Association Between Psychosocial Stress and Premature Ventricular Contractions During the Recovery Phase Following Treadmill Testing in Asymptomatic Individuals
Abstract
1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Psychosocial Stress and Lifestyle Assessment
2.3. Familial Cardiovascular Risk Factors
2.4. Treadmill Exercise Testing Protocol
2.5. Premature Ventricular Contractions
2.6. Equity, Diversity, and Inclusion (EDI) Statement
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | body mass index |
CVD | cardiovascular disease |
ECG | Electrocardiogram |
SBP | systolic blood pressure |
HR | heart rate |
DBP | diastolic blood pressure |
MBP | mean blood pressure |
PVC | premature ventricular contractions |
VA | ventricular arrhythmia |
References
- Martin, S.S.; Aday, A.W.; Allen, N.B.; Almarzooq, Z.I.; Anderson, C.A.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Bansal, N.; Beaton, A.Z.; et al. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Association. Circulation 2025, 151, e41–e660. [Google Scholar]
- Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C.; et al. 2017 AHA/ACC/HRS Guideline for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 2018, 138, e272–e391. [Google Scholar]
- Jouven, X.; Zureik, M.; Desnos, M.; Courbon, D.; Ducimetiere, P. Long-term outcome in asymptomatic men with exercise-induced premature ventricular depolarizations. N. Engl. J. Med. 2000, 343, 826–833. [Google Scholar] [CrossRef]
- Sajadieh, A.; Nielsen, O.W.; Rasmussen, V.; Hein, H.O.; Frederiksen, B.S.; Davanlou, M.; Hansen, J.F. Ventricular arrhythmias and risk of death and acute myocardial infarction in apparently healthy subjects of age ≥55 years. Am. J. Cardiol. 2006, 97, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Gibbs, B.B.; Beaton, A.Z.; Boehme, A.K.; et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Association. Circulation 2024, 149, e347–e913. [Google Scholar] [CrossRef] [PubMed]
- Frolkis, J.P.; Pothier, C.E.; Blackstone, E.H.; Lauer, M.S. Frequent ventricular ectopy after exercise as a predictor of death. N. Engl. J. Med. 2003, 348, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Refaat, M.M.; Gharios, C.; Moorthy, M.V.; Abdulhai, F.; Blumenthal, R.S.; Jaffa, M.A.; Mora, S. Exercise-Induced Ventricular Ectopy and Cardiovascular Mortality in Asymptomatic Individuals. J. Am. Coll. Cardiol. 2021, 78, 2267–2277. [Google Scholar] [CrossRef]
- Hiss, R.G.; Lamb, L.E. Electrocardiographic findings in 122,043 individuals. Circulation 1962, 25, 947–961. [Google Scholar] [CrossRef]
- Simpson, R.J.; Cascio, W.E., Jr.; Schreiner, P.J.; Crow, R.S.; Rautaharju, P.M.; Heiss, G. Prevalence of premature ventricular contractions in a population of African American and white men and women: The Atherosclerosis Risk in Communities (ARIC) study. Am. Heart J. 2002, 143, 535–540. [Google Scholar] [CrossRef]
