Artificial Sweeteners and Cardiovascular Risk in Hungary: Beyond Traditional Risk Factors
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Data
2.2. Variables
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khoshakhlagh, A.H.; Mohammadzadeh, M.; Gruszecka-Kosowska, A.; Oikonomou, E. Burden of cardiovascular disease attributed to air pollution: A systematic review. Glob. Health 2024, 20, 37. [Google Scholar] [CrossRef] [PubMed]
- Mensah, G.A.; Fuster, V.; Murray, C.J.L.; Roth, G.A.; Mensah, G.A.; Abate, Y.H.; Abbasian, M.; Abd-Allah, F.; Abdollahi, A.; Abdollahi, M.; et al. Global Burden of Cardiovascular Diseases and Risks, 1990-2022. J. Am. Coll. Cardiol. 2023, 82, 2350–2473. [Google Scholar] [CrossRef] [PubMed]
- Davalagi, S.; Amuje, R.; H, S. Cardiovascular Risk Assessment Among People With Type 2 Diabetes Mellitus in Urban Slums of Central Karnataka, India. Cureus 2023, 15, e46687. [Google Scholar] [CrossRef] [PubMed]
- Berbecar, V.T.; Ismail, G.; Mircescu, G. Prevalence of hypertension and cardiovascular disease in the rural population: Results from the Romanian mobile health caravans. J. Comm. Med. Public Health Rep. 2021, 1–10. [Google Scholar] [CrossRef]
- Sonkodi, B.; Sonkodi, S.; Steiner, S.; Helis, E.; Turton, P.; Zachar, P.; Abraham, G.; Legrady, P.; Fodor, J.G. High Prevalence of Prehypertension and Hypertension in a Working Population in Hungary. Am. J. Hypertens. 2012, 25, 204–208. [Google Scholar] [CrossRef]
- Mark, L.; Reiber, I.; Paragh, G.; Karadi, I.; Pados, G.; Kiss, Z.; Jermendy, G. Statin Therapy in Patients with Type 2 Diabetes Mellitus in Hungary. Cardiol. Angiol. 2015, 4, 147–155. [Google Scholar] [CrossRef]
- OECD; European Commission. Health at a Glance: Europe 2024: State of Health in the EU Cycle. In Health at a Glance: Europe; OECD: Paris, France, 2024; ISBN 978-92-64-80445-6. [Google Scholar]
- Rurik, I.; Ungvári, T.; Szidor, J.; Torzsa, P.; Móczár, C.; Jancsó, Z.; Sándor, J. Elhízó Magyarország. A túlsúly és az elhízás trendje és prevalenciája Magyarországon, 2015. Orvosi Hetil. 2016, 157, 1248–1255. [Google Scholar] [CrossRef]
- Paragh, G.; Harangi, M.; Karányi, Z.; Daróczy, B.; Németh, Á.; Fülöp, P. Identifying patients with familial hypercholesterolemia using data mining methods in the Northern Great Plain region of Hungary. Atherosclerosis 2018, 277, 262–266. [Google Scholar] [CrossRef]
- Sun, T.; Yang, J.; Lei, F.; Huang, X.; Liu, W.; Zhang, X.; Lin, L.; Sun, L.; Xie, X.; Zhang, X.-J.; et al. Artificial sweeteners and risk of incident cardiovascular disease and mortality: Evidence from UK Biobank. Cardiovasc. Diabetol. 2024, 23, 233. [Google Scholar] [CrossRef]
- Witkowski, M.; Nemet, I.; Alamri, H.; Wilcox, J.; Gupta, N.; Nimer, N.; Haghikia, A.; Li, X.S.; Wu, Y.; Saha, P.P.; et al. The artificial sweetener erythritol and cardiovascular event risk. Nat. Med. 2023, 29, 710–718. [Google Scholar] [CrossRef]
- Ulambayar, B.; Ghanem, A.S.; Nagy, A.C. Overnutrition in the Elderly Population: Socio-Demographic and Behavioral Risk Factors in Hungary. Nutrients 2025, 17, 1954. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Zhu, Y.; Malik, V.; Li, X.; Peng, X.; Zhang, F.F.; Shan, Z.; Liu, L. Intake of Sugar-Sweetened and Low-Calorie Sweetened Beverages and Risk of Cardiovascular Disease: A Meta-Analysis and Systematic Review. Adv. Nutr. 2021, 12, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Swithers, S.E. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol. Metab. 2013, 24, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Soós, R.; Bakó, C.; Gyebrovszki, Á.; Gordos, M.; Csala, D.; Ádám, Z.; Wilhelm, M. Nutritional Habits of Hungarian Older Adults. Nutrients 2024, 16, 1203. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, Z.; Hua, Z.; Li, X. Global development and future trends of artificial sweetener research based on bibliometrics. Ecotoxicol. Environ. Saf. 2023, 263, 115221. [Google Scholar] [CrossRef]
- Jancsó, Z.; Csenteri, O.; Szőllősi, G.J.; Vajer, P.; Andréka, P. Cardiovascular risk management: The success of target level achievement in high- and very high-risk patients in Hungary. BMC Prim. Care 2022, 23, 305. [Google Scholar] [CrossRef]
- European Health Interview Survey—Methodology. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=European_health_interview_survey_-_methodology (accessed on 10 February 2025).
