Primary Aldosteronism and Cognitive Dysfunction: A Case-Control Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Collection
2.3. Cognitive Function Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARR | aldosterone/renine ratio |
BMI | body mass index |
CNS | central nervous system |
DBP | diastolic blood pressure |
eGFR CKD EPI | estimated glomerular filtration rate calculated by CKD EPI equation |
EH | essential hypertension |
HbA1c | haemoglobin A1c |
Lp(a) | lipoprotein a |
LVH | left ventricular hypertrophy |
MAP | mean arterial pressure |
MCI | mild cognitive impairment |
MGUS | monoclonal gammopathy of unknown significance |
MMSE | Mini-Mental State Examination |
MoCA | Montreal Cognitive Assessment |
MR | mineralocorticoid receptors |
MRI | magnetic resonance imaging |
OR | odds ratio |
PA | primary aldosteronism |
PRA | plasma renin activity |
SBP | systolic blood pressure |
SD | standard deviation |
UHC | University Hospital Center |
WC | waist circumference |
WML | white matter lesion |
References
- Hugo, J.; Ganguli, M. Dementia and cognitive impairment. Clin. Geriatr. Med. 2014, 30, 421–442. [Google Scholar] [CrossRef]
- in’t Veld, B.A.; Ruitenberg, A.; Hofman, A.; Stricker, B.H.; Breteler, M.M. Antihypertensive drugs and incidence of dementia: The Rotterdam study. Neurobiol. Aging 2001, 22, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Lennon, M.J.; Koncz, R.; Sachdev, P.S. Hypertension and Alzheimer’s disease: Is the picture any clearer? Curr. Opin. Psychiatry 2021, 34, 142–148. [Google Scholar] [CrossRef]
- O’Rourke, M.F.; Safar, M.E. Relationship between aortic stiffening and microvascular disease in brain and kidney: Cause and logic of therapy. Hypertension 2005, 46, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Ivan, C.S.; Seshadri, S.; Beiser, A.; Au, R.; Kase, C.S.; Kelly-Hayes, M.; Wolf, P.A. Dementia after stroke: The Framingham study. Stroke 2004, 35, 1264–1268. [Google Scholar] [CrossRef]
- Canavan, M.; O’Donnell, M.J. Hypertension and cognitive impairment: A review of mechanisms and key concepts. Front. Neurol. 2022, 13, 821135. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, I.; Hart, M.; Mack, W.; Lipsitz, L.A. Aldosterone, cognitive function, and cerebral hemodynamics in hypertension and antihypertensive therapy. Am. J. Hypertens. 2015, 28, 319–325. [Google Scholar] [CrossRef]
- Funder, J.W.; Carey, R.M.; Mantero, F.; Murad, M.H.; Reincke, M.; Shibata, H.; Stowasser, M.; Young, W.F. The management of primary aldosteronism: Case detection, diagnosis, and treatment: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2016, 101, 1889–1916. [Google Scholar] [CrossRef]
- Yagi, S.; Akaike, M.; Aihara Kichi Iwase, T.; Yoshida, S.; Sumitomo-Ueda, Y.; Ikeda, Y.; Ishikawa, K.; Matsumoto, T.; Sata, M. High plasma aldosterone concentration is a novel risk factor of cognitive impairment in patients with hypertension. Hypertens. Res. 2011, 34, 74–78. [Google Scholar] [CrossRef]
- Stier, C.T.; Rocha, R.; Chander, P.N. Effect of aldosterone and mr blockade on the brain and the kidney. Heart Fail. Rev. 2005, 10, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Dinh, Q.N.; Young, M.J.; Evans, M.A.; Drummond, G.R.; Sobey, C.G.; Chrissobolis, S. Aldosterone-induced oxidative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid receptor. Brain Res. 2016, 1637, 146–153. [Google Scholar] [CrossRef]
