Artificial Intelligence in Microsurgical Planning: A Five-Year Leap in Clinical Translation
Abstract
1. Introduction
2. Materials and Methods
3. Discussion
3.1. Preoperative Applications
3.1.1. AI for Perforator Mapping and Surgical Planning
3.1.2. Patient Selection and Outcome Prediction
3.2. Intraoperative Applications
3.2.1. AR Navigation
3.2.2. Intraoperative Perfusion Assessment and Assistance
3.3. Postoperative Applications
3.3.1. Flap Monitoring with AI
3.3.2. Outcome Prediction and Quality Assessment
3.4. Challenges and Future Directions
3.4.1. Future Directions
3.4.2. Regulatory and Ethical Considerations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ML | Machine Learning |
LLM | Large Language Model |
DIEP | Deep Inferior Epigastric Perforator |
CTA | Computed Tomography Angiography |
SSIM | Structural Similarity Index |
PSNR | Peak Signal-to-Noise Ratio |
GAN | Generative Adversarial Network |
CNN | Convolutional Neural Network |
ALT | Anterolateral Thigh |
H&N | Head and Neck |
AR | Augmented Reality |
ICG | Indocyanine Green |
ANN | Artificial Neural Network |
HSI | Hyperspectral Imaging |
ICU | Intensive Care Unit |
CUSUM | Cumulative Sum (Control Chart) |
MeSH | Medical Subject Headings |
EMTREE | Elsevier Life Science Thesaurus |
CENTRAL | Cochrane Central Register of Controlled Trials |
References
- Tamai, S. History of microsurgery. Plast. Reconstr. Surg. 2009, 124, e282–e294. [Google Scholar] [CrossRef]
- Thamm, O.C.; Eschborn, J.; Schäfer, R.C.; Schmidt, J. Advances in Modern Microsurgery. J. Clin. Med. 2024, 13, 5284. [Google Scholar] [CrossRef]
- Yoo, H.; Kim, B.J. History and Recent Advances in Microsurgery. Arch. Hand Microsurg. 2021, 26, 174–183. [Google Scholar] [CrossRef]
- Salgado, C.J.; Moran, S.L.; Mardini, S. Flap monitoring and patient management. Plast. Reconstr. Surg. 2009, 124, e295–e302. [Google Scholar] [CrossRef]
- Cevik, J.; Hunter-Smith, D.J.; Rozen, W.M. The importance of perioperative team familiarity and its contribution to surgical efficiency and outcomes in microsurgical breast reconstruction. Gland Surg. 2023, 12, 1–4. [Google Scholar] [CrossRef]
- Mansoor, M.; Ibrahim, A.F. The Transformative Role of Artificial Intelligence in Plastic and Reconstructive Surgery: Challenges and Opportunities. J. Clin. Med. 2025, 14, 2698. [Google Scholar] [CrossRef]
- Kiwan, O.; Al-Kalbani, M.; Rafie, A.; Hijazi, Y. Artificial intelligence in plastic surgery, where do we stand? JPRAS Open 2024, 42, 234–243. [Google Scholar] [CrossRef]
- Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.W.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis. NPJ Digit. Med. 2021, 4, 65. [Google Scholar] [CrossRef]
- Cevik, J.; Rozen, W. A Novel optimization technique of Computed Tomography Angiographic 3D-reconstructions for pre-operative planning of DIEP flaps. JPRAS Open 2023, 35, 38–41. [Google Scholar] [CrossRef]
- Cevik, J.; Seth, I.; Hunter-Smith, D.J.; Rozen, W.M. A History of Innovation: Tracing the Evolution of Imaging Modalities for the Preoperative Planning of Microsurgical Breast Reconstruction. J. Clin. Med. 2023, 12, 5246. [Google Scholar] [CrossRef]
- Mavioso, C.; Araújo, R.J.; Oliveira, H.P.; Anacleto, J.C.; Vasconcelos, M.A.; Pinto, D.; Gouveia, P.F.; Alves, C.; Cardoso, F.; Cardoso, J.S.; et al. Automatic detection of perforators for microsurgical reconstruction. Breast 2020, 50, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Huang, X.; Huang, Y.; Zhou, D.; Ye, S. Computed Tomography Angiography and B-Mode Ultrasonography under Artificial Intelligence Plaque Segmentation Algorithm in the Perforator Localization for Preparation of Free Anterolateral Femoral Flap. Contrast Media Mol. Imaging 2022, 2022, 4764177. [Google Scholar] [CrossRef]
