Evaluating the Impact of Air Quality on Pediatric Asthma-Related Emergency Room Visits in the Eastern Province of Saudi Arabia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Participants
2.3. Environmental Data Collection
- Station name: Al-Khobar;
- Station number: S045.
- PM2.5 (fine particulate matter),
- PM10 (coarse particulate matter),
- NO2 (nitrogen dioxide),
- O3 (ozone),
- SO2 (sulfur dioxide),
- CO (carbon monoxide).
2.4. Statistical Analysis
2.4.1. Descriptive Statistics
2.4.2. Inferential Statistics
- Normality check: Normal distribution assumption was checked; non-parametric methods were applied for skewed distributions.
- Mann–Whitney U test: Differences between ER visits in low pollutant days vs. high pollutant days.
- Kruskal–Wallis test: To compare ED visits in different levels of air pollutants’ concentration ranges.
2.4.3. Correlation and Regression Analysis
2.4.4. Threshold and Time Series Analysis
2.4.5. Significance and Software
2.5. Sample Size and Power Calculation
2.6. Ethical Considerations
3. Results
3.1. Descriptive Statistics of ER Visits and Environmental Factors
3.2. Univariate Analysis of Environmental Factors
3.3. Poisson Regression Analysis
3.4. Time-Series Analysis (ARIMA Model)
3.5. Interaction Effects of Pollution with Temperature and Humidity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- What Is Asthma? NHLBI, NIH, 2024. Available online: https://www.nhlbi.nih.gov/health/asthma (accessed on 19 May 2025).
- World Health Organization: WHO. Asthma. 6 May 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/asthma (accessed on 15 March 2025).
- Alahmadi, T.S.; Banjari, M.A.; Alharbi, A.S. The prevalence of childhood asthma in Saudi Arabia. Int. J. Pediatr. Adolesc. Med. 2019, 6, 74–77. [Google Scholar] [CrossRef]
- Khatri, S.B.; Newman, C.; Hammel, J.P.; Dey, T.; Van Laere, J.J.; Ross, K.A.; Rose, J.A.; Anderson, T.; Mukerjee, S.; Smith, L.; et al. Associations of Air Pollution and Pediatric asthma in Cleveland, Ohio. Sci. World J. 2021, 2021, 8881390. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Zhan, X.; Xu, X.; Li, S.; Xu, X.; Ying, S.; Chen, Z. Particulate matter exposure is highly correlated to pediatric asthma exacerbation. Aging 2021, 13, 17818–17829. [Google Scholar] [CrossRef]
- Hasunuma, H.; Takeuchi, A.; Ono, R.; Amimoto, Y.; Hwang, Y.H.; Uno, I.; Shimizu, A.; Nishiwaki, Y.; Hashizume, M.; Askew, D.J.; et al. Effect of Asian dust on respiratory symptoms among children with and without asthma, and their sensitivity. Sci. Total Environ. 2020, 753, 141585. [Google Scholar] [CrossRef]
- Alangari, A.; Riaz, M.; Mahjoub, M.; Malhis, N.; Al-Tamimi, S.; Al-Modaihsh, A. The effect of sand storms on acute asthma in Riyadh, Saudi Arabia. Ann. Thorac. Med. 2015, 10, 29. [Google Scholar] [CrossRef]
- Bi, J.; D’sOuza, R.R.; Moss, S.; Senthilkumar, N.; Russell, A.G.; Scovronick, N.C.; Chang, H.H.; Ebelt, S. Acute effects of ambient air pollution on asthma emergency department visits in ten U.S. states. Environ. Health Perspect. 2023, 131, 47003. [Google Scholar] [CrossRef]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2024 Update. Available online: https://ginasthma.org/gina-reports/ (accessed on 7 May 2025).
