Short-Term Outcomes of Cementless Total Hip Arthroplasty Using a 3D-Printed Acetabular Cup Manufactured by Directed Energy Deposition: A Prospective Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort Characteristics and Follow-Up Status
2.2. Implant Properties
2.3. Surgical Procedure and Perioperative Patient Care
2.4. Radiological Evaluation
2.5. Patient-Reported Outcome Measures and Clinical Evaluation
2.6. Sample Size Calculation and Statistical Analysis
3. Results
3.1. Follow-Up Rate and Implant Survival
3.2. Radiological Evaluation
3.3. Clinical Evaluation: Postoperative Complications
3.4. Clinical Evaluation: PROMs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murr, L.E.; Gaytan, S.M.; Martinez, E.; Medina, F.; Wicker, R.B. Next generation orthopaedic implants by additive manufacturing using electron beam melting. Int. J. Biomater. 2012, 2012, 245727. [Google Scholar] [CrossRef] [PubMed]
- Vaithilingam, J.; Prina, E.; Goodridge, R.D.; Hague, R.J.; Edmondson, S.; Rose, F.R.; Christie, S.D. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications. Mater. Sci. Eng. C 2016, 67, 294–303. [Google Scholar] [CrossRef]
- Alexander, A.E.; Wake, N.; Chepelev, L.; Brantner, P.; Ryan, J.; Wang, K.C. A guideline for 3D printing terminology in biomedical research utilizing ISO/ASTM standards. 3D Print. Med. 2021, 7, 8. [Google Scholar] [CrossRef]
- Dall’Ava, L.; Hothi, H.; Henckel, J.; Di Laura, A.; Shearing, P.; Hart, A. Comparative analysis of current 3D printed acetabular titanium implants. 3D Print. Med. 2019, 5, 15. [Google Scholar] [CrossRef]
- St John, R.; Spicer, S.; Hadaya, M.; Brancaccio, H.; Park, S.; McMillan, S. Comparing functional outcomes between 3D printed acetabular cups and traditional prosthetic implants in hip arthroplasty: A systematic review and meta analysis. Arch. Orthop. Trauma. Surg. 2025, 145, 99. [Google Scholar] [CrossRef]
- Hothi, H.; Henckel, J.; Bergiers, S.; Di Laura, A.; Schlueter-Brust, K.; Hart, A. Morphometric analysis of patient-specific 3D-printed acetabular cups: A comparative study of commercially available implants from 6 manufacturers. 3D Print. Med. 2022, 8, 33. [Google Scholar] [CrossRef]
- Nicum, A.; Hothi, H.; Henckel, J.; di Laura, A.; Schlueter-Brust, K.; Hart, A. Characterisation of 3D-printed acetabular hip implants. EFORT Open Rev. 2024, 9, 862–872. [Google Scholar] [CrossRef]
- Shin, T.; Park, S.-J.; Kang, K.S.; Kim, J.S.; Kim, Y.; Lim, Y.; Lim, D. A laser-aided direct metal tooling technology for artificial joint surface coating. Int. J. Precis. Eng. Manuf. 2017, 18, 233–238. [Google Scholar] [CrossRef]
- Ryu, D.J.; Jung, A.; Ban, H.Y.; Kwak, T.Y.; Shin, E.J.; Gweon, B.; Lim, D.; Wang, J.H. Enhanced osseointegration through direct energy deposition porous coating for cementless orthopedic implant fixation. Sci. Rep. 2021, 11, 22317. [Google Scholar] [CrossRef]
- Shin, T.; Lim, D.; Kim, Y.; Kim, S.; Jo, W.; Lim, Y. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V). Bone Jt. Res. 2018, 7, 357–361. [Google Scholar] [CrossRef]