- De La Hoz, E.C.; Verstockt, J.; Verspeek, S.; Clarys, W.; Thiessen, F.E.F.; Tondu, T.; Tjalma, W.A.A.; Steenackers, G.; Vanlanduit, S. Automated thermographic detection of blood vessels for DIEP flap reconstructive surgery. Int. J. Comput. Assist. Radiol. Surg. 2024, 19, 1733–1741. [Google Scholar] [CrossRef]
- Asaad, M.; Lu, S.C.; Hassan, A.M.; Kambhampati, P.; Mitchell, S.; Chang, E.I.; Yu, P.; Hanasono, M.M.; Sidey-Gibbons, C. The Use of Machine Learning for Predicting Complications of Free-Flap Head and Neck Reconstruction. Ann. Surg. Oncol. 2023, 30, 2343–2352. [Google Scholar] [CrossRef]
- Berry, C.E.; Fazilat, A.Z.; Lavin, C.; Lintel, H.; Cole, N.; Stingl, C.S.; Valencia, C.; Morgan, A.G.; Momeni, A.; Wan, D.C. Both Patients and Plastic Surgeons Prefer Artificial Intelligence-Generated Microsurgical Information. J. Reconstr. Microsurg. 2024, 40, 657–664. [Google Scholar] [CrossRef]
- Chartier, C.; Watt, A.; Lin, O.; Chandawarkar, A.; Lee, J.; Hall-Findlay, E. BreastGAN: Artificial Intelligence-Enabled Breast Augmentation Simulation. Aesthet. Surg. J. Open Forum 2022, 4, ojab052. [Google Scholar] [CrossRef]
- Formeister, E.J.; Baum, R.; Knott, P.D.; Seth, R.; Ha, P.; Ryan, W.; El-Sayed, I.; George, J.; Larso, A.; Plonowska, K.; et al. Machine Learning for Predicting Complications in Head and Neck Microvascular Free Tissue Transfer. Laryngoscope 2020, 130, E843–E849. [Google Scholar] [CrossRef]
- Jeong, T.; Liu, H.; Alessandri-Bonetti, M.; Pandya, S.; Nguyen, V.T.; Ergo, F.M. Revolutionizing patient education: ChatGPT outperforms Google in answering patient queries on free flap reconstruction. Microsurgery 2023, 43, 752–761. [Google Scholar] [CrossRef]
- Lim, B.; Cevik, J.; Seth, I.; Sofiadellis, F.; Ross, R.J.; Rozen, W.M.; Cuomo, R. Evaluating artificial intelligence’s role in teaching the reporting and interpretation of computed tomographic angiography for preoperative planning of the deep inferior epigastric artery perforator flap. JPRAS Open 2024, 40, 273–285. [Google Scholar] [CrossRef]
- Myung, Y.; Jeon, S.; Heo, C.; Kim, E.-K.; Kang, E.; Shin, H.-C.; Yang, E.-J.; Jeong, J.H. Validating machine learning approaches for prediction of donor related complication in microsurgical breast reconstruction: A retrospective cohort study. Sci. Rep. 2021, 11, 5615. [Google Scholar] [CrossRef]
- O’Neill, A.C.; Yang, D.; Roy, M.; Sebastiampillai, S.; Hofer, S.O.P.; Xu, W. Development and Evaluation of a Machine Learning Prediction Model for Flap Failure in Microvascular Breast Reconstruction. Ann. Surg. Oncol. 2020, 27, 3466–3475. [Google Scholar] [CrossRef] [PubMed]
- Saxena, E. Deep learning for personalized preoperative planning of microsurgical free tissue transfers. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 22 February–1 March 2022; pp. 13140–13141. [Google Scholar]
- Kotter, E.; Ranschaert, E. Challenges and solutions for introducing artificial intelligence (AI) in daily clinical workflow. Eur. Radiol. 2021, 31, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Korfiatis, P.; Kline, T.L.; Meyer, H.M.; Khalid, S.; Leiner, T.; Loufek, B.T.; Blezek, D.; Vidal, D.E.; Hartman, R.P.; Joppa, L.J.; et al. Implementing Artificial Intelligence Algorithms in the Radiology Workflow: Challenges and Considerations. Mayo Clin. Proc. Digit. Health 2025, 3, 100188. [Google Scholar] [CrossRef] [PubMed]