- Pfeffer, P.E.; Mudway, I.S.; Grigg, J. Air pollution and asthma. CHEST J. 2020, 159, 1346–1355. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lim, Y.; Kim, H. Outdoor temperature changes and emergency department visits for asthma in Seoul, Korea: A time-series study. Environ. Res. 2014, 135, 15–20. [Google Scholar] [CrossRef]
- Bodaghkhani, E.; Mahdavian, M.; MacLellan, C.; Farrell, A.; Asghari, S. Effects of Meteorological Factors on Hospitalizations in Adult Patients with Asthma: A Systematic Review. Can. Respir. J. 2019, 2019, 3435103. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.; Paez, J.; Liu, B. Air quality alerts benefit asthmatics. Lancet Planet Health 2018, 2, e387. [Google Scholar] [CrossRef]
- Al-Moamary, M.S.; Alhaider, S.A.; Allehebi, R.; Idrees, M.M.; Zeitouni, M.O.; Al Ghobain, M.O.; Alanazi, A.F.; Al-Harbi, A.S.; Yousef, A.A.; Alorainy, H.S.; et al. The Saudi initiative for asthma—2024 update: Guidelines for the diagnosis and management of asthma in adults and children. Ann. Thorac. Med. 2023, 19, 1–55. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.C.; Thurston, G.D.; Shamy, M.; Alghamdi, M.; Khoder, M.; Mohorjy, A.M.; Alkhalaf, A.K.; Brocato, J.; Chen, L.C.; Costa, M. Temporal variations of fine and coarse particulate matter sources in Jeddah, Saudi Arabia. J. Air Waste Manag. Assoc. 2018, 68, 123–138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keleb, A.; Abeje, E.T.; Daba, C.; Tadesse, T.; Duko, B.; Mulugeta, H.; Mohammed, Y.; Nigatu, Y.T. The odds of developing asthma and wheeze among children and adolescents exposed to particulate matter: A systematic review and meta-analysis. BMC Public Health 2025, 25, 1225. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Executive Summary; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Pryor, J.T.; Cowley, L.O.; Simonds, S.E. The physiological effects of air pollution: Particulate matter, physiology and disease. Front. Public Health 2022, 10, 882569. [Google Scholar] [CrossRef]
- Yan, W.; Wang, X.; Dong, T.; Sun, M.; Zhang, M.; Fang, K.; Chen, Y.; Chen, R.; Sun, Z.; Xia, Y. The impact of prenatal exposure to PM2.5 on childhood asthma and wheezing: A meta-analysis of observational studies. Environ. Sci. Pollut. Res. 2020, 27, 29280–29290. [Google Scholar] [CrossRef] [PubMed]
- Zanobetti, A.; Ryan, P.H.; Coull, B.A.; Luttmann-Gibson, H.; Datta, S.; Blossom, J.; Brokamp, C.; Lothrop, N.; Miller, R.L.; Beamer, P.I.; et al. Early-life exposure to air pollution and childhood asthma cumulative incidence in the ECHO CREW Consortium. JAMA Netw. Open 2024, 7, e240535. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Isaifan, R.J. Air pollution burden of disease over highly populated states in the Middle East. Front. Public Health 2023, 10, 1002707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tizaoui, K.; Kaabachi, W.; Hamzaoui, K.; Hamzaoui, A. Association of Single Nucleotide Polymorphisms in Toll-like Receptor Genes with Asthma Risk: A Systematic Review and Meta-analysis. Allergy Asthma Immunol. Res. 2015, 7, 130. [Google Scholar] [CrossRef] [PubMed]
- Rosser, F.J.; Rothenberger, S.D.; Han, Y.Y.; Forno, E.; Celedón, J.C. Air Quality Index and Childhood Asthma: A Pilot Randomized Clinical Trial Intervention. Am. J. Prev. Med. 2023, 64, 893–897. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Environmental Protection Agency. Near Real Time Modeling of Weather, Air Pollution, and Health Outcome Indicators in New York City; EPA: Washington, DC, USA, 2013. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NCER&dirEntryId=187267 (accessed on 18 May 2025).
