Eye Selection Criteria’s Influence in the Value of Pituitary Macroadenoma Management Biomarkers: Preliminary Findings
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Eligibility Criteria for Participants
2.3. Clinical and Neuro-Ophthalmological Examination
2.4. Sample Description
2.5. Missing Data
2.6. General Methods of Data Analysis
2.7. Diagnostic Precision Analysis
2.8. Statistical Analysis Methods for Predictive Value Estimation
3. Results
3.1. Influence of ESC on the Diagnostic Value of PMA Biomarkers
3.2. Multivariate Analysis
3.2.1. Multivariate Models for PMA Diagnosis
3.2.2. Multivariate Models for PMA Patients’ Follow-Up
4. Discussion
4.1. ESC’s Influence in the Diagnostic Value of PMA Biomarkers
4.2. Follow-Up and Visual Function Prediction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ying, G.-S.; Maguire, M.G.; Glynn, R.J.; Rosner, B. Calculating sensitivity, specificity, and predictive values for correlated eye data. Investig. Ophthalmol. Vis. Sci. 2020, 61, 29. [Google Scholar] [CrossRef]
- Dong, R.; Ying, G.-S. Characteristics of Design and Analysis of Ophthalmic Randomized Controlled Trials: A Review of Ophthalmic Papers 2020–2021. Ophthalmol. Sci. 2023, 3, 100266. [Google Scholar] [CrossRef] [PubMed]
- Bunce, C.; Patel, K.V.; Xing, W.; Freemantle, N.; Doré, C.J.; Ophthalmology, O.S. Ophthalmic statistics note 1: Unit of analysis. Br. J. Ophthalmol. 2014, 98, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Zhuang, X.; Yang, S.; Zhang, K.; Li, X.; Yuan, K.; Zhang, X.; Sun, X. Visual field improvement after endoscopic transsphenoidal surgery in patients with pituitary adenoma. Front. Oncol. 2023, 13, 1108883. [Google Scholar] [CrossRef]
- Karakosta, A.; Vassilaki, M.; Plainis, S.; Elfadl, N.H.; Tsilimbaris, M.; Moschandreas, J.J. Choice of analytic approach for eye-specific outcomes: One eye or two? Am. J. Ophthalmol. 2012, 153, 571–579.e1. [Google Scholar] [CrossRef]
- Armstrong, R.A. Statistical guidelines for the analysis of data obtained from one or both eyes. Ophthalmic Physiol. Opt. 2013, 33, 7–14. [Google Scholar] [CrossRef]
- Oray, M.; Önal, S.; Akbay, A.K.; Tutkun, İ.T. Diverse clinical signs of ocular involvement in cat scratch disease. Turk. J. Ophthalmol. 2017, 47, 9. [Google Scholar] [CrossRef]
- Varela, M.D.; Conti, G.M.; Malka, S.; Vaclavik, V.; Mahroo, O.A.; Webster, A.R.; Tran, V.; Michaelides, M. Coats-like Vasculopathy in Inherited Retinal Disease: Prevalence, Characteristics, Genetics, and Management. Ophthalmology 2023, 130, 1327–1335. [Google Scholar] [CrossRef]
- Murdoch, I.E.; Morris, S.S.; Cousens, S.N. People and eyes: Statistical approaches in ophthalmology. Br. J. Ophthalmol. 1998, 82, 971–973. [Google Scholar] [CrossRef]
- Kumari, R. Senile Cataract. J. Community Med. 2024, 2833, 5333. [Google Scholar] [CrossRef]
- Distelhorst, J.S.; Hughes, G.M. Open-angle glaucoma. Am. Fam. Physician 2003, 67, 1937–1944. [Google Scholar]