- Boudlal, H.; Serrhini, M.; Tahiri, A. Cloud Computing Application in Medical Imaging: Challenges and Opportunities. In Proceedings of the 5th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5g//6G-based Interconnected Digital Worlds (NISS), Bandung, Indonesia, 30–31 March 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Liew, C. The future of radiology augmented with Artificial Intelligence: A strategy for success. Eur. J. Radiol. 2018, 102, 152–156. [Google Scholar] [CrossRef]
- Pietruski, P.; Majak, M.; Świątek-Najwer, E.; Żuk, M.; Popek, M.; Jaworowski, J.; Mazurek, M. Supporting fibula free flap harvest with augmented reality: A proof-of-concept study. Laryngoscope 2020, 130, 1173–1179. [Google Scholar] [CrossRef]
- Falola, R.A.; Lombana, N.F.; Rodriguez-Unda, N.A.; Mehta, I.; Webster, N.; Weber, R.; Altman, A.M.; Saint-Cyr, M. Augmented Reality Microsurgery: Proof of Concept for a Novel Approach to Microsurgical Field Visualization in Plastic Surgery. Plast. Reconstr. Surg. 2024, 153, 650e–655e. [Google Scholar] [CrossRef]
- Singaravelu, A.; Dalli, J.; Potter, S.; Cahill, R.A. Artificial intelligence for optimum tissue excision with indocyanine green fluorescence angiography for flap reconstructions: Proof of concept. JPRAS Open 2024, 41, 389–393. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Seth, I.; Xie, Y.; Ross, R.J.; Hunter-Smith, D.J.; Rozen, W.M.; Cuomo, R. Artificial Intelligence Language Model Performance for Rapid Intraoperative Queries in Plastic Surgery: ChatGPT and the Deep Inferior Epigastric Perforator Flap. J. Clin. Med. 2024, 13, 900. [Google Scholar] [CrossRef]
- Koskinen, J.; Torkamani-Azar, M.; Hussein, A.; Huotarinen, A.; Bednarik, R. Automated tool detection with deep learning for monitoring kinematics and eye-hand coordination in microsurgery. Comput. Biol. Med. 2022, 141, 105121. [Google Scholar] [CrossRef]
- Nakazawa, A.; Harada, K.; Mitsuishi, M.; Jannin, P. Real-time surgical needle detection using region-based convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 41–47. [Google Scholar] [CrossRef]
- Dalli, J.; Nguyen, C.; Jindal, A.; Epperlein, J.; Hardy, N.; Pulitano, C.; Warrier, S.; Cahill, R. A feasibility study assessing quantitative indocyanine green angiographic predictors of reconstructive complications following nipple-sparing mastectomy. JPRAS Open 2024, 40, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Corpuz, G.S.; Ta, C.N.; Weng, C.; Rohde, C.H. Applying unsupervised machine learning approaches to characterize autologous breast reconstruction patient subgroups: An NSQIP analysis of 14,274 patients. J. Plast. Reconstr. Aesthet. Surg. 2024, 88, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.Y.; Chen, L.W.; Huang, R.W.; Tsai, T.Y.; Hung, S.-Y.; Cheong, D.C.-F.; Lu, J.C.-Y.; Chang, T.N.-J.; Huang, J.-J.; Tsao, C.-K.; et al. Quantization of extraoral free flap monitoring for venous congestion with deep learning integrated iOS applications on smartphones: A diagnostic study. Int. J. Surg. 2023, 109, 1584–1593. [Google Scholar] [CrossRef]
- Maktabi, M.; Huber, B.; Pfeiffer, T.; Schulz, T. Detection of flap malperfusion after microsurgical tissue reconstruction using hyperspectral imaging and machine learning. Sci. Rep. 2025, 15, 15637. [Google Scholar] [CrossRef]
- Jat, A.; Grønli, T.-M. Harnessing the Digital Revolution: A Comprehensive Review of mHealth Applications for Remote Monitoring in Transforming Healthcare Delivery. In Mobile Web and Intelligent Information Systems; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Deniz-Garcia, A.; Fabelo, H.; Rodriguez-Almeida, A.J.; Zamora-Zamorano, G.; Castro-Fernandez, M.; Alberiche Ruano, M.D.P.; Solvoll, T.; Granja, C.; Schopf, T.R.; Callico, G.M.; et al. Quality, Usability, and Effectiveness of mHealth Apps and the Role of Artificial Intelligence: Current Scenario and Challenges. J. Med. Internet Res. 2023, 25, e44030. [Google Scholar] [CrossRef]