- Rosser, F.; Han, Y.Y.; Rothenberger, S.D.; Forno, E.; Mair, C.; Celedón, J.C. Air quality index and emergency department visits and hospitalizations for childhood asthma. Ann. Am. Thorac. Soc. 2022, 19, 1139–1148. [Google Scholar] [CrossRef]
- Vu, B.N.; Tapia, V.; Ebelt, S.; Gonzales, G.F.; Liu, Y.; Steenland, K. The association between asthma emergency department visits and satellite-derived PM2.5 in Lima, Peru. Environ. Res. 2021, 199, 111226. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yu, Z.; Jiao, H.; Zhang, Y.; Ma, B.; Wang, F.; Zhou, J. Short-term effect of PM2.5 on pediatric asthma incidence in Shanghai, China. Environ. Sci. Pollut. Res. 2019, 26, 27832–27841. [Google Scholar] [CrossRef]
- Andersen, Z.J.; Wahlin, P.; Raaschou-Nielsen, O.; Ketzel, M.; Scheike, T.; Loft, S. Size distribution and total number concentration of ultrafine and accumulation mode particles and hospital admissions in children and the elderly in Copenhagen, Denmark. Occup. Environ. Med. 2008, 65, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.L.; Levy, J.K.; Lin, Z. The effect of sandstorms and air pollution on cause-specific hospital admissions in Taipei, Taiwan. Occup. Environ. Med. 2007, 65, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Andersen, Z.J.; Wahlin, P.; Raaschou-Nielsen, O.; Scheike, T.; Loft, S. Ambient particle source apportionment and daily hospital admissions among children and elderly in Copenhagen. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 625–636. [Google Scholar] [CrossRef]
- Lee, G.H.; Kim, J.H.; Kim, S.; Lee, S.; Lim, D.H. Effects of Indoor Air Purifiers on Children with Asthma. Yonsei Med. J. 2020, 61, 310. [Google Scholar] [CrossRef]
N/Mean | %SD | Median | IQR | ||
---|---|---|---|---|---|
Number of ER visits with asthma per day | None (0) | 20 | 5.5% | ||
1 | 41 | 11.2% | |||
2 | 43 | 11.7% | |||
3 | 48 | 13.1% | |||
4 | 50 | 13.7% | |||
5 | 32 | 8.7% | |||
6 | 36 | 9.8% | |||
7 | 18 | 4.9% | |||
8 | 17 | 4.6% | |||
9 | 18 | 4.9% | |||
10 | 15 | 4.1% | |||
11 | 18 | 4.9% | |||
12 | 5 | 1.4% | |||
13 | 1 | 0.3% | |||
14 | 3 | 0.8% | |||
16 | 1 | 0.3% | |||
Number of ER visits per day with asthma | 4 or less | 202 | 55.2% | ||
5 or more | 164 | 44.8% | |||
NO2 | 3.86 | 0.37 | 3.80 | 3.80–3.80 | |
O3 | 137.86 | 86.39 | 107.05 | 78.20–185.35 | |
SO2 | 16.80 | 9.84 | 15.10 | 11.10–22.50 | |
CO | 1.90 | 2.59 | 1.25 | 0.91–1.51 | |
PM2.5 | 76.40 | 55.41 | 70.63 | 58.01–84.36 | |
PM10 | 0.36 | 0.17 | 0.32 | 0.24–0.44 | |
Temperature | 28.15 | 7.62 | 28.27 | 20.65–35.74 | |
Humidity | 44.57 | 17.65 | 46.57 | 31.38–57.50 |
Number of ER Visits per Day with Asthma | |||||||||
---|---|---|---|---|---|---|---|---|---|
4 or Less | 5 or More | p-Value U | |||||||
Mean | SD | Median | IQR | Mean | SD | Median | IQR | ||
NO2 | 3.82 | 0.18 | 3.80 | 3.80–3.80 | 3.92 | 0.51 | 3.80 | 3.80–3.80 | 0.097 |
O3 | 142.33 | 87.85 | 107.70 | 83.20–224.50 | 132.34 | 84.51 | 100.20 | 72.55–155.83 | 0.064 |
SO2 | 16.13 | 10.44 | 14.95 | 10.30–21.00 | 17.63 | 9.01 | 16.20 | 11.80–23.10 | 0.088 |
CO | 1.91 | 2.62 | 1.25 | 0.93–1.44 | 1.88 | 2.55 | 1.25 | 0.90–1.56 | 0.785 |
PM2.5 | 75.43 | 69.10 | 67.80 | 53.40–85.09 | 77.59 | 31.37 | 73.26 | 61.47–82.81 | 0.029 * |
