Mean Corpuscular Volume Is Correlated with Liver Fibrosis Defined by Noninvasive Blood Biochemical Indices in Individuals with Metabolic Disorders Aged 60 Years or Older
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Subjects, and Ethics Statement
2.2. Biochemical Analysis
2.3. Determination of Severity of Steatotic Liver Disease Represented by HSI, FIB-4 Index, APRI, and NFS
- *
- FIB-4 index = Age (years) × AST (U/L)/[platelet count (×109/L) × √ALT (U/L)] [6]
- *
- APRI = 100 × AST (U/L)/upper limit of normal AST (U/L)/platelet count (×109/L) [8]
- *
- NFS = −1.675 + 0.037 × age (years) + 0.094 × BMI (kg/m2) + 1.13 × IFG/diabetes (yes = 1, no = 0) + 0.99 × AST/ALT ratio − 0.013 × platelet count (× 109/L) − 0.66 × ALB (g/dL) [10]
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Subjects
3.2. Associations Between MCV and Noninvasive MASLD Indices
3.3. Association Between MCV and Prevalence of Advanced Liver Fibrosis
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MCV | Mean corpuscular volume |
MASLD | Metabolic dysfunction-associated steatotic liver disease |
HSI | Hepatic steatosis index |
FIB-4 | Fibrosis-4 |
APRI | Aspartate aminotransferase-to-platelet ratio index |
NFS | NAFLD score |
References
- Hagström, H.; Shang, Y.; Hegmar, H.; Nasr, P. Natural history and progression of metabolic dysfunction-associated steatotic liver disease. Lancet Gastroenterol. Hepatol. 2024, 9, 944–956. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.G.; Roelstraete, B.; Khalili, H.; Hagström, H.; Ludvigsson, J.F. Mortality in biopsy-confirmed nonalcoholic fatty liver disease: Results from a nationwide cohort. Gut 2021, 70, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, M.; Yamamoto, T.; Honda, Y.; Imajo, K.; Ogawa, Y.; Kessoku, T.; Kobayashi, T.; Nogami, A.; Higurashi, T.; Kato, S.; et al. Risk of cardiovascular disease in patients with fatty liver disease as defined from the metabolic dysfunction associated fatty liver disease or nonalcoholic fatty liver disease point of view: A retrospective nationwide claims database study in Japan. J. Gastroenterol. 2021, 56, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Day, C.P.; Bonora, E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N. Engl. J. Med. 2010, 363, 1341–1350. [Google Scholar] [CrossRef]
- Maurantonio, M.; Ballestri, S.; Odoardi, M.R.; Lonardo, A.; Loria, P. Treatment of atherogenic liver based on the pathogenesis of nonalcoholic fatty liver disease: A novel approach to reduce cardiovascular risk? Arch. Med. Res. 2011, 42, 337–353. [Google Scholar] [CrossRef]
- Shah, A.G.; Lydecker, A.; Murray, K.; Tetri, B.N.; Contos, M.J.; Sanyal, A.J. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2009, 7, 1104–1112. [Google Scholar] [CrossRef]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef]