- Santra, S.; Kukreja, P.; Saxena, K.; Gandhi, S.; Singh, O.V. Navigating regulatory and policy challenges for AI enabled combination devices. Front. Med. Technol. 2024, 6, 1473350. [Google Scholar] [CrossRef]
- Kuo, P.J.; Wu, S.C.; Chien, P.C.; Chang, S.S.; Rau, C.S.; Tai, H.L.; Peng, S.H.; Lin, Y.C.; Chen, Y.C.; Hsieh, H.Y.; et al. Artificial neural network approach to predict surgical site infection after free-flap reconstruction in patients receiving surgery for head and neck cancer. Oncotarget 2018, 9, 13768–13782. [Google Scholar] [CrossRef]
- Tighe, D.; McMahon, J.; Schilling, C.; Ho, M.; Provost, S.; Freitas, A. Machine learning methods applied to risk adjustment of cumulative sum chart methodology to audit free flap outcomes after head and neck surgery. Br. J. Oral Maxillofac. Surg. 2022, 60, 1353–1361. [Google Scholar] [CrossRef]
- Puladi, B.; Ooms, M.; Rieg, A.; Taubert, M.; Rashad, A.; Hölzle, F.; Röhrig, R.; Modabber, A. Development of machine learning and multivariable models for predicting blood transfusion in head and neck microvascular reconstruction for risk-stratified patient blood management. Head Neck 2023, 45, 1389–1405. [Google Scholar] [CrossRef]
- Rivero-Moreno, Y.; Rodriguez, M.; Losada-Muñoz, P.; Redden, S.; Lopez-Lezama, S.; Vidal-Gallardo, A.; Machado-Paled, D.; Cordova Guilarte, J.; Teran-Quintero, S. Autonomous Robotic Surgery: Has the Future Arrived? Cureus 2024, 16, e52243. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Z.; Guan, W.; Cao, X.; Liang, K. Prediction and Elimination of Physiological Tremor During Control of Teleoperated Robot Based on Deep Learning. Sensors 2024, 24, 7359. [Google Scholar] [CrossRef] [PubMed]
- Seth, I.; Lim, B.; Lu, P.Y.J.; Xie, Y.; Cuomo, R.; Ng, S.K.-H.; Rozen, W.M.; Sofiadellis, F. Digital Twins Use in Plastic Surgery: A Systematic Review. J. Clin. Med. 2024, 13, 7861. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Raison, N.; Ourselin, S.; Mahmoodi, T.; Dasgupta, P.; Granados, A. AI solutions for overcoming delays in telesurgery and telementoring to enhance surgical practice and education. J. Robot. Surg. 2024, 18, 403. [Google Scholar] [CrossRef] [PubMed]
- Abulibdeh, R.; Celi, L.A.; Sejdić, E. The illusion of safety: A report to the FDA on AI healthcare product approvals. PLoS Digit. Health 2025, 4, e0000866. [Google Scholar] [CrossRef]
- Norori, N.; Hu, Q.; Aellen, F.M.; Faraci, F.D.; Tzovara, A. Addressing bias in big data and AI for health care: A call for open science. Patterns 2021, 2, 100347. [Google Scholar] [CrossRef]
- Palaniappan, K.; Lin, E.Y.T.; Vogel, S. Global Regulatory Frameworks for the Use of Artificial Intelligence (AI) in the Healthcare Services Sector. Healthcare 2024, 12, 562. [Google Scholar] [CrossRef]
Study (Year) | Study Site | Application | Performance |
---|---|---|---|
Asaad (2023) [14] | Single Centre | Free-flap failure risk prediction | Machine learning models have identified smoking habits, the type of flap used, and the presence of vein grafts as the primary predictors of complications associated with flaps. |
Berry (2024) [15] | Single Centre | Survey on AI-generated microsurgical education materials | Surgeons (88%) and patients (75%) preferred AI content for clarity and comprehensiveness. |
