563 |
Hypothermic circulatory arrest time, min (SD) | 12.5 (20.4) | 8.3 (9.6) | 12.8 (21.0) | 0.712 |
Aortic cross clamp time, min (SD) | 180.6 (91.1) | 137.6 (51.0) | 185.0 (93.3) | 0.128 |
Cardiopulmonary bypass time, min (SD) | 256.8 (121.6) | 218.4 (117.5) | 259.9 (122.1) | 0.413 |
Variables | All Patients | With Diabetes | Without Diabetes | p-Value | |
---|---|---|---|---|---|
Number of patients, n * | 104 | 9 | 95 | ||
Overall medial degeneration, n | 97 (93.3%) | 9 (100%) | 88 (92.6%) | >0.99 | |
Severity, mean (SD) | 0.8 (0.4) | 0.9 (0.3) | 0.8 (0.4) | 0.563 | |
Atherosclerosis, n | 58 (55.8%) | 7 (77.8%) | 51 (53.7%) | 0.293 | |
Severity, mean (SD) | 0.4 (0.5) | 0.8 (0.4) | 0.3 (0.5) | 0.009 | |
Inflammation, n | 2 (1.9%) | 0 | 2 (2.1%) | >0.99 | |
Severity, mean (SD) | 0.1 (0.14) | 0 | 0.02 (0.14) | 0.662 |
Variables | All Patients | With Diabetes | Without Diabetes | p-Value |
---|---|---|---|---|
Number of patients, n | 123 | 11 | 112 | |
Stroke, n | 38 (30.9%) | 5 (45.5%) | 33 (29.5%) | 0.312 |
Acute kidney insufficiency, n | 46 (37.4%) | 4 (36.4%) | 42 (37.5%) | >0.99 |
Dialysis | 16 (13.0%) | 2 (18.2%) | 14 (12.5%) | 0.635 |
Respiratory insufficiency, n | 16 (13.0%) | 1 (9.1%) | 15 (13.4%) | >0.99 |
Heart failure, n | 5 (4.1%) | 0 | 5 (4.5%) | >0.99 |
MSOF, n | 23 (18.7%) | 2 (18.2%) | 21 (18.8%) | >0.99 |
Early reintervention, n | 14 (11.4%) | 1 (9.1%) | 13 (11.6%) | >0.99 |
Aortic root reintervention, n | 8 (6.5%) | 0 | 8 (7.1%) | >0.99 |
Ascending aorta reintervention, n | 4 (3.3%) | 0 | 4 (3.6%) | >0.99 |
Descending aorta intervention | 4 (3.3%) | 0 | 4 (3.6%) | >0.99 |
Intraoperative mortality, n | 17 (13.8%) | 1 (9.1%) | 16 (14.3%) | >0.99 |
Variable | Unadjusted HR (95% CI) | p-Value | Adjusted HR (95% CI) | p-Value |
---|---|---|---|---|
Diabetes vs. no | 1.55 (0.73–3.28) | 0.253 | 0.69 (0.21–2.23) | 0.537 |
Male vs. female | 0.93 (0.55–1.59) | 0.806 | 1.01 (0.50–2.05) | 0.981 |
Age, y | 1.02 (1.00–1.04) | 0.120 | 1.05 (1.01–1.09) | 0.019 |
Hypertension | 1.04 (0.58–1.85) | 0.902 | 0.77 (0.34–1.73) | 0.530 |
Smoking | 0.65 (0.29–1.43) | 0.279 | 0.75 (0.27–2.10) | 0.582 |
Shock | 1.81 (1.07–3.07) | 0.028 | 0.76 (0.29–2.00) | 0.577 |
Tamponade | 1.73 (1.03–2.92) | 0.036 | 0.89 (0.39–2.03) | 0.781 |
Ascending aorta tear | 1.06 (0.63–1.79) | 0.285 | 0.86 (0.41–1.81) | 0.699 |
Previous cardiac surgery | 0.63 (0.25–1.58) | 0.219 | 0.71 (0.19–2.61) | 0.601 |
Visceral malperfusion | 1.36 (0.58–3.18) | 0.477 | 2.19 (0.63–7.60) | 0.218 |
Preoperative lactate | 1.19 (1.12–1.27) | <0.001 | 1.31 (1.14–1.50) | <0.001 |
Bicuspid aortic valve | 0.57 (0.18–1.82) | 0.343 | 2.40 (0.67–8.55) | 0.178 |
Atherosclerosis | 0.88 (0.48–1.62) | 0.679 | 0.91 (0.47–1.75) | 0.767 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heikurinen, S.; Kholova, I.; Paavonen, T.; Mennander, A. Diabetes Mellitus Is Associated with Distinctive Aortic Wall Degeneration During Acute Type A Aortic Dissection. J. Clin. Med. 2025, 14, 4731. https://doi.org/10.3390/jcm14134731
Heikurinen S, Kholova I, Paavonen T, Mennander A. Diabetes Mellitus Is Associated with Distinctive Aortic Wall Degeneration During Acute Type A Aortic Dissection. Journal of Clinical Medicine. 2025; 14(13):4731. https://doi.org/10.3390/jcm14134731
Chicago/Turabian StyleHeikurinen, Santtu, Ivana Kholova, Timo Paavonen, and Ari Mennander. 2025. "Diabetes Mellitus Is Associated with Distinctive Aortic Wall Degeneration During Acute Type A Aortic Dissection" Journal of Clinical Medicine 14, no. 13: 4731. https://doi.org/10.3390/jcm14134731
APA StyleHeikurinen, S., Kholova, I., Paavonen, T., & Mennander, A. (2025). Diabetes Mellitus Is Associated with Distinctive Aortic Wall Degeneration During Acute Type A Aortic Dissection. Journal of Clinical Medicine, 14(13), 4731. https://doi.org/10.3390/jcm14134731