- Wai, C.T.; Greenson, J.K.; Fontana, R.J.; Kalbfleisch, J.D.; Marrero, J.A.; Conjeevaram, H.S.; Lok, A.S. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003, 38, 518–526. [Google Scholar] [CrossRef]
- Chrysanthos, N.V.; Papatheodoridis, G.V.; Savvas, S.; Kafiri, G.; Petraki, K.; Manesis, E.K.; Archimandritis, A.J. Aspartate aminotransferase to platelet ratio index for fibrosis evaluation in chronic viral hepatitis. Eur. J. Gastroenterol. Hepatol. 2006, 18, 389–396. [Google Scholar] [CrossRef]
- Angulo, P.; Hui, J.M.; Marchesini, G.; Bugianesi, E.; George, J.; Farrell, G.C.; Enders, F.; Saksena, S.; Burt, A.D.; Bida, J.P.; et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007, 45, 846–854. [Google Scholar] [CrossRef]
- Castera, L.; Friedrich-Rust, M.; Loomba, R. Noninvasive Assessment of Liver Disease in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1264–1281.e4. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.J.; Kim, K.; Nam, Y.S.; Yun, J.M.; Park, M. Mean corpuscular volume levels and all-cause and liver cancer mortality. Clin. Chem. Lab. Med. 2016, 54, 1247–1257. [Google Scholar] [CrossRef] [PubMed]
- McHutchison, J.G.; Manns, M.P.; Longo, D.L. Definition and management of anemia in patients infected with hepatitis C virus. Liver Int. 2006, 26, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, S.H.; Hoffman, M.; Lisman, T.; Macik, B.G.; Northup, P.G.; Reddy, K.R.; Tripodi, A.; Sanyal, A.J. Coagulation disorders and hemostasis in liver disease: Pathophysiology and critical assessment of current management. Hepatology 2006, 44, 1039–1046. [Google Scholar] [CrossRef]
- Gonzalez-Casas, R.; Jones, E.A.; Moreno-Otero, R. Spectrum of anemia associated with chronic liver disease. World J. Gastroenterol. 2009, 15, 4653–4658. [Google Scholar] [CrossRef]
- 2. Classification and Diagnosis of Diabetes. Diabetes Care 2016, 39 (Suppl. 1), S13–S22. [CrossRef]
- Lee, J.H.; Kim, D.; Kim, H.J.; Lee, C.H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.H.; Cho, S.H.; Sung, M.W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef]
- Aslinia, F.; Mazza, J.J.; Yale, S.H. Megaloblastic anemia and other causes of macrocytosis. Clin. Med. Res. 2006, 4, 236–241. [Google Scholar] [CrossRef]
- Koplay, M.; Gulcan, E.; Ozkan, F. Association between serum vitamin B12 levels and the degree of steatosis in patients with nonalcoholic fatty liver disease. J. Investig. Med. 2011, 59, 1137–1140. [Google Scholar] [CrossRef]
- Reed, C.F. Phospholipid exchange between plasma and erythrocytes in man and the dog. J. Clin. Investig. 1968, 47, 749–760. [Google Scholar] [CrossRef]