- Drezner, J.A.; Sharma, S.; Baggish, A.; Papadakis, M.; Wilson, M.G.; Prutkin, J.M.; La Gerche, A.; Ackerman, M.J.; Borjesson, M.; Salerno, J.C.; et al. International criteria for electrocardiographic interpretation in athletes: Consensus statement. Br. J. Sports Med. 2017, 51, 704–731. [Google Scholar] [CrossRef]
- Fletcher, G.F.; Ades, P.A.; Kligfield, P.; Arena, R.; Balady, G.J.; Bittner, V.A.; Coke, L.A.; Fleg, J.L.; Forman, D.E.; Gerber, T.C.; et al. Exercise standards for testing and training: A scientific statement from the American Heart Association. Circulation 2013, 128, 873–934. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.P.; Young, C.N.; Fadel, P.J. Autonomic adjustments to exercise in humans. Compr. Physiol. 2015, 5, 475–512. [Google Scholar] [CrossRef]
- Kivimaki, M.; Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 2018, 15, 215–229. [Google Scholar] [CrossRef]
- Wirtz, P.H.; von Kanel, R. Psychological Stress, Inflammation, and Coronary Heart Disease. Curr. Cardiol. Rep. 2017, 19, 111. [Google Scholar] [CrossRef] [PubMed]
- Taggart, P.; Boyett, M.R.; Logantha, S.; Lambiase, P.D. Anger, emotion, and arrhythmias: From brain to heart. Front. Physiol. 2011, 2, 67. [Google Scholar] [CrossRef]
- Cohen, S.; Janicki-Deverts, D.; Miller, G.E. Psychological stress and disease. JAMA 2007, 298, 1685–1687. [Google Scholar] [CrossRef]
- Richardson, S.; Shaffer, J.A.; Falzon, L.; Krupka, D.; Davidson, K.W.; Edmondson, D. Meta-analysis of perceived stress and its association with incident coronary heart disease. Am. J. Cardiol. 2012, 110, 1711–1716. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- O’Donnell, M.J.; Chin, S.L.; Rangarajan, S.; Xavier, D.; Liu, L.; Zhang, H.; Rao-Melacini, P.; Zhang, X.; Pais, P.; Agapay, S.; et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): A case-control study. Lancet 2016, 388, 761–775. [Google Scholar] [CrossRef]
- Bruce, R.A.; Kusumi, F.; Hosmer, D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am. Heart J. 1973, 85, 546–562. [Google Scholar] [CrossRef]
- Ellestad, M.H.; Wan, M.K. Predictive implications of stress testing. Follow-up of 2700 subjects after maximum treadmill stress testing. Circulation 1975, 51, 363–369. [Google Scholar] [CrossRef]
- Myers, J.; Arena, R.; Franklin, B.; Pina, I.; Kraus, W.E.; McInnis, K.; Balady, G.J. Recommendations for clinical exercise laboratories: A scientific statement from the American Heart Association. Circulation 2009, 119, 3144–3161. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, T.; de Freitas, O.G.A.; Chalela, W.A.; Hossri, C.A.C.; Milani, M.; Buglia, S.; Precoma, D.B.; Falcão, A.M.G.M.; Mastrocola, L.E.; Castro, I.; et al. Brazilian Guideline for Exercise Test in the Adult Population—2024. Arq. Bras. Cardiol. 2024, 121, e20240110. [Google Scholar] [CrossRef]
- Forman, D.E.; Myers, J.; Lavie, C.J.; Guazzi, M.; Celli, B.; Arena, R. Cardiopulmonary exercise testing: Relevant but underused. Postgrad. Med. 2010, 122, 68–86. [Google Scholar] [CrossRef] [PubMed]