- Dorrance, A.M.; Osborn, H.L.; Grekin, R.; Webb, R.C. Spironolactone reduces cerebral infarct size and EGF-receptor mRNA in stroke-prone rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R944–R950. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Li, N.; Liu, Y.; Zhu, Q.; Heizhati, M.; Zhang, W.; Yao, X.; Zhang, D.; Luo, Q.; Wang, M.; et al. Positive association between plasma aldosterone concentration and white matter lesions in patients with hypertension. Front. Endocrinol. 2021, 12, 753074. [Google Scholar] [CrossRef]
- Velema, M.S.; de Nooijer, A.H.; Burgers, V.W.G.; Hermus, A.R.M.M.; Timmers, H.J.L.M.; Lenders, J.W.M.; Husson, O.; Deinum, J. Health-related quality of life and mental health in primary aldosteronism: A systematic review. Horm. Metab. Res. 2017, 49, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Engler, L.; Adolf, C.; Heinrich, D.A.; Brem, A.K.; Riester, A.; Franke, A.; Beuschlein, F.; Reincke, M.; Steiger, A.; Künzel, H. Effects of chronically high levels of aldosterone on different cognitive dimensions: An investigation in patients with primary aldosteronism. Endocr. Connect. 2019, 8, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Hong, N.; Kim, K.J.; Yu, M.H.; Jeong, S.H.; Lee, S.; Lim, J.S.; Rhee, Y. Risk of dementia in primary aldosteronism compared with essential hypertension: A nationwide cohort study. Alzheimer’s Res. Ther. 2023, 15, 136. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, G.S.; Palatini, P.; Parati, G.; O’Brien, E.; Januszewicz, A.; Lurbe, E.; Persu, A.; Mancia, G.; Kreutz, R.; on behalf of the European Society of Hypertension Council and the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. 2021 European Society of Hypertension practice guidelines for office and out-of-office blood pressure measurement. J. Hypertens. 2021, 39, 1293–1302. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Mitchell, A.J. A meta-analysis of the accuracy of the mini-mental state examination in the detection of dementia and mild cognitive impairment. J. Psychiatr. Res. 2009, 43, 411–431. [Google Scholar] [CrossRef]
- Tsoi, K.K.; Chan, J.Y.; Hirai, H.W.; Wong, S.Y.; Kwok, T.C. Cognitive tests to detect dementia: A systematic review and meta-analysis. JAMA Intern. Med. 2015, 175, 1450–1458. [Google Scholar] [CrossRef]
- Tombaugh, T.N.; McIntyre, N.J. The mini-mental state examination: A comprehensive review. J. Am. Geriatr. Soc. 1992, 40, 922–935. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, Moca: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Tsoi, K.K.F.; Chan, J.Y.C.; Hirai, H.W.; Wong, A.; Mok, V.C.T.; Lam, L.C.W.; Kwok, T.C.Y.; Wong, S.Y.S. recall tests are effective to detect mild cognitive impairment: A systematic review and meta-analysis of 108 diagnostic studies. J. Am. Med. Dir. Assoc. 2017, 18, 807.e17–807.e29. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the global burden of disease study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef]
- Saha, S.; Bornstein, S.; Graessler, J.; Chakrabarti, S.; Kopprasch, S. Aldosterone hypothesis for cognitive impairment in diabetes mellitus. Horm. Metab. Res. 2017, 49, 716–718. [Google Scholar] [CrossRef]