- Lambertus, S.; Bax, N.M.; Groenewoud, J.M.; Cremers, F.P.; van der Wilt, G.J.; Klevering, B.J.; Theelen, T.; Hoyng, C.B. Asymmetric inter-eye progression in Stargardt disease. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6824–6830. [Google Scholar] [CrossRef] [PubMed]
- Jauregui, R.; Chan, L.; Oh, J.K.; Cho, A.; Sparrow, J.R.; Tsang, S.H. Disease asymmetry and hyperautofluorescent ring shape in retinitis pigmentosa patients. Sci. Rep. 2020, 10, 3364. [Google Scholar] [CrossRef] [PubMed]
- KesKın, A.O.; İdıman, F.; Kaya, D.; Bircan, B. Idiopathic intracranial hypertension: Etiological factors, clinical features, and prognosis. Noro Psikiyatr. Arsivi 2020, 57, 23–26. [Google Scholar] [CrossRef]
- Ying, G.-S.; Maguire, M.G.; Glynn, R.; Rosner, B. Tutorial on biostatistics: Statistical analysis for correlated binary eye data. Ophthalmic Epidemiol. 2018, 25, 1–12. [Google Scholar] [CrossRef]
- Hernández-Echevarría, O.; Cuétara-Lugo, E.B.; Pérez-Benítez, M.J.; González-Gómez, J.C.; González-Diez, H.R.; Mendoza-Santiesteban, C.E. Bi-nasal sectors of ganglion cells complex and visual evoked potential amplitudes as biomarkers in pituitary macroadenoma management. Front. Integr. Neurosci. 2022, 16, 1034705. [Google Scholar] [CrossRef]
- General assembly of the world medical association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. J. Am. Coll. Dent. 2014, 81, 14–18. [Google Scholar] [CrossRef]
- Racette, L.; Fischer, M.; Bebie, H.; Holló, G.; Johnson, C.A.; Matsumoto, C.J. ; Visual Field Digest; Haag-Streit AG: Köniz, Switzerland, 2016; p. 6. Available online: https://haag-streit.com/2%20Products/Speciality%20diagnostics/Perimetry/Category%20assets/Books/HS_perimetry_br_xxx_visual_field_digest_8th_en.pdf (accessed on 23 April 2025).
- Walsh, F.B.; Hoyt, W.F. Walsh and Hoyt’s Clinical Neuro-Ophthalmology: The Essentials; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008. [Google Scholar] [CrossRef]
- International Society for Clinical Electrophysiology of Vision; Odom, J.V.; Bach, M.; Brigell, M.; Holder, G.E.; McCulloch, D.L.; Mizota, A.; Tormene, A.P. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc. Ophthalmol. 2016, 133, 1–9. [Google Scholar] [CrossRef]
- Hamilton, R.; Bach, M.; Heinrich, S.P.; Hoffmann, M.B.; Odom, J.V.; McCulloch, D.L.; Thompson, D.A. ISCEV extended protocol for VEP methods of estimation of visual acuity. Doc. Ophthalmol. 2021, 142, 17–24. [Google Scholar] [CrossRef]
- Robson, A.G.; Nilsson, J.; Li, S.; Jalali, S.; Fulton, A.B.; Tormene, A.P.; Holder, G.E.; Brodie, S.E. ISCEV guide to visual electrodiagnostic procedures. Doc. Ophthalmol. 2018, 136, 1–26. [Google Scholar] [CrossRef]
- Gadelha, M.R.; Barbosa, M.A.; Lamback, E.B.; Wildemberg, L.E.; Kasuki, L.; Ventura, N. Pituitary MRI standard and advanced sequences: Role in the diagnosis and characterization of pituitary adenomas. J. Clin. Endocrinol. Metab. 