- Samesima, N.; God, E.G.; Kruse, J.C.L.; Leal, M.G.; Pinho, C.; Franca, F.; Pimenta, J.; Cardoso, A.F.; Paixão, A.; Fonseca, A.; et al. Brazilian Society of Cardiology Guidelines on the Analysis and Issuance of Electrocardiographic Reports—2022. Arq. Bras. Cardiol. 2022, 119, 638–680. [Google Scholar]
- Buckley, U.; Shivkumar, K. Stress-induced cardiac arrhythmias: The heart-brain interaction. Trends Cardiovasc. Med. 2016, 26, 78–80. [Google Scholar] [CrossRef]
- Harding, J.L.; Backholer, K.; Williams, E.D.; Peeters, A.; Cameron, A.J.; Hare, M.J.; Shaw, J.E.; Magliano, D.J. Psychosocial stress is positively associated with body mass index gain over 5 years: Evidence from the longitudinal AusDiab study. Obesity 2014, 22, 277–286. [Google Scholar] [CrossRef]
- Palatini, P.; Casiglia, E.; Pauletto, P.; Staessen, J.; Kaciroti, N.; Julius, S. Relationship of tachycardia with high blood pressure and metabolic abnormalities: A study with mixture analysis in three populations. Hypertension 1997, 30, 1267–1273. [Google Scholar] [CrossRef]
- Gerber, M.; Borjesson, M.; Ljung, T.; Lindwall, M.; Jonsdottir, I.H. Fitness Moderates the Relationship between Stress and Cardiovascular Risk Factors. Med. Sci. Sports Exerc. 2016, 48, 2075–2081. [Google Scholar] [CrossRef]
- Hamer, M.; Steptoe, A. Cortisol responses to mental stress and incident hypertension in healthy men and women. J. Clin. Endocrinol. Metab. 2012, 97, E29–E34. [Google Scholar] [CrossRef]
- Das, S.; O’Keefe, J.H. Behavioral cardiology: Recognizing and addressing the profound impact of psychosocial stress on cardiovascular health. Curr. Atheroscler. Rep. 2006, 8, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Dzikowicz, D.J.; Carey, M.G. Exercise-Induced Premature Ventricular Contractions Are Associated With Myocardial Ischemia Among Asymptomatic Adult Male Firefighters: Implications for Enhanced Risk Stratification. Biol. Res. Nurs. 2020, 22, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.K.; Heiss, G.; Rautaharju, P.M.; Shahar, E.; Massing, M.W.; Simpson, R.J., Jr. Premature ventricular complexes and the risk of incident stroke: The Atherosclerosis Risk In Communities (ARIC) Study. Stroke 2010, 41, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Bianco, M.; Sollazzo, F.; Pella, R.; Vicentini, S.; Ciaffoni, S.; Modica, G.; Monti, R.; Cammarano, M.; Zeppilli, P.; Palmieri, V. Differences in Arrhythmia Detection Between Harvard Step Test and Maximal Exercise Testing in a Paediatric Sports Population. J. Cardiovasc. Dev. Dis. 2025, 12, 22. [Google Scholar] [CrossRef]
- Abed, H.S.; Samuel, C.S.; Lau, D.H.; Kelly, D.J.; Royce, S.G.; Alasady, M.; Mahajan, R.; Kuklik, P.; Zhang, Y.; Brooks, A.G.; et al. Obesity results in progressive atrial structural and electrical remodeling: Implications for atrial fibrillation. Heart Rhythm. 2013, 10, 90–100. [Google Scholar] [CrossRef]