- Funes Hernandez, M.; Bhalla, V. Underdiagnosis of primary aldosteronism: A review of screening and detection. Am. J. Kidney Dis. 2023, 82, 333–346. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Shen, J.; Fuller, P.J.; Yang, J. Current pattern of primary aldosteronism diagnosis: Delayed and complicated. Aust. J. Gen. Pract. 2018, 47, 712–718. [Google Scholar] [CrossRef]
- McEvoy, J.W.; McCarthy, C.P.; Bruno, R.M.; Brouwers, S.; Canavan, M.D.; Ceconi, C.; Christodorescu, R.M.; Daskalopoulou, S.S.; Ferro, C.J.; Gerdts, E.; et al. ESC Scientific Document Group 2024 ESC Guidelines for the Management of Elevated Blood Pressure Hypertension. Eur. Heart J. 2024, 45, 3912–4018. [Google Scholar] [CrossRef]
- Arnlöv, J.; Evans, J.C.; Meigs, J.B.; Wang, T.J.; Fox, C.S.; Levy, D.; Benjamin, E.J.; D’aGostino, R.B.; Vasan, R.S. Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: The Framingham heart study. Circulation 2005, 112, 969–975. [Google Scholar] [CrossRef]
- Sikaroodi, H.; Yadegari, S.; Miri, S.R. Cognitive impairments in patients with cerebrovascular risk factors: A comparison of mini mental status exam and montreal cognitive assessment. Clin. Neurol. Neurosurg. 2013, 115, 1276–1280. [Google Scholar] [CrossRef]
- Melgarejo, J.D.; Vatcheva, K.P.; Mejia-Arango, S.; Charisis, S.; Patil, D.; Mena, L.J.; Garcia, A.; Alliey-Rodriguez, N.; Satizabal, C.L.; Chavez, C.A.; et al. Association of longitudinal changes in 24-h blood pressure level and variability with cognitive decline. J. Hypertens. 2024, 42, 1985–1993. [Google Scholar] [CrossRef] [PubMed]
- Freitag, M.H.; Peila, R.; Masaki, K.; Petrovitch, H.; Ross, G.W.; White, L.R.; Launer, L.J. Midlife pulse pressure and incidence of dementia: The Honolulu-Asia aging study. Stroke 2006, 37, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Tahmi, M.; Palta, P.; Luchsinger, J.A. Metabolic syndrome and cognitive function. Curr. Cardiol. Rep. 2021, 23, 180. [Google Scholar] [CrossRef] [PubMed]
- Georgakis, M.K.; Dimitriou, N.G.; Karalexi, M.A.; Mihas, C.; Nasothimiou, E.G.; Tousoulis, D.; Tsivgoulis, G.; Petridou, E.T. Albuminuria in association with cognitive function and dementia: A systematic review and meta-analysis. J. Am. Geriatr. Soc. 2017, 65, 1190–1198. [Google Scholar] [CrossRef]
- Kilander, L.; Nyman, H.; Boberg, M.; Hansson, L.; Lithell, H. Hypertension is related to cognitive impairment: A 20-year follow-up of 999 men. Hypertension 1998, 31, 780–786. [Google Scholar] [CrossRef]
- Filley, C.M.; Fields, R.D. White matter and cognition: Making the connection. J. Neurophysiol. 2016, 116, 2093–2104. [Google Scholar] [CrossRef]
- Chen, W.; Deng, S.; Li, H.; Zhao, Y.; Tian, Y.; Yuan, Y. Alterations of white matter microstructure in primary aldosteronism patients with normal cognitive functioning using diffusion tensor imaging. Int. J. Gen. Med. 2025, 18, 1089–1102. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, N.; Liu, Y.; Wang, M.; Heizhati, M.; Zhu, Q.; Yao, X.; Luo, Q. Plasma aldosterone concentration is associated with white matter lesions in patients with primary aldosteronism. Endocrine 2022, 75, 889–898. [Google Scholar] [CrossRef]
PA Group | EH Group | Statistical Test Results | |
---|---|---|---|
(a) | |||