- Suh, D.; Jo, W.L.; Kim, S.C.; Kim, Y.S.; Kwon, S.Y.; Lim, Y.W. Comparative analysis of titanium coating on cobalt-chrome alloy in vitro and in vivo direct metal fabrication vs. plasma spraying. J. Orthop. Surg. Res. 2020, 15, 564. [Google Scholar] [CrossRef] [PubMed]
- Shin, T.; Kim, Y.-S.; Kim, J.; Lee, K.-Y.; Lee, S.-J.; Sun, D.; Lim, Y.-W.; Lim, D. Applicability evaluation of direct metal tooling-based additive manufacturing for reducing ceramic liner fracture in total hip arthroplasty. Surf. Coat. Technol. 2018, 347, 313–319. [Google Scholar] [CrossRef]
- Wainwright, T.W.; Gill, M.; McDonald, D.A.; Middleton, R.G.; Reed, M.; Sahota, O.; Yates, P.; Ljungqvist, O. Consensus statement for perioperative care in total hip replacement and total knee replacement surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations. Acta Orthop. 2020, 91, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Kwon, S.Y.; Sun, D.H.; Han, S.K.; Maloney, W.J. Modified posterior approach to total hip arthroplasty to enhance joint stability. Clin. Orthop. Relat. Res. 2008, 466, 294–299. [Google Scholar] [CrossRef]
- Meyer, E.; Raupach, R.; Lell, M.; Schmidt, B.; Kachelrieß, M. Frequency split metal artifact reduction (FSMAR) in computed tomography. Med. Phys. 2012, 39, 1904–1916. [Google Scholar] [CrossRef]
- Meyer, E.; Raupach, R.; Lell, M.; Schmidt, B.; Kachelrieß, M. Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 2010, 37, 5482–5493. [Google Scholar] [CrossRef]
- DeLee, J.G.; Charnley, J. Radiological demarcation of cemented sockets in total hip replacement. Clin. Orthop. Relat. Res. 1976, 121, 20–32. [Google Scholar] [CrossRef]
- Nunley, R.M.; Keeney, J.A.; Zhu, J.; Clohisy, J.C.; Barrack, R.L. The reliability and variation of acetabular component anteversion measurements from cross-table lateral radiographs. J. Arthroplast. 2011, 26, 84–87. [Google Scholar] [CrossRef]
- Stem, E.S.; O’Connor, M.I.; Kransdorf, M.J.; Crook, J. Computed tomography analysis of acetabular anteversion and abduction. Skelet. Radiol. 2006, 35, 385–389. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Yi, L.; Ma, Z.; Bi, M.; Li, Z.; Han, J.; Lu, L.; Zhang, S.; Shen, H.; et al. Evaluation of short-term clinical and imaging outcomes of porous coated trabecular titanium cup manufactured with electron beam melting technique in primary total hip arthroplasty: Prospective study of 236 cases. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Chen, G.; Wang, C.Y.; Ma, Z.; Yi, H.L.; Bi, N.M.; Zhu, W.J.; Han, J.; Lu, S.L.; Zhang, S.S.; Shen, H. A prospective and consecutive study assessing short-term clinical and radiographic outcomes of Chinese domestically manufactured 3D printing trabecular titanium acetabular cup for primary total hip arthroplasty: Evaluation of 236 cases. Front. Surg. 2024, 11, 1279194. [Google Scholar] [CrossRef] [PubMed]
- Massari, L.; Bistolfi, A.; Grillo, P.P.; Borré, A.; Gigliofiorito, G.; Pari, C.; Francescotto, A.; Tosco, P.; Deledda, D.; Ravera, L. Periacetabular bone densitometry after total hip arthroplasty with highly porous titanium cups: A 2-year follow-up prospective study. Hip Int. 2017, 27, 551–557. [Google Scholar] [CrossRef]