- Obesity. Available online: https://www.who.int/health-topics/obesity (accessed on 13 May 2025).
- Stata Statistical Software; StataCorp LLC: College Station, TX, USA, 2023.
- Alwan, N.A.; Stannard, S.; Berrington, A.; Paranjothy, S.; Hoyle, R.B.; Owen, R.K.; Fraser, S.D.S. Risk factors for ill health: How do we specify what is ‘modifiable’? PLoS Glob. Public Health 2024, 4, e0002887. [Google Scholar] [CrossRef]
- Tjahjono, C.T.; Alfata, F.H.; Martini, H.; Prasetya, I.; Satwikajati, S. Cardiovascular Disease Among Adolescence In Smpn 5 Malang: A Cross-Sectional Survey Study. J. Community Health Prev. Med. 2021, 1, 30–36. [Google Scholar] [CrossRef]
- Najman, J.M.; Kisely, S.; Scott, J.G.; Ushula, T.W.; Williams, G.M.; Clavarino, A.M.; McGee, T.R.; Mamun, A.A.; Wang, W.Y.S. Gender differences in cardiovascular disease risk: Adolescence to young adulthood. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 98–106. [Google Scholar] [CrossRef]
- Lim, A.; Benjasirisan, C.; Tebay, J.; Liu, X.; Badawi, S.; Himmelfarb, C.D.; Davidson, P.M.; Koirala, B. Gender Differences in Disease Burden, Symptom Burden, and Quality of Life Among People Living With Heart Failure and Multimorbidity: Cross-Sectional Study. J. Adv. Nurs. 2025. [Google Scholar] [CrossRef]
- Baruwa, O.J.; Alberti, F.; Onagbiye, S.; Guddemi, A.; Odone, A.; Ricci, H.; Gaeta, M.; Daniela, S.; Ricci, C. Are socio-economic inequalities related to cardiovascular disease risk? A systematic review and meta-analysis of prospective studies. BMC Cardiovasc. Disord. 2024, 24, 685. [Google Scholar] [CrossRef] [PubMed]
- De Mestral, C.; Stringhini, S. Socioeconomic Status and Cardiovascular Disease: An Update. Curr. Cardiol. Rep. 2017, 19, 115. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.-J.F.; Zhu, Y.; Dekker, L.H.; Mierau, J.O.; Corpeleijn, E.; Bakker, S.J.L.; Navis, G. Effects of Education and Income on Incident Type 2 Diabetes and Cardiovascular Diseases: A Dutch Prospective Study. J. Gen. Intern. Med. 2022, 37, 3907–3916. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, Y.; Zheng, X. Association of socioeconomic status with cardiovascular disease and cardiovascular risk factors: A systematic review and meta-analysis. J. Public Health 2024, 32, 385–399. [Google Scholar] [CrossRef]
- Armenian, S.H.; Xu, L.; Ky, B.; Sun, C.; Farol, L.T.; Pal, S.K.; Douglas, P.S.; Bhatia, S.; Chao, C. Cardiovascular Disease Among Survivors of Adult-Onset Cancer: A Community-Based Retrospective Cohort Study. J. Clin. Oncol. 2016, 34, 1122–1130. [Google Scholar] [CrossRef]
- Wong, N.D. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat. Rev. Cardiol. 2014, 11, 276–289. [Google Scholar] [CrossRef]
- Almeida, M.F.D.; Kangavali, R.; Prathiba, G. A Study to Evaluate the Effectiveness of a Structured Teaching Programme on Yogasanas to Prevent the Risk of Cardiovascular Diseases among Patients Having Hypertension in Selected Hospital at Mangaluru. Int. J. Multidiscip. Res. 2023, 5, 1863. [Google Scholar] [CrossRef]
- Vartiainen, E. The North Karelia Project: Cardiovascular disease prevention in Finland. Glob. Cardiol. Sci. Pract. 2018, 2018, 13. [Google Scholar] [CrossRef]
- Lakier, J.B. Smoking and cardiovascular disease. Am. J. Med. 1992, 93, S8–S12. [Google Scholar] [CrossRef]