Chartier (2022) [16] | Single Centre | Generative AI (BreastGAN) to simulate DIEP flap outcomes | Improved patient understanding of likely aesthetic results. |
De La Hoz (2023) [13] | Single Centre | Convolutional neural network to assist with the mapping of abdominal perforators | High confidence localisation; pilot dataset showed >90% concordance with Doppler, suggesting the potential for a radiation-free, contrast-free mapping for flap planning. |
Formeister (2020) [17] | Single Centre | ML to predict complications in H&N free flaps | Identified predictors, including flap type, patient comorbidities, and operative time; support targeted monitoring; and informed consent. |
Jeong (2023) [18] | Single Centre | ChatGPT vs. Google for patient FAQs about free-flap surgery | ChatGPT achieved 92% accuracy/89% completeness vs. Google’s 78%/70%, at lower reading levels; patients rated ChatGPT’s clarity 85% vs. 55%. |
Lim (2023) [19] | Single Centre | LLM to generate automated image–report summarisations of CTAs | LLMs correctly listed major vessels but missed nuanced variants ~30% of the time—valid for rapid summaries, not to replace experts. |
Mavioso (2020) [11] | Single Centre | Computer vision algorithm for DIEP flap perforator detection | Reduced mapping time from ~2–3 h to 30 min per patient with millimetric accuracy—promises standardised planning. |
Myung (2021) [20] | Single Centre | ML for donor-site complication prediction | Neural network achieved 81% accuracy in complication prediction—enabling targeted preoperative counselling and risk mitigation. |
O’neill (2020) [21] | Single Centre | ML for DIEP flap failure risk prediction | Highlighted obesity and comorbidities as key risk factors, informing preoperative counselling |
Saxena (2022) [22] | Single Centre | Convolutional neural network to assist with CTA vascular tree segmentation | Demonstrated that CNNs can robustly identify complex vessel patterns in CTA-like images, validating the feasibility of AI-based perforator mapping. |
Shen (2022) [12] | Single Centre | Implement deeply supervised attention UNet for perforator localisation in ALT flap planning | Outperformed manual methods in accuracy and consistency, reducing subjectivity in perforator selection |
Study (Year) | Study Site | Application | Performance |
---|---|---|---|
Atkinson (2024) [30] | Single Centre | Assess LLM performance for intraoperative DIEP flap queries | Generated correct standard algorithms but lacked patient-specific nuance, paralleling resident knowledge, best used as a structured checklist. |
Falola (2024) [28] | Single Centre | Microsurgical field visualisation in live procedures | Demonstrated feasibility of overlaying critical anatomical landmarks onto the operative view, improving spatial awareness and potentially reducing dissection time and errors. |
Koskinen (2022) [31] | Single Centre | Develop a deep-learning system for automatic microsurgical tool detection and eye–hand coordination monitoring | Achieved >95% precision in classifying 6 instrument types and quantified gaze–hand alignment metrics, enabling objective intraoperative skill assessment and potential real-time guidance. |
Nakazawa (2020) [32] | Single Centre | Microsurgical suturing | Real-time needle-tip tracking with 95% accuracy. Potential to issue safety alerts when the needle approaches critical structures. |
Pietruski (2020) [27] | Single Centre | Fibula free-flap osteotomies | Achieved ≤3° angular error and ≤2 mm positional error vs. 3D guides; improved osteotomy precision and vessel safety. |