- Salvioli, G.; Rioli, G.; Lugli, R.; Salati, R. Membrane lipid composition of red blood cells in liver disease: Regression of spur cell anaemia after infusion of polyunsaturated phosphatidylcholine. Gut 1978, 19, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Owen, J.S.; Bruckdorfer, K.R.; Day, R.C.; McIntyre, N. Decreased erythrocyte membrane fluidity and altered lipid composition in human liver disease. J. Lipid Res. 1982, 23, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, Y.; Cai, J.; Li, H. Emerging Molecular Targets for Treatment of Nonalcoholic Fatty Liver Disease. Trends Endocrinol. Metab. 2019, 30, 903–914. [Google Scholar] [CrossRef]
- Grattagliano, I.; Calamita, G.; Cocco, T.; Wang, D.Q.; Portincasa, P. Pathogenic role of oxidative and nitrosative stress in primary biliary cirrhosis. World J. Gastroenterol. 2014, 20, 5746–5759. [Google Scholar] [CrossRef]
- Ghrayeb, A.; Finney, A.C.; Agranovich, B.; Peled, D.; Anand, S.K.; McKinney, M.P.; Sarji, M.; Yang, D.; Weissman, N.; Drucker, S.; et al. Serine synthesis via reversed SHMT2 activity drives glycine depletion and acetaminophen hepatotoxicity in MASLD. Cell Metab. 2024, 36, 116–129.e7. [Google Scholar] [CrossRef]
- Jakubek, P.; Kalinowski, P.; Karkucinska-Wieckowska, A.; Kaikini, A.; Simões, I.C.M.; Potes, Y.; Kruk, B.; Grajkowska, W.; Pinton, P.; Milkiewicz, P.; et al. Oxidative stress in metabolic dysfunction-associated steatotic liver disease (MASLD): How does the animal model resemble human disease? FASEB J. 2024, 38, e23466. [Google Scholar] [CrossRef]
- Li, Y.; Yang, P.; Ye, J.; Xu, Q.; Wu, J.; Wang, Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis. 2024, 23, 117. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kwon, E.H.; Kim, D.H.; Won, D.I.; Shin, S.; Suh, J.S. Susceptibility of oxidative stress on red blood cells exposed to gamma rays: Hemorheological evaluation. Clin. Hemorheol. Microcirc. 2008, 40, 315–324. [Google Scholar] [CrossRef]
- Danesh, H.; Ziamajidi, N.; Mesbah-Namin, S.A.; Nafisi, N.; Abbasalipourkabir, R. Association between Oxidative Stress Parameters and Hematological Indices in Breast Cancer Patients. Int. J. Breast Cancer 2022, 2022, 1459410. [Google Scholar] [CrossRef]
- Alghareeb, S.A.; Alsughayyir, J.; Alfhili, M.A. Eriocitrin Disrupts Erythrocyte Membrane Asymmetry through Oxidative Stress and Calcium Signaling and the Activation of Casein Kinase 1α and Rac1 GTPase. Pharmaceuticals 2023, 16, 1681. [Google Scholar] [CrossRef] [PubMed]
- Villanova, F.; Di Meglio, P.; Nestle, F.O. Biomarkers in psoriasis and psoriatic arthritis. Ann. Rheum. Dis. 2013, 72 (Suppl. S2), ii104–ii110. [Google Scholar] [CrossRef] [PubMed]
- Demir Pektas, S.; Pektas, G.; Tosun, K.; Dogan, G.; Neselioglu, S.; Erel, O. Evaluation of Erythroid Disturbance and Thiol-Disulphide Homeostasis in Patients with Psoriasis. Biomed Res. Int. 2018, 2018, 9548252. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Patel, J.L. Diagnostic Challenge and Clinical Dilemma: The Long Reach of Clonal Hematopoiesis. Clin. Chem. 2021, 67, 1062–1070. [Google Scholar] [CrossRef]