2022, 107, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.F.; Beckers, A. The Epidemiology of Pituitary Adenomas. Endocrinol. Metab. Clin. N. Am. 2020, 49, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A guideline of selecting reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Bosch-Bayard, J.; Galán-García, L.; Fernandez, T.; Lirio, R.B.; Bringas-Vega, M.L.; Roca-Stappung, M.; Ricardo-Garcell, J.; Harmony, T.; Valdes-Sosa, P.A. Stable sparse classifiers identify qEEG signatures that predict learning disabilities (NOS) severity. Front. Neurosci. 2018, 11, 749. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, E.; Lubiński, W.; Gosławski, W.; Andrysiak-Mamos, E.; Kaźmierczyk-Puchalska, A.; Syrenicz, A.J. The electrophysiological tests in the early detection of visual pathway dysfunction in patients with microadenoma. Doc. Ophthalmol. 2021, 143, 115–127. [Google Scholar] [CrossRef]
- Nikoobakht, M.; Pourmahmoudian, M.; Nekoo, Z.A.; Rahimi, S.; Arabi, A.R.; Shirvani, M.; Koohestani, H. The role of optical coherence tomography in early detection of retinal nerve fiber layer damage in pituitary adenoma. Maedica 2022, 17, 862. [Google Scholar] [CrossRef]
- Jeong, S.S.; Funari, A.; Agarwal, V.J.W.N. Diagnostic and prognostic utility of optical coherence tomography in patients with sellar/suprasellar lesions with chiasm impingement: A systematic review/meta-analyses. World Neurosurg. 2022, 162, 163–176 e2. [Google Scholar] [CrossRef]
- Tieger, M.G.; Hedges, T.R., III; Ho, J.; Erlich-Malona, N.K.; Vuong, L.N.; Athappilly, G.K.; Mendoza-Santiesteban, C.E. Ganglion cell complex loss in chiasmal compression by brain tumors. J. Neuroophthalmol. 2017, 37, 7. [Google Scholar] [CrossRef]
- Popescu, M.; Carsote, M.; Popescu, I.A.S.; Costache, A.; Ghenea, A.; Turculeanu, A.; Singer, C.E.; Iana, O.; Ungureanu, A. The role of the visual evoked potential in diagnosing and monitoring pituitary adenomas. Res. Sci. Today 2021, 27–38, 27A. [Google Scholar] [CrossRef]
- Ergen, A.; Ergen, S.K.; Gunduz, B.; Subasi, S.; Caklili, M.; Cabuk, B.; Anik, I.; Ceylan, S. Retinal vascular and structural recovery analysis by optical coherence tomography angiography after endoscopic decompression in sellar/parasellar tumors. Sci. Rep. 2023, 13, 14371. [Google Scholar] [CrossRef]
- Yum, H.R.; Park, S.H.; Park, H.-Y.L.; Shin, S.Y.J.P.O. Macular ganglion cell analysis determined by cirrus HD optical coherence tomography for early detecting chiasmal compression. PLoS ONE 2016, 11, e0153064. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.-I.; Park, K.-A.; Oh, S.Y.; Kong, D.-S.J.S.R. Analysis of optic chiasmal compression caused by brain tumors using optical coherence tomography angiography. Sci. Rep. 2020, 10, 2088. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.L.; Hokazono, K.; Fernandes, D.B.; Costa-Cunha, L.V.; Sousa, R.M.; Raza, A.S.; Wang, D.L.; Hood, D.C. Evaluation of inner retinal layers in eyes with temporal hemianopic visual loss from chiasmal compression using optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3328–3336. [Google Scholar] [CrossRef]
- Agarwal, R.; Jain, V.K.; Singh, S.; Charlotte, A.; Kanaujia, V.; Mishra, P.; Sharma, K. Segmented retinal analysis in pituitary adenoma with chiasmal compression: A prospective comparative study. Indian J. Ophthalmol. 2021, 69, 2378. [Google Scholar] [CrossRef] [PubMed]