- Shang, G.; Xiang, S.; Guo, C.; Guo, J.; Wang, P.; Wang, Y.; Xu, H. Use of a new off-the-shelf 3D-printed trabecular titanium acetabular cup in Chinese patients undergoing hip revision surgery: Short-to mid-term clinical and radiological outcomes. BMC Musculoskelet. Disord. 2022, 23, 636. [Google Scholar] [CrossRef]
- Perticarini, L.; Zanon, G.; Rossi, S.M.P.; Benazzo, F.M. Clinical and radiographic outcomes of a trabecular titanium™ acetabular component in hip arthroplasty: Results at minimum 5 years follow-up. BMC Musculoskelet. Disord. 2015, 16, 1–6. [Google Scholar] [CrossRef]
- Geng, X.; Li, Y.; Li, F.; Wang, X.; Zhang, K.; Liu, Z.; Tian, H. A new 3D printing porous trabecular titanium metal acetabular cup for primary total hip arthroplasty: A minimum 2-year follow-up of 92 consecutive patients. J. Orthop. Surg. Res. 2020, 15, 383. [Google Scholar] [CrossRef]
- Naziri, Q.; Issa, K.; Pivec, R.; Harwin, S.F.; Delanois, R.E.; Mont, M.A. Excellent results of primary THA using a highly porous titanium cup. Orthopedics 2013, 36, e390–e394. [Google Scholar] [CrossRef]
- Familiari, F.; Barone, A.; De Gori, M.; Banci, L.; Palco, M.; Simonetta, R.; Gasparini, G.; Mercurio, M.; Calafiore, G. Short-to mid-term clinical and radiological results of selective laser melting highly porous titanium cup in primary total hip arthroplasty. J. Clin. Med. 2024, 13, 969. [Google Scholar] [CrossRef]
- Agarwala, S.; Jadia, C.; Vijayvargiya, M. Incorporation of screwless press-fit acetabular cups and disappearance of polar gaps. J. Clin. Orthop. Trauma. 2020, 11, 85–90. [Google Scholar] [CrossRef]
- Ng, F.; Zhu, Y.; Chiu, K. Cementless acetabular component inserted without screws–the effect of immediate weight-bearing. Int. Orthop. 2007, 31, 293–296. [Google Scholar] [CrossRef]
- Udomkiat, P.; Dorr, L.D.; Wan, Z. Cementless hemispheric porous-coated sockets implanted with press-fit technique without screws: Average ten-year follow-up. JBJS 2002, 84, 1195–1200. [Google Scholar] [CrossRef]
- MacKenzie, J.R.; Callaghan, J.J.; Pedersen, D.R.; Brown, T.D. Areas of contact and extent of gaps with implantation of oversized acetabular components in total hip arthroplasty. Clin. Orthop. Relat. Res. 1994, 298, 127–136. [Google Scholar] [CrossRef]
- Ramadanov, N.; Bueschges, S.; Liu, K.; Lazaru, P.; Marintschev, I. Direct and indirect comparisons in network meta-analysis of SuperPATH, direct anterior and posterior approaches in total hip arthroplasty. Sci. Rep. 2022, 12, 16778. [Google Scholar] [CrossRef] [PubMed]
Aspect | PBF | DED |
---|---|---|
Surface integration | Layer-by-layer porous structures on the cup surface | Directly welded onto the base cup surface (no separate coating) |
Environment | Vacuum or controlled | Open-air |
Cost-efficiency | Lower | Higher |
Geometric compatibility | Limited by powder bed size | Effective for curved surfaces |
Mechanical integrity | Anisotropy and potential internal defects | Isotropic, fewer internal defects |
Clinical data | Favorable short-term results | Limited |
Parameter | Total (%) |
---|---|
Patients (n = 100) | |
Sex | |
Male | 48 (48) |
Female | 52 (52) |
Follow-up (months) | 34.6 (24–44, 8.7) |
Age at THA (years) | 55.1 (24–77, 12.5) |
Body mass index (kg/m2) | 24.0 (17.1–31.2, 3.0) |
Hips (n = 124) | |