- Wong, W.J.; Emdin, C.; Bick, A.G.; Zekavat, S.M.; Niroula, A.; Pirruccello, J.P.; Dichtel, L.; Griffin, G.; Uddin, M.M.; Gibson, C.J.; et al. Clonal haematopoiesis and risk of chronic liver disease. Nature 2023, 616, 747–754. [Google Scholar] [CrossRef]
- Jaiswal, S.; Fontanillas, P.; Flannick, J.; Manning, A.; Grauman, P.V.; Mar, B.G.; Lindsley, R.C.; Mermel, C.H.; Burtt, N.; Chavez, A.; et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 2014, 371, 2488–2498. [Google Scholar] [CrossRef]
- Li, Y.; Xu, S.; Mihaylova, M.M.; Zheng, B.; Hou, X.; Jiang, B.; Park, O.; Luo, Z.; Lefai, E.; Shyy, J.Y.; et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011, 13, 376–388. [Google Scholar] [CrossRef]
- Shankaraiah, R.C.; Callegari, E.; Guerriero, P.; Rimessi, A.; Pinton, P.; Gramantieri, L.; Silini, E.M.; Sabbioni, S.; Negrini, M. Metformin prevents liver tumourigenesis by attenuating fibrosis in a transgenic mouse model of hepatocellular carcinoma. Oncogene 2019, 38, 7035–7045. [Google Scholar] [CrossRef]
- Su, Y.; Hou, C.; Wang, M.; Ren, K.; Zhou, D.; Liu, X.; Zhao, S.; Liu, X. Metformin induces mitochondrial fission and reduces energy metabolism by targeting respiratory chain complex I in hepatic stellate cells to reverse liver fibrosis. Int. J. Biochem. Cell Biol. 2023, 157, 106375. [Google Scholar] [CrossRef]
- Ruan, G.; Wu, F.; Shi, D.; Sun, H.; Wang, F.; Xu, C. Metformin: Update on mechanisms of action on liver diseases. Front. Nutr. 2023, 10, 1327814. [Google Scholar] [CrossRef]
- Feng, W.H.; Bi, Y.; Li, P.; Yin, T.T.; Gao, C.X.; Shen, S.M.; Gao, L.J.; Yang, D.H.; Zhu, D.L. Effects of liraglutide, metformin and gliclazide on body composition in patients with both type 2 diabetes and non-alcoholic fatty liver disease: A randomized trial. J. Diabetes Investig. 2019, 10, 399–407. [Google Scholar] [CrossRef]
Groups/Clinical Factors | Total (n = 1009) | <60 Years (n = 186) | ≥60 Years (n = 823) | p Value (<60 vs. ≥60) |
---|---|---|---|---|
Males/Females | 555/454 | 108/78 | 447/376 | 0.288 |
Age (years) | 72.0 (63.0, 78.0) | 52.7 (46.0, 56.0) | 74.0 (68.8, 80.0) | <0.001 |
BMI (kg/m2) | 24.2 (21.7, 27.0) | 27.1 (24.2, 30.8) | 23.7 (21.4, 26.2) | <0.001 |
SBP (mmHg) | 133.6 ± 16.9 | 131.9 ± 16.8 | 134.0 ± 16.9 | 0.127 |
LDL-C (mg/dL) | 100 (81, 122) | 111.0 (83.3, 134.0) | 98 (81, 119) | <0.001 |
TG (mg/dL) | 116 (81, 161) | 136.0(99.3, 202.8) | 110.0 (78.5, 155.5) | <0.001 |
HDL-C (mg/dL) | 54 (45, 66) | 51.0 (42.0, 60.8) | 55 (46, 67) | <0.001 |
Casual PG (mg/dL) | 129 (109, 171) | 137.0 (110.2, 186.5) | 128 (108, 167) | 0.077 |
HbA1c (%) | 6.6 (6.1, 7.4) | 7.0 (6.3, 7.8) | 6.6 (6.0, 7.3) | <0.001 |
UA (mg/dL) | 5.1 (4.2, 6.1) | 5.4 (4.2, 6.2) | 5.0 (4.2, 6.0) | 0.153 |
Cr (mg/dL) | 0.8 (0.65, 0.97) | 0.72 (0.60, 0.87) | 0.82 (0.67, 1.01) | <0.001 |