- Sousa, R.M.; Oyamada, M.K.; Cunha, L.P.; Monteiro, M.L.J.I.O.; Science, V. Multifocal visual evoked potential in eyes with temporal hemianopia from chiasmal compression: Correlation with standard automated perimetry and OCT findings. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4436–4446. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, Z.; Ma, C.; Chen, S.; Chen, X. Quantitative analysis of retinal layers on three-dimensional spectral-domain optical coherence tomography for pituitary adenoma. PLoS ONE 2017, 12, e0179532. [Google Scholar] [CrossRef]
- Blanch, R.J.; Micieli, J.A.; Oyesiku, N.M.; Newman, N.J.; Biousse, V. Optical coherence tomography retinal ganglion cell complex analysis for the detection of early chiasmal compression. Pituitary 2018, 21, 515–523. [Google Scholar] [CrossRef]
- Park, S.H.; Kang, M.S.; Kim, S.Y.; Lee, J.-E.; Shin, J.H.; Choi, H.; Kim, S.J. Analysis of factors affecting visual field recovery following surgery for pituitary adenoma. Int. Ophthalmol. 2021, 41, 2019–2026. [Google Scholar] [CrossRef]
- Qiao, N.; Ma, Y.; Chen, X.; Ye, Z.; Ye, H.; Zhang, Z.; Wang, Y.; Lu, Z.; Wang, Z.; Xiao, Y.; et al. Machine learning prediction of visual outcome after surgical decompression of sellar region tumors. J. Pers. Med. 2022, 12, 152. [Google Scholar] [CrossRef]
- Anik, I.; Anik, Y.; Koc, K.; Ceylan, S.; Genc, H.; Altintas, O.; Ozdamar, D.; Ceylan, D.B. Evaluation of early visual recovery in pituitary macroadenomas after endoscopic endonasal transphenoidal surgery: Quantitative assessment with diffusion tensor imaging (DTI). Acta Neurochir. 2011, 153, 831–842. [Google Scholar] [CrossRef]
- Guan, X.; Wang, Y.; Zhang, C.; Ma, S.; Zhou, W.; Jia, G.; Jia, W. Surgical Experience of Transcranial Approaches to Large-to-Giant Pituitary Adenomas in Knosp Grade 4. Front. Endocrinol. 2022, 809, 857314. [Google Scholar] [CrossRef] [PubMed]
- Hisanaga, S.; Kakeda, S.; Yamamoto, J.; Watanabe, K.; Moriya, J.; Nagata, T.; Fujino, Y.; Kondo, H.; Nishizawa, S.; Korogi, Y. Pituitary macroadenoma and visual impairment: Postoperative outcome prediction with contrast-enhanced FIESTA. Am. J. Neuroradiol. 2017, 38, 2067–2072. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, Y.; Todokoro, D.; Yamaguchi, R.; Tosaka, M.; Yoshimoto, Y.; Akiyama, H. Retinal ganglion cell analysis in patients with sellar and suprasellar tumors with sagittal bending of the optic nerve. Sci. Rep. 2022, 12, 11092. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, J.; Huang, Z.; Teng, Y.; Chen, C.; Xu, J. Predicting visual recovery in pituitary adenoma patients post-endoscopic endonasal transsphenoidal surgery: Harnessing delta-radiomics of the optic chiasm from MRI. Eur. Radiol. 2023, 33, 7482–7493. [Google Scholar] [CrossRef]
Parameter | Right Eye N = 19 | Left Eye N = 16 | Randomly Selected Eye N = 18 | Both Eyes N = 35 | Best Eye N = 19 | Worst Eye N = 19 | Healthy Volunteers N = 42 |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