- Bakhru, A.; Erlinger, T.P. Smoking Cessation and Cardiovascular Disease Risk Factors: Results from the Third National Health and Nutrition Examination Survey. PLoS Med. 2005, 2, e160. [Google Scholar] [CrossRef]
- Zheng, Y.-L.; Lian, F.; Shi, Q.; Zhang, C.; Chen, Y.-W.; Zhou, Y.-H.; He, J. Alcohol intake and associated risk of major cardiovascular outcomes in women compared with men: A systematic review and meta-analysis of prospective observational studies. BMC Public Health 2015, 15, 773. [Google Scholar] [CrossRef] [PubMed]
- Suh, H.S.; Kim, J.S.; Kim, S.S.; Jung, J.G.; Yoon, S.J.; Ahn, J.B. Influence of the Flushing Response in the Relationship between Alcohol Consumption and Cardiovascular Disease Risk. Korean J. Fam. Med. 2014, 35, 295. [Google Scholar] [CrossRef] [PubMed]
- Rosoff, D.B.; Davey Smith, G.; Mehta, N.; Clarke, T.-K.; Lohoff, F.W. Evaluating the relationship between alcohol consumption, tobacco use, and cardiovascular disease: A multivariable Mendelian randomization study. PLoS Med. 2020, 17, e1003410. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, N.K.; Balasubramanian, B.; Kundapur, R.; Chaudhary, A.; Meyyazhagnan, A.; Pappuswamy, M. Unraveling connections with artificial sweeteners and their impact on human health: A comprehensive review. eFood 2024, 5, e184. [Google Scholar] [CrossRef]
- Schermbeck, R.M.; Leider, J.; Powell, L.M. The Presence of Added Sugars and Other Sweeteners in Food and Beverage Products Advertised on Television in the United States, 2022. Nutrients 2024, 16, 3981. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Correa-Delgado, M.; Córdova-Almeida, R.; Lara-Nava, D.; Chávez-Muñoz, M.; Velásquez-Chávez, V.F.; Hernández-Torres, C.E.; Gontarek-Castro, E.; Ahmad, M.Z. Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chem. 2022, 370, 130991. [Google Scholar] [CrossRef]
- Samreen, H.; Dhaneshwar, S. Artificial Sweeteners: Perceptions and Realities. Curr. Diabetes Rev. 2023, 19, e290422204241. [Google Scholar] [CrossRef]
- Ghusn, W.; Naik, R.; Yibrin, M. The Impact of Artificial Sweeteners on Human Health and Cancer Association: A Comprehensive Clinical Review. Cureus 2023, 15, e51299. [Google Scholar] [CrossRef]
- Swithers, S.E. Not-so-healthy sugar substitutes? Curr. Opin. Behav. Sci. 2016, 9, 106–110. [Google Scholar] [CrossRef]
- De Koning, L.; Malik, V.S.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Sugar-sweetened and artificially sweetened beverage consumption and risk of type 2 diabetes in men. Am. J. Clin. Nutr. 2011, 93, 1321–1327. [Google Scholar] [CrossRef]
- Hernández, A.; Di Iorio, A.; Lansdale, J.; Salazar, M. Characterization of the Types of Sweeteners Consumed in Honduras. Nutrients 2018, 10, 338. [Google Scholar] [CrossRef] [PubMed]
- Laforest-Lapointe, I.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; Moraes, T.J.; Sears, M.R.; Subbarao, P.; Sycuro, L.K.; Azad, M.B.; Arrieta, M.-C. Maternal consumption of artificially sweetened beverages during pregnancy is associated with infant gut microbiota and metabolic modifications and increased infant body mass index. Gut Microbes 2021, 13, 1857513. [Google Scholar] [CrossRef] [PubMed]