Systolic blood pressure (mmHg), mean (SD) | 155.3 (17.9) | 135.4 (12.2) | t(28) = 3.559, p = 0.001 |
Diastolic blood pressure (mmHg), mean (SD) | 99.3 (13.1) | 87.6 (4.9) | t(17,874) = 3.217, p = 0.005 |
Mean arterial pressure (mmHg), mean (SD) | 117.9 (13.8) | 103.5 (6.8) | t(20,342) = 3.629, p = 0.002 |
Duration of hypertension (years), median (Min–Max) | 10 (1–22) | 3 (1–17) | U = 164, p = 0.033 |
Number of medications, median (Min–Max) | 3 (2–5) | 4 (0–7) | U = 98, p = 0.551 |
Number of antihypertensive medications, median (Min–Max) | 3 (2–5) | 3 (0–6) | U = 126.5, p = 0.563 |
Number of participants with uncontrolled hypertension (N) | 13 | 8 | OR= 5.688, p= 0.108 |
BMI (kg/m2), mean (SD) | 28.9 (4.6) | 29.2 (6.1) | t(28) = −0.165, p = 0.870 |
Waist circumference (cm), mean (SD) | 100.9 (17.3) | 102.3 (13.4) | t(28) = −0.259, p = 0.797 |
Smokers (N) | 2 | 2 | OR = 1, p = 1 |
LVH (N) | 4 | 4 | OR = 1, p = 1 |
Education (yrs), median (Min–Max) | 16 (4–16) | 16 (9–17) | U = 76, p = 0.124 |
(b) | |||
Dyslipidaemia (N) | 3 | 6 | OR = 0.375, p = 0.427 |
DM2 (N) | 0 | 1 | OR = 0, p = 1 |
Hyperuricaemia (N) | 0 | 1 | OR = 0, p = 1 |
Urolithiasis (N) | 3 | 1 | OR = 3.5, p = 0.598 |
Controlled hypothyroidism (N) | 1 | 2 | OR = 0.464, p = 1 |
Controlled hyperthyroidism (N) | 0 | 1 | OR = 0, p = 1 |
Polycystic ovary syndrome (N) | 1 | 0 | OR = 0, p = 1 |
MGUS (N) | 1 | 0 | OR = 0, p = 1 |
Gastritis (N) | 0 | 2 | OR = 0, p = 0.483 |
Psoriasis (N) | 0 | 1 | OR = 0, p = 1 |
(c) | |||
Serum sodium (mmol/L), mean (SD) | 142.7 (2.8) | 140.8 (2.8) | t = 1.864, p = 0.073 |
Serum potassium (mmol/L), mean (SD) | 3.6 (0.5) | 4.3 (0.4) | t = −4.315, p < 0.001 |
Serum chloride (mmol/L), median (Min–Max) | 102.5 (96–106) | 104 (104–108) | U = 26, p = 0.073 |
Serum aldosterone (ng/dL), median (Min–Max) | 28.6 (18.2–58) | 11.6 (3.7–26.2) | U = 106, p = 0.002 |
Plasma renin activity (ng/mL/hr), median (Min–Max) | 0.1 (0.1–0.5) | 1.1 (0.5–1.6) | U = 1, p < 0.001 |
Aldosterone to renin ratio, median (Min–Max) | 185.7 (43.8–580.4) | 16.4 (3.1–25.8) | U = 120, p < 0.001 |
24 h urine sodium excretion (mmol/du), mean (SD) | 206.8 (95.3) | 222.1 (69.9) | t = −0.397, p = 0.696 |
24 h urine potassium excretion (mmol/dU), mean (SD) | 88 (37.6) | 74.1 (28.4) | t = 0.857, p = 0.402 |
24 h urine albumin excretion rate (mg/dU), median (Min–Max) | 22 (5–330) | 8 (5–39) | U = 122.5, p = 0.039 |
PA Group | EH Group | Statistical Test Results | |
---|---|---|---|
Adjusted MMSE (%), mean (SD) | 98.3 (±8.2) | 101.2 (±2.9) | t(17.42) = 1.304 p = 0.209 |
MoCA score (n), mean (SD) | 25.1 (±2.2) | 27.1 (±2.2) | t(28) = −2.544 p = 0.021 |
MoCA Test Categories | PA | EH | p-Value |
---|---|---|---|
Visuospatial/executive abilities—scores, median (Min–Max) | 4 (2–5) | 5 (3–5) | 0.206 |
Naming—scores, median (Min–Max) | 3 (3–3) | 3 (3–3) | NaN |
Attention and concentration—scores, median (Min–Max) | 6 (3–6) | 6 (5–6) | 0.066 |
Language—scores, median (Min–Max) | 2 (2–3) | 3 (1–3) | 0.085 |
Abstract thinking—scores, median (Min–Max) | 2 (1–2) | 2 (1–2) | 0.479 |
Delayed recall—scores, median (Min–Max) | 3 (2–5) | 3 (0–5) | 0.847 |
Orientation—scores, median (Min–Max) | 6 (6–6) | 6 (5–6) | NaN |
Correlation Analysis Coefficient | Adjusted MMSE Score | MoCA Score | |