LOz60′ | 120 ± 17 | 117 ± 12 | 120 ± 17 | 119 ± 15 | 117 ± 16 | 121 ± 13 | 107 ± 4 |
p-value PMAp. vs. HV | 9.6 × 10−12 | 9.6 × 10−12 | 9.6 × 10−12 | 1.9 × 10−15 | 9.6 × 10−12 | 9.6 × 10−12 | |
LOz20′ | 122 ± 8 | 123 ± 9 | 124 ± 7 | 123 ± 9 | 122 ± 9 | 124 ± 9 | 111 ± 7 |
p-value PMAp. vs. HV | 4.4 × 10−11 | 5.6 × 10−11 | 1.1 × 10−11 | 4.3 × 10−14 | 1.2 × 10−10 | 4.0 × 10−11 | |
LOz12′ | 125 ± 8 | 127 ± 10 | 125 ± 9 | 124 ± 9 | 127 ± 9 | 126 ± 9 | 119 ± 11 |
p-value PMAp. vs. HV | 1.3 × 10−7 | 1.0 × 10−7 | 1.3 × 10−8 | 1.1 × 10−9 | 7.6 × 10−8 | 2.7 × 10−7 | |
p-value LOz60′ | RE | LE | RSE | BoE | BeE | ||
RE | |||||||
LE | 0.000 | ||||||
RSE | 0.454 | 0.000 | |||||
BoE | 0.217 | 0.008 | 0.008 | ||||
BeE | 0.001 | 0.618 | 0.000 | 0.034 | |||
WE | 0.016 | 0.000 | 0.216 | 0.000 | 0.000 | ||
p-value LOz20′ | RE | LE | RSE | BoE | BeE | ||
RE | |||||||
LE | 0.165 | ||||||
RSE | 0.011 | 0.963 | |||||
BoE | 0.881 | 0.729 | 0.087 | ||||
BeE | 0.963 | 0.049 | 0.002 | 0.450 | |||
WE | 0.001 | 0.450 | 0.963 | 0.004 | 0.000 | ||
p-value LOz12′ | RE | LE | RSE | BoE | BeE | ||
RE | |||||||
LE | 0.070 | ||||||
RSE | 0.830 | 0.003 | |||||
BoE | 0.624 | 0.496 | 0.070 | ||||
BeE | 0.024 | 0.916 | 0.001 | 0.250 | |||
WE | 0.407 | 0.000 | 0.916 | 0.005 | 0.000 | ||
Parameter | RE N = 19 | LE N = 16 | RSE N = 18 | BoE N = 35 | BeE N = 19 | WE N = 19 | Healthy Volunteers N = 42 |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
AOz60′ | 5.04 ± 2.32 | 4.69 ± 1.71 | 4.71 ± 1.90 | 4.88 ± 2.03 | 5.10 ± 2.26 | 4.58 ± 1.78 | 15.71 ± 3.54 |
p-value PMAp. vs. HV | 3.3 × 10−14 | 1.6 × 10−14 | 4.1 × 10−14 | 1.9 × 10−18 | 4.8 × 10−14 | 2.6 × 10−14 | |
AOz20′ | 5.00 ± 2.71 | 4.28 ± 2.08 | 4.53 ± 2.36 | 4.67 ± 2.41 | 4.93 ± 2.62 | 4.32 ± 2.20 | 17.08 ± 5.01 |
p-value PMAp. vs. HV | 3.9 × 10−15 | 1.6 × 10−15 | 3.7 × 10−15 | 1.0 × 10−19 | 5.5 × 10−15 | 2.9 × 10−15 | |
AOz12′ | 4.33 ± 2.64 | 3.98 ± 2.15 | 4.05 ± 2.23 | 4.17 ± 2.40 | 4.41 ± 2.58 | 3.85 ± 2.22 | 17.83 ± 7.72 |
p-value PMAp. vs. HV | 5.7 × 10−15 | 2.9 × 10−15 | 1.0 × 10−14 | 1.9 × 10−19 | 1.1 × 10−14 | 3.8 × 10−15 | |
p-value AOz60′ | RE | LE | RSE | BoE | BeE | ||
RE | |||||||
LE | 0.008 | ||||||
RSE | 0.057 | 0.899 | |||||
BoE | 0.706 | 0.072 | 0.293 | ||||
BeE | 0.899 | 0.001 | 0.006 | 0.232 | |||
WE | 0.000 | 0.705 | 0.293 | 0.000 | 0.000 | ||
p-value AOz20′ | RE | LE | RSE | BoE | BeE | ||
RE | |||||||
LE | 0.000 | ||||||
RSE | 0.012 | 0.137 | |||||
BoE | 0.149 | 0.000 | 0.735 | ||||
BeE | 0.853 | 0.000 | 0.171 | 0.853 | |||
WE | 00.00 | 0.853 | 0.853 | 0.037 | 0.007 | ||
p-value AOz12′ | RE | LE | RSE | BoE | BeE | ||
RE | |||||||
LE | 0.005 | ||||||
RSE | 0.120 | 0.787 | |||||
BoE | 0.787 | 0.062 | 0.787 | ||||
BeE | 0.787 | 0.001 | 0.035 | 0.292 | |||
WE | 0.000 | 0.787 | 0.211 | 0.001 | 0.000 |
Parameter | Right Eye N = 28 | Left Eye N = 28 | Randomly Selected Eye N = 28 | Both Eyes N = 56 | Best Eye N = 28 | Worst Eye N = 28 | Healthy Volunteers N = 42 |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