- Lima Filho, A.I.N.; do Rego Barros, M.C.; de Barros Guimaraes, A.A.; Celestino Sobral Filho, D. Obesity Paradox in Atrial Fibrillation and its Relation with the New Oral Anticoagulants. Curr. Cardiol. Rev. 2022, 18, 8–10. [Google Scholar] [CrossRef]
- Patel, K.H.K.; Reddy, R.K.; Sau, A.; Sivanandarajah, P.; Ardissino, M.; Ng, F.S. Obesity as a risk factor for cardiac arrhythmias. BMJ Med. 2022, 1, e000308. [Google Scholar] [CrossRef]
Variable | Psychosocial Stress | p | |
---|---|---|---|
No (n = 106) | Yes (n = 176) | ||
Age (years) | 0.089 ** | ||
Mean ± SD | 37.4 ± 10.6 | 39.7 ± 10.7 | |
median (p25; p75) | 38 (29; 45.3) | 40 (32; 48) | |
Sex, n (%) | 0.640 | ||
Female | 38 (35.8) | 68 (38.6) | |
Male | 68 (64.2) | 108 (61.4) | |
BMI (kg/m2) | 0.025 ** | ||
Mean ± SD | 26 ± 3.9 | 27.2 ± 4.3 | |
median (p25; p75) | 25.6 (23.6; 28.2) | 26.7 (24.4; 29.2) | |
Physical Activity (150 min/sem) n (%) | 0.001 | ||
No | 37 (34.9) | 97 (55.1) | |
Yes | 69 (65.1) | 79 (44.9) | |
Waist Circumference (cm) | 0.004 ** | ||
Mean ± SD | 91.9 ± 13.2 | 96.7 ± 13.2 | |
median (p25; p75) | 90 (82; 100.5) | 97 (89; 104) | |
Smoking | 0.288 | ||
No | 92 (86.8) | 140 (79.5) | |
Former smoke | 7 (6.6) | 16 (9.1) | |
Current smoke | 7 (6.6) | 20 (11.4) | |
Familial Risk Factor n (%) | 0.966 | ||
No | 69 (65.1) | 115 (65.3) | |
Yes | 37 (34.9) | 61 (34.7) |
Parameters/Groups | Psychosocial Stress | p | |
---|---|---|---|
Yes (n = 176) | No (n = 106) | ||
Rest | |||
HR (bpm) | 78 ± 13 | 77 ± 13 | 0.3214 |
SBP (mmHg) | 120 ± 8 | 120 ± 7 | 0.6792 |
DBP (mmHg) | 79 ± 6 | 78 ± 6 | 0.2739 |
MBP (mmHg) | 89 ± 19 | 84 ± 26 | 0.1049 |
Maximal | |||
HR (bpm) | 167 ± 12 | 169 ± 13 | 0.1846 |
SBP (mmHg) | 151 ± 12 | 151 ± 11 | 0.9079 |
DBP (mmHg) | 79 ± 6 | 78 ± 26 | 0.3093 |
MBP (mmHg) | 99 ± 21 | 94 ± 29 | 0.2232 |
Recovery | |||
HR 1 min (bpm) | 140 ± 15 | 141 ± 17 | 0.7719 |
HR 2 min (bpm) | 121 ± 17 | 122 ± 17 | 0.7446 |
HR 4 min (bpm) | 108 ± 14 | 108 ± 17 | 0.6965 |
HR 6 min (bpm) | 104 ± 13 | 104 ± 15 | 0.7649 |
SBP 1 min (mmHg) | 150 ± 12 | 150 ± 11 | 0.7601 |
SBP 2 min (mmHg) | 147 ± 12 | 146 ± 12 | 0.9307 |
SBP 4 min (mmHg) | 139 ± 11 | 138 ± 12 | 0.9946 |
SBP 6 min (mmHg) | 133 ± 10 | 129 ± 12 | 0.0195 |
DBP 1 min (mmHg) | 79 ± 6 | 78 ± 7 | 0.1684 |
DBP 2 min (mmHg) | 79 ± 6 | 78 ± 7 | 0.1684 |
DBP 4 min (mmHg) | 79 ± 6 | 78 ± 7 | 0.0889 |
DBP 6 min (mmHg) | 79 ± 6 | 77 ± 10 | 0.0598 |
Test time (seconds) | 435 ± 101 | 503 ± 154 | <0.0001 |
Variable | PVC Recovery Phase | OR | CI (95%) | p | ||
---|---|---|---|---|---|---|
No | Yes | Inferior | Superior | |||
Age (years) | 1.01 | 0.98 | 1.04 | 0.581 ** | ||
Mean ± SD | 38.7 ± 10.3 | 39.6 ± 13 | ||||
median (p25; p75) | 39 (31; 46) | 38.5 (28.8; 49.5) | ||||
Sex, n (%) | 0.813 | |||||
Female | 88 (83) | 18 (17) | 1.00 | |||