- Moriconi, E.; Feraco, A.; Marzolla, V.; Infante, M.; Lombardo, M.; Fabbri, A.; Caprio, M. Neuroendocrine and Metabolic Effects of Low-Calorie and Non-Calorie Sweeteners. Front. Endocrinol. 2020, 11, 444. [Google Scholar] [CrossRef] [PubMed]
- De Koning, L.; Malik, V.S.; Kellogg, M.D.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Sweetened Beverage Consumption, Incident Coronary Heart Disease, and Biomarkers of Risk in Men. Circulation 2012, 125, 1735–1741. [Google Scholar] [CrossRef]
- Saputra, F.; Lai, Y.-H.; Fernandez, R.A.; Macabeo, A.P.G.; Lai, H.-T.; Huang, J.-C.; Hsiao, C.-D. In vivo Modelling of Toxicity of Eight Commercial Artificial Sweeteners in Daphnia Neonates and Zebrafish Embryos through Cardiac Performance Assessments. Preprints 2020. [Google Scholar] [CrossRef]
- Ibragić, S.; Fehratović, E.; Suljević, D.; Mitrašinović-Brulić, M. Artificial sweeteners elicit oxidative stress in rat brain and development of microcytic anemia: Promising protective effects of vitamin C. J. Res. Pharm. 2021, 25, 117–123. [Google Scholar] [CrossRef]
Variable | Category | CVD | p Value | |
---|---|---|---|---|
Without CVD | With CVD | |||
Gender | Male | 1647 (64.0) | 925 (35.0) | <0.001 |
Female | 1789 (59.0) | 1242 (41.0) | ||
Age group | 34 and younger | 1217 (95.4) | 59 (4.6) | <0.001 |
35–64 years old | 1777 (65.8) | 922 (34.8) | ||
65 and older | 422 (27.1) | 1186 (72.9) | ||
Education | Primary | 1342 (53.5) | 1165 (46.5) | <0.001 |
Secondary | 1216 (65.9) | 628 (34.1) | ||
High | 878 (70.1) | 374 (29.9) | ||
Household income level | Lowest | 660 (57.2) | 493 (42.8) | <0.001 |
Lower than average | 627 (53.4) | 546 (46.6) | ||
Average | 682 (59.9) | 457 (40.1) | ||
Higher than average | 803 (63.3) | 466 (37.7) | ||
Highest | 664 (76.4) | 205 (23.6) | ||
Smoking status | Active or cessation within a year | 1086 (70.2) | 462 (29.8) | <0.001 |
Cessation for more than a year | 463 (47.1) | 520 (52.9) | ||
Never smoked | 1842 (61.3) | 1163 (38.7) | ||
Alcohol consumption | Heavy drinker (Reference) | 829 (60.5) | 541 (39.5) | <0.001 |
Moderate drinker | 1651 (66.9) | 818 (33.1) | ||
Never of rare drinker | 905 (53.3) | 792 (46.7) | ||
Number of days walked for at least 10 min a week | Do not walk | 366 (49.4) | 375 (50.6) | <0.001 |
1–3 days | 502 (56.1) | 393 (43.9) | ||
4–7 days | 2501 (65.5) | 1375 (35.5) | ||
Number of days cycled for at least 10 min a week | Do not cycle | 2068 (58.9) | 1445 (41.1) | <0.001 |
1–3 days | 638 (68.6) | 292 (31.4) | ||
4–7 days | 650 (62.2) | 395 (37.8) | ||
Number of days performing sports for at least 10 min a week | Do not perform sports | 1758 (52.7) | 1580 (47.3) | <0.001 |
1–3 days | 1070 (77.3) | 315 (22.7) | ||
4–7 days | 546 (69.1) | 244 (30.9) | ||
Servings of fruits a day | 1 serving | 721 (55.0) | 590 (45.0) | 0.563 |
2 servings | 668 (52.9) | 595 (47.1) | ||
3 or more servings | 309 (53.9) | 264 (46.1) | ||
Servings of vegetables a day | 1 serving | 741 (57.6) | 546 (42.4) | 0.152 |
2 servings | 468 (56.5) | 360 (43.8) | ||
3 or more servings | 211 (56.8) | 161 (43.2) | ||
Red meat use | More than 4 times a week | 444 (64.3) | 246 (35.7) | 0.177 |
1–3 times a week | 2019 (60.6) | 1315 (39.4) | ||
Less than one a week | 928 (61.2) | 588 (38.2) | ||
White meat use | More than 4 times a week | 745 (58.0) | 538 (42.0) | 0.231 |
1–3 times a week | 2391 (59.8) | 1607 (40.2) | ||