gRNFL | 81 ± 11 | 80 ± 11 | 79 ± 11 | 81 ± 11 | 84 ± 10 | 77 ± 11 | 101 ± 11 |
p-value PMAp. vs. HV | 3.8 × 10−11 | 1.6 × 10−11 | 1.2 × 10−11 | 1.2 × 10−14 | 2.3 × 10−10 | 2.4 × 10−12 | |
Temporal Sectors | 52 ± 8 | 48 ± 8 | 48 ± 8 | 50 ± 8 | 50 ± 8 | 50 ± 8 | 64 ± 10 |
p-value PMAp. vs. HV | 2.9 × 10−8 | 1.6 × 10−11 | 6.3 × 10−9 | 1.2 × 10−12 | 2.3 × 10−9 | 2.7 × 10−10 | |
p-value gRNFL | RE | LE | RSE | BoE | BeE | WE | |
RE | |||||||
LE | 0.884 | ||||||
RSE | 0.330 | 0.999 | |||||
BoE | 0.999 | 0.999 | 0.856 | ||||
p-value Temporal Sectors | RE | LE | RSE | ||||
RE | |||||||
LE | 0.018 | ||||||
RSE | 0.014 | 0.999 | |||||
BoE | 0.558 | 0.509 | 0.491 | ||||
Parameter | RE | LE | RSE | BoE | BeE | WE | Healthy Volunteers |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
gGCC+IPL | 68 ± 9 | 65 ± 9 | 64 ± 8 | 67 ± 9 | 70 ± 9 | 63 ± 9 | 85 ± 5 |
p-value PMAp. vs. HV | 1.9 × 10−12 | 6.2 × 10−13 | 1.2 × 10−12 | 1.9 × 10−16 | 2.1 × 10−11 | 5.1 × 10−14 | |
Bi-nasal sectors | 63 ± 12 | 60 ± 13 | 58 ± 11 | 61 ± 12 | 64 ± 13 | 58 ± 11 | 87 ± 6 |
p-value PMAp. vs. HV | 2.8 × 10−13 | 6.1 × 10−14 | 2.0 × 10−13 | 1.1 × 10−17 | 1.5 × 10−12 | 1.0 × 10−14 | |
p-value gGCC+IPL | RE | LE | RSE | BoE | BeE | ||
RE | |||||||
LE | 0.399 | ||||||
RSE | 0.143 | 0.999 | |||||
BoE | 0.999 | 0.999 | 0.713 | ||||
BeE | 0.999 | 0.051 | 0.010 | 0.200 | |||
WE | 0.019 | 0.999 | 0.999 | 0.143 | 0.001 | ||
p-value Bi-nasal sectors | RE | LE | RSE | BoE | BeE | ||
RE | |||||||
LE | 0.381 | ||||||
RSE | 0.041 | 0.999 | |||||
BoE | 0.999 | 0.999 | 0.289 | ||||
BeE | 0.999 | 0.122 | 0.008 | 0.536 | |||
WE | 0.120 | 0.999 | 0.999 | 0.564 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Echevarría, O.; Cuétara-Lugo, E.B.; Pérez-Benítez, M.J.; Galán-García, L.; Piloto-Diaz, I.; Fernández, E. Eye Selection Criteria’s Influence in the Value of Pituitary Macroadenoma Management Biomarkers: Preliminary Findings. J. Clin. Med. 2025, 14, 4542. https://doi.org/10.3390/jcm14134542
Hernández-Echevarría O, Cuétara-Lugo EB, Pérez-Benítez MJ, Galán-García L, Piloto-Diaz I, Fernández E. Eye Selection Criteria’s Influence in the Value of Pituitary Macroadenoma Management Biomarkers: Preliminary Findings. Journal of Clinical Medicine. 2025; 14(13):4542. https://doi.org/10.3390/jcm14134542
Chicago/Turabian StyleHernández-Echevarría, Odelaisys, Elizabeth Bárbara Cuétara-Lugo, Mario Jesús Pérez-Benítez, Lídice Galán-García, Ibrain Piloto-Diaz, and Eduardo Fernández. 2025. "Eye Selection Criteria’s Influence in the Value of Pituitary Macroadenoma Management Biomarkers: Preliminary Findings" Journal of Clinical Medicine 14, no. 13: 4542. https://doi.org/10.3390/jcm14134542
APA StyleHernández-Echevarría, O., Cuétara-Lugo, E. B., Pérez-Benítez, M. J., Galán-García, L., Piloto-Diaz, I., & Fernández, E. (2025). Eye Selection Criteria’s Influence in the Value of Pituitary Macroadenoma Management Biomarkers: Preliminary Findings. Journal of Clinical Medicine, 14(13), 4542. https://doi.org/10.3390/jcm14134542