eGFR (mL/min/1.73 m2) | 67.0 ± 22.0 | 82.3 ± 22.6 | 63.6 ± 20.3 | <0.001 |
ALB (g/dL) | 4.1 ± 0.5 | 4.3 ± 0.5 | 4.1 ± 0.5 | <0.001 |
AST (U/L) | 21 (17, 26) | 21 (17, 28) | 21 (17, 26) | 0.031 |
ALT (U/L) | 19 (14, 28) | 26 (18.0, 43.8) | 18 (13, 26) | <0.001 |
RBC (1012/L) | 4.56 (4.14, 4.94) | 5.00 (4.64, 5.28) | 4.47 (4.07, 4.83) | <0.001 |
Hct (%) | 41.7 (38.5, 44.9) | 44.2 (40.6, 46.9) | 41.4 (38.0, 44.3) | <0.001 |
Hgb (g/dL) | 13.8 (12.6 14.9) | 14.9 (13.5, 15.9) | 13.7 (12.4, 14.6) | <0.001 |
MCV (fL) | 92.0 (88.9, 95.6) | 89.1 (86.0, 91.6) | 92.9 (89.6, 96.5) | <0.001 |
Platelets (109/L) | 215 (182, 255) | 239.5 (203.5, 277.0) | 210.0 (178.0, 249.5) | <0.001 |
HSI | 34.0 (30.5, 38.4) | 40.1 (35.6, 45.3) | 33.1 (29.8, 36.9) | <0.001 |
FIB-4 index | 1.58 (1.14, 2.17) | 0.85 (0.68, 1.19) | 1.77 (1.33, 2.31) | <0.001 |
APRI | 0.35 (0.26, 0.47) | 0.32 (0.23, 0.44) | 0.36 (0.27, 0.47) | 0.732 |
NFS | −0.35 (−1.15, 0.51) | −1.28 (−2.02, −0.66) | −0.14 (−0.88, 0.64) | <0.001 |
Current Smoker (n, (%)) | 108 (10.7) | 38 (20.4) | 70 (8.5) | <0.001 |
Hypertension (n, (%)) | 719 (71.3) | 109 (58.6) | 610 (74.1) | <0.001 |
Dyslipidemia (n, (%)) | 745 (73.8) | 142 (76.3) | 603 (73.3) | 0.389 |
Diabetes (n, (%)) | 770 (76.3) | 162 (87.1) | 608 (73.9) | <0.001 |
ARB or ACEi (n, (%)) | 473 (46.9) | 64 (34.4) | 409 (49.7) | <0.001 |
CCB (n, (%)) | 440 (43.6) | 60 (32.3) | 380 (46.2) | 0.001 |
β blocker (n, (%)) | 103 (10.2) | 16 (8.6) | 87 (10.6) | 0.423 |
MR antagonist (n, (%)) | 40 (4.0) | 3 (1.6) | 37 (4.5) | 0.069 |
Statin (n, (%)) | 515 (51.0) | 73 (39.2) | 442 (53.7) | <0.001 |
Ezetimibe (n, (%)) | 71 (7.0) | 13 (7.0) | 58 (7.0) | 0.978 |
Antiplatelet (n, (%)) | 172 (17.0) | 14 (7.5) | 158 (19.2) | <0.001 |
SU or Glinide (n, (%)) | 139 (13.8) | 16 (8.6) | 123 (14.9) | 0.023 |
Metformin (n, (%)) | 364 (36.1) | 86 (46.2) | 278 (33.8) | 0.001 |
DPP-4i (n, (%)) | 430 (42.6) | 62 (33.3) | 368 (44.7) | 0.005 |
SGLT2i (n, (%)) | 333 (33.0) | 68 (36.6) | 265 (32.2) | 0.253 |
α-GI (n, (%)) | 94 (9.3) | 16 (8.6) | 78 (9.5) | 0.711 |
Pioglitazone (n, (%)) | 22 (2.2) | 3 (1.6) | 19 (2.3) | 0.557 |
Insulin (n, (%)) | 192 (19.0) | 47 (25.3) | 145 (17.6) | 0.016 |
GLP-1RA (n, (%)) | 116 (11.5) | 43 (23.1) | 73 (8.9) | <0.001 |
HSI | FIB-4 Index | APRI | NFS | ||||||
---|---|---|---|---|---|---|---|---|---|
Variables | VIF | t Value | p Value | t Value | p Value | t Value | p Value | t Value | p Value |
Age | 1.747 | −8.88 | <0.001 | 11.63 | <0.001 | 0.01 | 0.991 | 18.65 | <0.001 |
Male | 1.480 | −6.46 | <0.001 | 0.51 | 0.608 | 1.95 | 0.052 | 0.60 | 0.546 |
Current Smoking | 1.150 | 0.01 | 0.995 | 0.21 | 0.832 | 0.02 | 0.981 | −0.49 | 0.624 |
Hypertension | 1.262 | 0.05 | 0.957 | −1.99 | 0.047 | −1.11 | 0.267 | −1.63 | 0.104 |
Dyslipidemia | 1.133 | 0.80 | 0.423 | −0.97 | 0.334 | −0.31 | 0.756 | −1.33 | 0.183 |