PM10 | 0.38 | 0.18 | 0.35 | 0.26–0.46 | 0.33 | 0.15 | 0.29 | 0.23–0.41 | 0.019 * |
Temperature | 30.07 | 7.73 | 32.89 | 22.14–37.25 | 25.78 | 6.79 | 25.48 | 19.60–31.80 | <0.001 * |
Humidity | 39.54 | 17.88 | 39.51 | 23.75–51.88 | 50.77 | 15.28 | 52.94 | 40.57–61.38 | <0.001 * |
Parameter Estimates | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | B | Std. Error | 95% Wald Confidence Interval | Hypothesis Test | Adjusted Odds Ratio (AOR) | 95% Wald Confidence Interval for (AOR) | ||||
Lower | Upper | Wald Chi-Square | Df | p-Value | Lower | Upper | ||||
(Intercept) | −0.213 | 0.4570 | −1.108 | 0.683 | 0.216 | 1 | 0.642 | 0.809 | 0.330 | 1.980 |
NO2 | 0.182 | 0.0585 | 0.067 | 0.296 | 9.628 | 1 | 0.002 | 1.199 | 1.069 | 1.345 |
O3 | 0.000 | 0.0004 | 0.000 | 0.001 | 0.666 | 1 | 0.414 | 1.000 | 1.000 | 1.001 |
SO2 | 0.003 | 0.0038 | −0.005 | 0.010 | 0.594 | 1 | 0.441 | 1.003 | 0.995 | 1.010 |
CO | 0.036 | 0.0130 | 0.010 | 0.061 | 7.625 | 1 | 0.006 | 1.036 | 1.010 | 1.063 |
PM2.5 | 0.000 | 0.0008 | −0.002 | 0.001 | 0.088 | 1 | 0.767 | 1.000 | 0.998 | 1.001 |
PM10 | −0.729 | 0.2292 | −1.178 | −0.280 | 10.120 | 1 | 0.001 | 0.482 | 0.308 | 0.756 |
Temperature | 0.012 | 0.0076 | −0.003 | 0.027 | 2.455 | 1 | 0.117 | 1.012 | 0.997 | 1.027 |
Humidity | 0.018 | 0.0031 | 0.012 | 0.024 | 35.790 | 1 | 0.000 | 1.019 | 1.012 | 1.025 |
(Scale) | 1 a |
Lag | Coefficient (B) | p-Value | Interpretation |
---|---|---|---|
Lag 0 | 0.45 | 0.014 | Positive association |
Lag 1 | −0.461 | 0.012 | Negative association |
Variable | AOR | p-Value | Interpretation |
---|---|---|---|
NO2 | 1.279 | <0.001 | Significant increase in risk |
CO | 1.034 | 0.008 | Slight increase in risk |
PM2.5 | 0.964 | 0.001 | Inverse effect |
PM2.5 × temperature | 1.001 * | <0.001 | PM2.5 effect modified by temperature |
PM2.5 × humidity | 1.000 * | 0.015 | PM2.5 effect modified by humidity |
PM2.5 × temperature | 1.001 * | <0.001 | PM2.5 effect modified by temperature |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousef, A.A.; AlShammari, R.F.; AlBugami, S.; AlAbbas, B.E.; AlMossally, F.A. Evaluating the Impact of Air Quality on Pediatric Asthma-Related Emergency Room Visits in the Eastern Province of Saudi Arabia. J. Clin. Med. 2025, 14, 4659. https://doi.org/10.3390/jcm14134659
Yousef AA, AlShammari RF, AlBugami S, AlAbbas BE, AlMossally FA. Evaluating the Impact of Air Quality on Pediatric Asthma-Related Emergency Room Visits in the Eastern Province of Saudi Arabia. Journal of Clinical Medicine. 2025; 14(13):4659. https://doi.org/10.3390/jcm14134659
Chicago/Turabian StyleYousef, Abdullah A., Reem Fahad AlShammari, Sarah AlBugami, Bushra Essa AlAbbas, and Fedaa Abdulkareem AlMossally. 2025. "Evaluating the Impact of Air Quality on Pediatric Asthma-Related Emergency Room Visits in the Eastern Province of Saudi Arabia" Journal of Clinical Medicine 14, no. 13: 4659. https://doi.org/10.3390/jcm14134659
APA StyleYousef, A. A., AlShammari, R. F., AlBugami, S., AlAbbas, B. E., & AlMossally, F. A. (2025). Evaluating the Impact of Air Quality on Pediatric Asthma-Related Emergency Room Visits in the Eastern Province of Saudi Arabia. Journal of Clinical Medicine, 14(13), 4659. https://doi.org/10.3390/jcm14134659