---|---|---|---|
Serum aldosterone concentration (ng/dL) | Kendall’s Tau B | −0.128 | −0.221 |
p-value | 0.517 | 0.268 | |
ARR (ng/dL/ng/mL/h) | Kendall’s Tau B | −0.149 | −0.176 |
p-value | 0.596 | 0.529 | |
SBP (mmHg) | Pearson’s R | −0.108 | −0.196 |
p-value | 0.701 | 0.484 | |
DBP (mmHg) | Pearson’s R | −0.136 | 0.084 |
p-value | 0.629 | 0.766 | |
MAP (mmHg) | Pearson’s R | −0.133 | −0.031 |
p-value | 0.637 | 0.912 | |
Serum potassium (mmol/L) | Pearson’s R | −0.224 | 0.134 |
p-value | 0.422 | 0.635 | |
Serum sodium (mmol/L) | Pearson’s R | 0.047 | −0.219 |
p-value | 0.869 | 0.432 | |
Fasting blood glucose (mmol/L) | Pearson’s R | −0.341 | −0.621 |
p-value | 0.214 | 0.013 | |
eGFR CKD EPI (mL/min/1.73 m2) | Pearson’s R | 0.317 | 0.148 |
p-value | 0.250 | 0.598 | |
24 h urine albumin excretion rate (mg/dU) | Kendall’s Tau B | −0.446 | −0.254 |
p-value | 0.024 | 0.207 | |
WC (cm) | Pearson’s R | 0.016 | −0.222 |
p-value | 0.955 | 0.427 | |
BMI (kg/m2) | Pearson’s R | −0.004 | −0.407 |
p-value | 0.988 | 0.132 | |
Duration of hypertension (yrs) | Pearson’s R | −0.423 | −0.495 |
p-value | 0.117 | 0.061 | |
Antihypertensives (n) | Kendall’s Tau B | 0.201 | −0.036 |
p-value | 0.351 | 0.868 | |
Total medications (n) | Kendall’s Tau B | 0.201 | −0.036 |
p-value | 0.351 | 0.868 |
MODEL. | Variable | B | SE | β | t | p | 95% CI |
---|---|---|---|---|---|---|---|
M0 | Intercept | 25.826 | 0.465 | 55.567 | <0.001 | [24.862, 26.790] | |
M1 | Intercept | 53.395 | 22.170 | 2.408 | 0.033 | [5.090, 101.700] | |
Aldosterone (ng/dL) | −0.158 | 0.066 | −0.867 | −2.409 | 0.033 | [−0.302, −0.015] | |
PRA (ng/mL/h) | 4.276 | 2.059 | 0.956 | 2.077 | 0.060 | [−0.210, 8.762] | |
ARR (ng/dL/ng/mL/h) | 0.009 | 0.005 | 0.622 | 1.921 | 0.079 | [−0.001, 0.020] | |
SBP (mmHg) | −0.007 | 0.029 | −0.061 | −0.257 | 0.802 | [−0.070, 0.055] | |
Duration of hypertension (years) | −0.005 | 0.074 | −0.018 | −0.072 | 0.944 | [−0.167, 0.156] | |
Education (years) | 0.049 | 0.120 | 0.072 | 0.408 | 0.691 | [−0.212, 0.310] | |
Fasting blood glucose (mmol/L) | −1.016 | 0.644 | −0.321 | −1.577 | 0.141 | [−2.420, 0.388] | |
Serum sodium (mmol/L) | −0.165 | 0.146 | −0.210 | −1.132 | 0.280 | [−0.484, 0.153] | |
24 h urine albumin excretion rate (mg/dU) | −0.014 | 0.006 | −0.442 | −2.396 | 0.034 | [−0.027, −0.001] | |
Group (PA) | 3.819 | 1.901 | 2.009 | 0.068 | [−0.322, 7.960] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herceg, J.; Vukorepa, G.; Karanović Štambuk, S. Primary Aldosteronism and Cognitive Dysfunction: A Case-Control Study. J. Clin. Med. 2025, 14, 4618. https://doi.org/10.3390/jcm14134618
Herceg J, Vukorepa G, Karanović Štambuk S. Primary Aldosteronism and Cognitive Dysfunction: A Case-Control Study. Journal of Clinical Medicine. 2025; 14(13):4618. https://doi.org/10.3390/jcm14134618
Chicago/Turabian StyleHerceg, Jakov, Gorana Vukorepa, and Sandra Karanović Štambuk. 2025. "Primary Aldosteronism and Cognitive Dysfunction: A Case-Control Study" Journal of Clinical Medicine 14, no. 13: 4618. https://doi.org/10.3390/jcm14134618
APA StyleHerceg, J., Vukorepa, G., & Karanović Štambuk, S. (2025). Primary Aldosteronism and Cognitive Dysfunction: A Case-Control Study. Journal of Clinical Medicine, 14(13), 4618. https://doi.org/10.3390/jcm14134618