Singaravelu (2024) [29] | Single Centre | Intraoperative perfusion assessment | Achieved >99% accuracy in classifying “keep vs. excise” regions; defined objective fluorescence thresholds for flap trimming |
Study (Year) | Study Site | Application | Performance |
---|---|---|---|
Hsu (2023) [35] | Single Centre | Early venous congestion detection | Demonstrated ~95% accuracy distinguishing normal from congested flaps, offering a low-cost monitoring modality |
Kim (2024) [34] | Single Centre | Free-flap perfusion monitoring | Achieved 97.5% sensitivity for venous and 92.8% for arterial compromise; zero missed events—may drastically reduce nursing burden |
Maktabi (2025) [36] | Single Centre | Combine HSI with CNN classifiers to detect postoperative free-flap malperfusion | Suggests HIS + AI could enhance early malperfusion detection and salvage. |
Puladi (2023) [42] | Single Centre | Blood transfusion requirement | Achieved 78% stratification accuracy, enabling risk-adjusted patient blood management |
Tighe (2022) [41] | Single Centre | Free-flap success benchmarking | Improved sensitivity and specificity of CUSUM charts in detecting performance deviations, enabling earlier identification of issues and targeted quality improvement |
Tool/Model | Input Data | Clinical End Point | Key Studies | Validation Status |
---|---|---|---|---|
CNN for perforator mapping | CTA, HSI | Perforator localisation | De La Hoz et al. (2023) [13]; Mavioso et al. (2020) [11] | Pilot studies (>90% concordance vs. Doppler) |
Deep vision/CV algorithms | CTA | Vascular tree segmentation | Saxena et al. (2022) [22] | Single-centre, high classification precision |
ANN/ML models | Clinical/demographic | Complication/risk prediction | Formeister et al. (2020) [17]; Asaad et al. (2023) [14] | Single-centre cohorts, up to ~95% predictive accuracy |
LLM (ChatGPT) | Text FAQ queries | Patient education clarity/completeness | Jeong et al. (2023) [18] | Single-centre survey, ChatGPT: ~92% accuracy |
Attention-UNet | Preop imaging | Microvascular perforator detection | Shen et al. (2022) [12] | Single-centre, outperforms manual selection |
BreastGAN (generative AI) | Preop photos | Simulated aesthetic outcomes | Chartier et al. (2022) [16] | Single-centre comprehension study |
HSI + CNN | Hyperspectral images | Flap malperfusion detection | Maktabi et al. (2025) [36] | Early pilot, promising sensitivity/specificity |
CUSUM + ML | Intraop metrics | Quality/success benchmarking | Tighe et al. (2022) [41] | Single-centre performance deviations detection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shadid, O.; Seth, I.; Cuomo, R.; Rozen, W.M.; Marcaccini, G. Artificial Intelligence in Microsurgical Planning: A Five-Year Leap in Clinical Translation. J. Clin. Med. 2025, 14, 4574. https://doi.org/10.3390/jcm14134574
Shadid O, Seth I, Cuomo R, Rozen WM, Marcaccini G. Artificial Intelligence in Microsurgical Planning: A Five-Year Leap in Clinical Translation. Journal of Clinical Medicine. 2025; 14(13):4574. https://doi.org/10.3390/jcm14134574
Chicago/Turabian StyleShadid, Omar, Ishith Seth, Roberto Cuomo, Warren M. Rozen, and Gianluca Marcaccini. 2025. "Artificial Intelligence in Microsurgical Planning: A Five-Year Leap in Clinical Translation" Journal of Clinical Medicine 14, no. 13: 4574. https://doi.org/10.3390/jcm14134574
APA StyleShadid, O., Seth, I., Cuomo, R., Rozen, W. M., & Marcaccini, G. (2025). Artificial Intelligence in Microsurgical Planning: A Five-Year Leap in Clinical Translation. Journal of Clinical Medicine, 14(13), 4574. https://doi.org/10.3390/jcm14134574