Diabetes | 1.426 | 10.49 | <0.001 | −0.60 | 0.548 | 1.09 | 0.276 | 13.51 | <0.001 |
BMI | 1.493 | 52.77 | <0.001 | 0.63 | 0.528 | 2.42 | 0.016 | 11.69 | <0.001 |
SBP | 1.199 | −1.04 | 0.301 | 0.78 | 0.433 | −0.02 | 0.985 | 0.84 | 0.400 |
LDL-C | 1.181 | 1.28 | 0.199 | −2.80 | 0.005 | −1.92 | 0.055 | −2.69 | 0.007 |
TG | 1.355 | 1.12 | 0.263 | −0.72 | 0.469 | 0.02 | 0.982 | −0.78 | 0.434 |
HDL-C | 1.452 | −1.60 | 0.110 | 1.80 | 0.073 | 2.91 | 0.004 | 2.25 | 0.024 |
HbA1c | 1.409 | 2.53 | 0.012 | −1.44 | 0.152 | 0.04 | 0.967 | −2.52 | 0.012 |
UA | 1.397 | −0.70 | 0.482 | 1.69 | 0.079 | 1.55 | 0.122 | 0.89 | 0.373 |
Cr | 1.422 | −2.19 | 0.029 | 1.76 | 0.113 | −0.10 | 0.920 | 2.49 | 0.013 |
ALB | 1.360 | 4.61 | <0.001 | −2.36 | 0.018 | −0.45 | 0.651 | −10.13 | <0.001 |
Hct | 1.509 | 2.17 | 0.031 | −1.03 | 0.301 | −0.21 | 0.835 | 0.49 | 0.626 |
MCV | 1.367 | −0.98 | 0.327 | 3.85 | <0.001 | 3.78 | <0.001 | 3.06 | 0.002 |
HSI | FIB-4 Index | APRI | NFS | ||||||
---|---|---|---|---|---|---|---|---|---|
Variables | VIF | t Value | p Value | t Value | p Value | t Value | p Value | t Value | p Value |
Age | 1.359 | −2.15 | 0.033 | 3.67 | <0.001 | 0.97 | 0.333 | 5.08 | <0.001 |
Male | 1.749 | −0.66 | 0.513 | −0.43 | 0.667 | 0.13 | 0.897 | −0.30 | 0.765 |
Current Smoking | 1.257 | 0.18 | 0.860 | −0.27 | 0.791 | −0.84 | 0.404 | 0.54 | 0.589 |
Hypertension | 1.705 | −0.19 | 0.847 | −2.34 | 0.020 | −1.83 | 0.069 | −0.69 | 0.490 |
Dyslipidemia | 1.229 | 1.05 | 0.295 | −1.39 | 0.166 | −0.71 | 0.479 | −1.06 | 0.293 |
Diabetes | 1.358 | 1.82 | 0.071 | 0.68 | 0.498 | 0.58 | 0.560 | 4.47 | <0.001 |
BMI | 1.573 | 21.55 | <0.001 | 0.91 | 0.366 | 1.56 | 0.121 | 6.41 | <0.001 |
SBP | 1.521 | 0.47 | 0.642 | 0.59 | 0.559 | −0.25 | 0.799 | 0.07 | 0.944 |
LDL-C | 1.464 | 0.24 | 0.810 | −1.05 | 0.295 | −0.40 | 0.692 | −2.19 | 0.030 |
TG | 1.412 | −0.26 | 0.794 | −0.10 | 0.921 | 0.42 | 0.672 | 0.27 | 0.785 |
HDL-C | 1.753 | −0.92 | 0.360 | 1.07 | 0.286 | 1.13 | 0.260 | 1.24 | 0.219 |
HbA1c | 1.551 | 0.42 | 0.675 | −0.26 | 0.799 | −0.11 | 0.910 | −0.27 | 0.790 |
UA | 1.407 | −0.66 | 0.513 | 1.18 | 0.240 | 0.44 | 0.664 | 1.15 | 0.253 |
Cr | 1.235 | −0.27 | 0.788 | 0.44 | 0.658 | 0.13 | 0.899 | 0.22 | 0.824 |
ALB | 1.368 | 2.77 | 0.006 | −1.17 | 0.245 | −0.18 | 0.858 | −3.05 | 0.003 |
Hct | 1.486 | 0.45 | 0.653 | −1.00 | 0.319 | 0.18 | 0.860 | 0.34 | 0.731 |
MCV | 1.290 | −0.16 | 0.876 | 1.25 | 0.212 | 0.54 | 0.588 | 0.21 | 0.832 |
HSI | FIB-4 Index | APRI | NFS | ||||||
---|---|---|---|---|---|---|---|---|---|
Variables | VIF | t Value | p Value | t Value | p Value | t Value | p Value | t Value | p Value |
Age | 1.487 | −5.60 | <0.001 | 9.12 | <0.001 | 0.75 | 0.454 | 12.3 | <0.001 |
Male | 1.451 | −7.08 | <0.001 | 0.65 | 0.519 | 2.29 | 0.022 | 0.59 | 0.553 |
Current Smoking | 1.148 | −0.05 | 0.958 | 0.48 | 0.633 | 0.77 | 0.440 | −0.47 | 0.640 |