Less than one a week | 160 (57.3) | 119 (42.7) | ||
Milk products use | More than 4 times a week | 2166 (61.3) | 1365 (38.7) | 0.589 |
1–3 times a week | 895 (61.8) | 553 (38.2) | ||
Less than one a week | 345 (59.4) | 236 (40.6) | ||
Sweetener for hot drinks (coffee, tea) | Natural (sugar, honey) or not | 3013 (64.3) | 1673 (35.7) | <0.001 |
Artificial sweetener | 423 (46.1) | 494 (53.9) | ||
Salt use | Never or low salt use | 2389 (61.5) | 1491 (38.5) | 0.424 |
Moderate or high salt use | 1008 (60.4) | 660 (39.6) | ||
BMI | Normal (≤24.9) | 1699 (77.1) | 506 (22.9) | <0.001 |
Overweight (25–29.9) | 1105 (56.9) | 834 (43.1) | ||
Obese (≥30) | 584 (41.9) | 809 (58.1) | ||
Diabetes mellitus | No | 3265 (65.5) | 1723 (34.5) | <0.001 |
Yes | 119 (21.8) | 426 (78.2) |
Variable | Category/Level | OR | 95% CI | p-Value |
---|---|---|---|---|
Gender | Male (Reference) | |||
Female | 1.32 | 1.13–1.53 | 0.001 | |
Age group | 34 and younger (Reference) | |||
35–64 years old | 8.27 | 6.17–11.1 | <0.001 | |
65 and older | 35.7 | 26.2–48.6 | <0.001 | |
Education | Primary (Reference) | |||
Secondary | 0.66 | 0.56–0.78 | <0.001 | |
High | 0.58 | 0.47–0.72 | <0.001 | |
Income levels | Lower than average (Reference) | |||
Average | 0.85 | 0.70–1.03 | 0.104 | |
Higher than average | 0.98 | 0.83–1.16 | 0.874 | |
Smoking status | Every day (Reference) | |||
Cessation for more than a year | 1.28 | 1.04–1.57 | 0.018 | |
Never smoked | 1.07 | 0.90–1.27 | 0.407 | |
Alcohol use | Heavy drinker (Reference) | |||
Moderate drinker | 0.84 | 0.70–0.98 | 0.044 | |
Never of rare drinker | 0.95 | 0.78–1.16 | 0.664 | |
BMI | Normal (Reference) | |||
Overweight | 1.67 | 1.42–1.97 | <0.001 | |
Obese | 3.01 | 2.52–3.60 | <0.001 | |
Number of days walked for at least 10 min a week | Do not walk (Reference) | |||
1–3 days | 0.96 | 0.75–1.24 | 0.805 | |
4–7 days | 0.94 | 0.77–1.15 | 0.578 | |
Number of days cycled for at least 10 min a week | Do not cycle (Reference) | |||
1–3 days | 1.01 | 0.83–1.22 | 0.916 | |
4–7 days | 0.98 | 0.82–1.17 | 0.826 | |
Number of days performing sports for at least 10 min a week | Do not perform sports (Reference) | |||
1–3 days | 0.65 | 0.54–0.79 | <0.001 | |
4–7 days | 0.83 | 0.67–0.97 | 0.021 | |
Diabetes mellitus | No (Reference) | |||
Yes | 3.18 | 2.47–4.08 | <0.001 | |
Sweetener use for tea or coffee | Natural (Reference) | |||
Artificial | 1.21 | 1.02–1.46 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulambayar, B.; Nagy, A.C. Artificial Sweeteners and Cardiovascular Risk in Hungary: Beyond Traditional Risk Factors. J. Clin. Med. 2025, 14, 4641. https://doi.org/10.3390/jcm14134641
Ulambayar B, Nagy AC. Artificial Sweeteners and Cardiovascular Risk in Hungary: Beyond Traditional Risk Factors. Journal of Clinical Medicine. 2025; 14(13):4641. https://doi.org/10.3390/jcm14134641
Chicago/Turabian StyleUlambayar, Battamir, and Attila Csaba Nagy. 2025. "Artificial Sweeteners and Cardiovascular Risk in Hungary: Beyond Traditional Risk Factors" Journal of Clinical Medicine 14, no. 13: 4641. https://doi.org/10.3390/jcm14134641
APA StyleUlambayar, B., & Nagy, A. C. (2025). Artificial Sweeteners and Cardiovascular Risk in Hungary: Beyond Traditional Risk Factors. Journal of Clinical Medicine, 14(13), 4641. https://doi.org/10.3390/jcm14134641