Male | 148 (84.1) | 28 (15.9) | 0.93 | 0.48 | 1.77 | |
BMI (kg/m2) | 0.94 | 0.86 | 1.02 | 0.109 ** | ||
Mean ± SD | 26.9 ± 4.2 | 25.8 ± 4.3 | ||||
median (p25; p75) | 26.5 (23.9; 29) | 25.5 (22.4; 28.7) | ||||
Physical Activity (150 min/sem.)?, n (%) | 0.489 | |||||
No | 110 (82.1) | 24 (17.9) | 1.00 | |||
Yes | 126 (85.1) | 22 (14.9) | 0.80 | 0.43 | 1.51 | |
Waist Circumference (cm) | 0.99 | 0.97 | 1.01 | 0.344 ** | ||
Mean ± SD | 95.3 ± 12.5 | 93.2 ± 16.9 | ||||
median (p25; p75) | 95 (86; 103) | 93 (84; 104.3) | ||||
Smoking | 0.250 # | |||||
No | 195 (84.1) | 37 (15.9) | 1.00 | |||
Former smoke | 21 (91.3) | 2 (8.7) | 0.50 | 0.11 | 2.23 | |
Current smoke | 20 (74.1) | 7 (25.9) | 1.85 | 0.73 | 4.67 | |
Familial Risk Factor, n (%) | 0.996 | |||||
No | 154 (83.7) | 30 (16.3) | 1.00 | |||
Yes | 82 (83.7) | 16 (16.3) | 1.00 | 0.52 | 1.94 |
Variable | OR | IC (95%) | p | |
---|---|---|---|---|
Inferior | Superior | |||
Age (years) | 1.00 | 0.97 | 1.03 | 0.903 |
BMI (kg/m2) | 0.91 | 0.83 | 0.99 | 0.028 |
Reach Physical Activity Recommendations (150 min/week) | 0.98 | 0.50 | 1.91 | 0.941 |
Psychosocial Stress | 9.03 | 3.07 | 26.54 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Almeida Dourado, J.P.; Azevêdo, L.M.; de Almeida Dourado, L.; de Oliveira, J.G.; de Faria, B.B.; de Oliveira Matos, K.; Roever, L.; Dourado, P.M.M.; Braga, P.G.S. Association Between Psychosocial Stress and Premature Ventricular Contractions During the Recovery Phase Following Treadmill Testing in Asymptomatic Individuals. J. Clin. Med. 2025, 14, 4637. https://doi.org/10.3390/jcm14134637
de Almeida Dourado JP, Azevêdo LM, de Almeida Dourado L, de Oliveira JG, de Faria BB, de Oliveira Matos K, Roever L, Dourado PMM, Braga PGS. Association Between Psychosocial Stress and Premature Ventricular Contractions During the Recovery Phase Following Treadmill Testing in Asymptomatic Individuals. Journal of Clinical Medicine. 2025; 14(13):4637. https://doi.org/10.3390/jcm14134637
Chicago/Turabian Stylede Almeida Dourado, João Paulo, Luan Morais Azevêdo, Larissa de Almeida Dourado, Jaciara Gomes de Oliveira, Bianca Barros de Faria, Karolyne de Oliveira Matos, Leonardo Roever, Paulo Magno Martins Dourado, and Pedro Gabriel Senger Braga. 2025. "Association Between Psychosocial Stress and Premature Ventricular Contractions During the Recovery Phase Following Treadmill Testing in Asymptomatic Individuals" Journal of Clinical Medicine 14, no. 13: 4637. https://doi.org/10.3390/jcm14134637
APA Stylede Almeida Dourado, J. P., Azevêdo, L. M., de Almeida Dourado, L., de Oliveira, J. G., de Faria, B. B., de Oliveira Matos, K., Roever, L., Dourado, P. M. M., & Braga, P. G. S. (2025). Association Between Psychosocial Stress and Premature Ventricular Contractions During the Recovery Phase Following Treadmill Testing in Asymptomatic Individuals. Journal of Clinical Medicine, 14(13), 4637. https://doi.org/10.3390/jcm14134637