Hypertension | 1.207 | 0.00 | 0.999 | −0.56 | 0.574 | 0.42 | 0.672 | −1.15 | 0.251 |
Dyslipidemia | 1.162 | 0.39 | 0.693 | −0.25 | 0.801 | 0.25 | 0.806 | −0.67 | 0.502 |
Diabetes | 1.451 | 11.08 | <0.001 | −0.61 | 0.543 | 1.20 | 0.232 | 12.83 | <0.001 |
BMI | 1.300 | 46.79 | <0.001 | −0.41 | 0.685 | 1.27 | 0.203 | 8.92 | <0.001 |
SBP | 1.174 | −1.68 | 0.094 | 1.03 | 0.302 | 0.53 | 0.599 | 1.02 | 0.307 |
LDL-C | 1.145 | 1.28 | 0.200 | −2.88 | 0.004 | −2.35 | 0.019 | −2.06 | 0.040 |
TG | 1.326 | 1.76 | 0.078 | −0.98 | 0.329 | −0.34 | 0.734 | −1.05 | 0.293 |
HDL-C | 1.429 | −0.76 | 0.448 | 1.46 | 0.144 | 2.66 | 0.008 | 2.00 | 0.046 |
HbA1c | 1.382 | 3.12 | 0.002 | −1.90 | 0.058 | −0.28 | 0.779 | −2.86 | 0.004 |
UA | 1.454 | −0.36 | 0.718 | 1.01 | 0.314 | 1.25 | 0.210 | 0.18 | 0.855 |
Cr | 1.486 | −2.68 | 0.007 | 1.75 | 0.080 | −0.13 | 0.893 | 2.83 | 0.005 |
ALB | 1.361 | 3.61 | <0.001 | −1.79 | 0.073 | −0.45 | 0.653 | −9.57 | <0.001 |
Hct | 1.539 | 1.87 | 0.062 | 0.08 | 0.936 | 0.10 | 0.918 | 0.75 | 0.452 |
MCV | 1.282 | −0.84 | 0.401 | 3.58 | <0.001 | 4.23 | <0.001 | 2.93 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaneko, Y.; Kawano, Y.; Kawata, S.; Mori, K.; Hosoki, M.; Hori, T.; Miyataka, K.; Tsuji, S.; Hara, T.; Yamagami, H.; et al. Mean Corpuscular Volume Is Correlated with Liver Fibrosis Defined by Noninvasive Blood Biochemical Indices in Individuals with Metabolic Disorders Aged 60 Years or Older. J. Clin. Med. 2025, 14, 4680. https://doi.org/10.3390/jcm14134680
Kaneko Y, Kawano Y, Kawata S, Mori K, Hosoki M, Hori T, Miyataka K, Tsuji S, Hara T, Yamagami H, et al. Mean Corpuscular Volume Is Correlated with Liver Fibrosis Defined by Noninvasive Blood Biochemical Indices in Individuals with Metabolic Disorders Aged 60 Years or Older. Journal of Clinical Medicine. 2025; 14(13):4680. https://doi.org/10.3390/jcm14134680
Chicago/Turabian StyleKaneko, Yousuke, Yutaka Kawano, Saki Kawata, Kensuke Mori, Minae Hosoki, Taiki Hori, Kohsuke Miyataka, Seijiro Tsuji, Tomoyo Hara, Hiroki Yamagami, and et al. 2025. "Mean Corpuscular Volume Is Correlated with Liver Fibrosis Defined by Noninvasive Blood Biochemical Indices in Individuals with Metabolic Disorders Aged 60 Years or Older" Journal of Clinical Medicine 14, no. 13: 4680. https://doi.org/10.3390/jcm14134680
APA StyleKaneko, Y., Kawano, Y., Kawata, S., Mori, K., Hosoki, M., Hori, T., Miyataka, K., Tsuji, S., Hara, T., Yamagami, H., Otoda, T., Yuasa, T., Kuroda, A., Harada, T., Miki, H., Nakamura, S., Endo, I., Matsuhisa, M., Matsuoka, K.-i., & Aihara, K.-i. (2025). Mean Corpuscular Volume Is Correlated with Liver Fibrosis Defined by Noninvasive Blood Biochemical Indices in Individuals with Metabolic Disorders Aged 60 Years or Older. Journal of Clinical Medicine, 14(13), 4680. https://doi.org/10.3390/jcm14134680