Preoperative diagnosis for primary THA | |
Osteonecrosis of the femoral head | 77 (62.1) |
Primary osteoarthritis | 22 (17.7) |
Secondary osteoarthritis | 21 (16.9) |
Dysplasia | 11 (8.9) |
Post-traumatic | 3 (2.4) |
Legg-Calvé-Perthes disease sequelae | 3 (2.4) |
Ankylosing spondylitis | 3 (2.4) |
Idiopathic coxa vara | 1 (0.8) |
Subchondral insufficiency fracture | 2 (1.6) |
Synovial chondromatosis | 1 (0.8) |
Rheumatoid arthritis | 1 (0.8) |
Type of anesthesia | |
Regional (spinal) anesthesia | 73 (58.9) |
General endotracheal anesthesia | 51 (41.1) |
Length of hospital stay | |
Unilateral THA | 7.16 (7–14, 1.00) |
Staggered bilateral THA | 14.18 (11–22, 2.43) |
Parameter | Total (n = 124) |
---|---|
Cup size | |
50 mm | 31 (25.0%) |
52 mm | 45 (36.3%) |
54 mm | 25 (20.2%) |
56 mm | 23 (18.5%) |
Type of liner | |
Ceramic (fourth-generation) | 124 (100%) |
Ceramic head size | |
32 mm | 31 (25.0%) |
36 mm | 93 (75.0%) |
Neck length | |
Extra-short | 3 (2.4%) |
Short | 41 (33.1%) |
Medium | 56 (45.2%) |
Long | 22 (17.7%) |
Extra-long | 2 (1.6%) |
Number of acetabular screws | |
0 | 1 (0.8%) |
1 | 31 (25.0%) |
2 | 92 (74.2%) |
Type of femoral component | |
Corentec ID® | 78 (62.9%) |
Corentec Bencox II® | 2 (1.6%) |
Stryker Accolade® 127° | 37 (29.8%) |
Stryker Accolade® 132° | 5 (4.0%) |
Biomet Taperloc® | 2 (1.6%) |
Implant-Related Complications | Hips (%) | Mean Time to Onset (Months, Range) |
---|---|---|
Greater trochanteric pain syndrome | 8 (5.5%) | 10 (2–24) |
Squeaking | 7 (4.8%) | 21.8 (11–24) |
Iliotibial band tightness | 5 (3.4%) | 9.3 (3–21) |
Anterior thigh pain | 3 (2.0%) | 7.3 (4–9) |
Iliopsoas impingement 1 | 1 (0.7%) | 3 |
Dislocation 1 | 1 (0.7%) | 1 |
Failure of osseointegration 1 | 1 (0.7%) | - |
Superficial infection | 1 (0.7%) | 0.5 |
Wound dehiscence | 1 (0.7%) | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahk, J.H.; Jo, W.-L.; Lee, K.-H.; Song, J.-H.; Kim, S.-C.; Lim, Y.W. Short-Term Outcomes of Cementless Total Hip Arthroplasty Using a 3D-Printed Acetabular Cup Manufactured by Directed Energy Deposition: A Prospective Observational Study. J. Clin. Med. 2025, 14, 4527. https://doi.org/10.3390/jcm14134527
Bahk JH, Jo W-L, Lee K-H, Song J-H, Kim S-C, Lim YW. Short-Term Outcomes of Cementless Total Hip Arthroplasty Using a 3D-Printed Acetabular Cup Manufactured by Directed Energy Deposition: A Prospective Observational Study. Journal of Clinical Medicine. 2025; 14(13):4527. https://doi.org/10.3390/jcm14134527
Chicago/Turabian StyleBahk, Ji Hoon, Woo-Lam Jo, Kee-Haeng Lee, Joo-Hyoun Song, Seung-Chan Kim, and Young Wook Lim. 2025. "Short-Term Outcomes of Cementless Total Hip Arthroplasty Using a 3D-Printed Acetabular Cup Manufactured by Directed Energy Deposition: A Prospective Observational Study" Journal of Clinical Medicine 14, no. 13: 4527. https://doi.org/10.3390/jcm14134527
APA StyleBahk, J. H., Jo, W.-L., Lee, K.-H., Song, J.-H., Kim, S.-C., & Lim, Y. W. (2025). Short-Term Outcomes of Cementless Total Hip Arthroplasty Using a 3D-Printed Acetabular Cup Manufactured by Directed Energy Deposition: A Prospective Observational Study. Journal of Clinical Medicine, 14(13), 4527. https://doi.org/10.3390/jcm14134527