Cervical Infection as a Novel Risk Factor for Perineal Obstetrical Trauma: A Cross-Sectional Study †
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Future Directions
4.2. Study Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GBS | Group B Streptococcus |
OR | odds ratio |
BMI | body mass index |
PROM | premature rupture of the membranes |
SSI | surgical site infection |
CS | cesarean section |
OB/GYN | obstetrics and gynecology |
References
- Sandy-Hodgetts, K.; Carville, K.; Leslie, G.D. Determining risk factors for surgical wound dehiscence: A literature review. Int. Wound J. 2015, 12, 265–275. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walming, S.; Angenete, E.; Block, M.; Bock, D.; Gessler, B.; Haglind, E. Retrospective review of risk factors for surgical wound dehiscence and incisional hernia. BMC Surg. 2017, 17, 19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eckmann, C.; Aghdassi, S.J.S.; Brinkmann, A.; Pletz, M.; Rademacher, J. Perioperative Antibiotic Prophylaxis. Dtsch. Arztebl. Int. 2024, 121, 233–242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Springel, E.H.; Wang, X.Y.; Sarfoh, V.M.; Stetzer, B.P.; Weight, S.A.; Mercer, B.M. A randomized open-label controlled trial of chlorhexidine-alcohol vs. povidone-iodine for cesarean antisepsis: The CAPICA trial. Am. J. Obstet. Gynecol. 2017, 217, 463.e1–463.e8. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Phan, M.D.; Bates, L.J.; Peters, K.M.; Mukerjee, C.; Moore, K.H.; Schembri, M.A. The urinary microbiome in patients with refractory urge incontinence and recurrent urinary tract infection. Int. Urogynecol. J. 2018, 29, 1775–1782. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mowat, A. Commentary to: The urinary microbiome in patients with refractory urge incontinence and recurrent urinary tract infection. Int. Urogynecol. J. 2018, 29, 1783. [Google Scholar] [CrossRef] [PubMed]
- Dalvi, H.; De Nisco, N.J. The evolving world of the urinary microbiome. Curr. Opin. Urol. 2024, 34, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Perez-Carrasco, V.; Soriano-Lerma, A.; Soriano, M.; Gutiérrez-Fernández, J.; Garcia-Salcedo, J.A. Urinary Microbiome: Yin and Yang of the Urinary Tract. Front. Cell. Infect. Microbiol. 2021, 11, 617002. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karstens, L.; Asquith, M.; Davin, S.; Stauffer, P.; Fair, D.; Gregory, W.T.; Rosenbaum, J.T.; McWeeney, S.K.; Nardos, R. Does the Urinary Microbiome Play a Role in Urgency Urinary Incontinence and Its Severity? Front. Cell. Infect. Microbiol. 2016, 6, 78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pearce, M.M.; Hilt, E.E.; Rosenfeld, A.B.; Zilliox, M.J.; Thomas-White, K.; Fok, C.; Kliethermes, S.; Schreckenberger, P.C.; Brubaker, L.; Gai, X.; et al. The female urinary microbiome: A comparison of women with and without urgency urinary incontinence. mBio 2014, 5, e01283-14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Avershina, E.; Slangsvold, S.; Simpson, M.R.; Storrø, O.; Johnsen, R.; Øien, T.; Rudi, K. Diversity of vaginal microbiota increases by the time of labor onset. Sci. Rep. 2017, 7, 17558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Juliana, N.C.A.; Suiters, M.J.M.; Al-Nasiry, S.; Morré, S.A.; Peters, R.P.H.; Ambrosino, E. The Association Between Vaginal Microbiota Dysbiosis, Bacterial Vaginosis, and Aerobic Vaginitis, and Adverse Pregnancy Outcomes of Women Living in Sub-Saharan Africa: A Systematic Review. Front. Public Health 2020, 8, 567885. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- You, Y.A.; Kwon, E.J.; Choi, S.J.; Hwang, H.S.; Choi, S.K.; Lee, S.M.; Kim, Y.J. Vaginal microbiome profiles of pregnant women in Korea using a 16S metagenomics approach. Am. J. Reprod. Immunol. 2019, 82, e13124. [Google Scholar] [CrossRef] [PubMed]
- Rutayisire, E.; Huang, K.; Liu, Y.; Tao, F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: A systematic review. BMC Gastroenterol. 2016, 16, 86. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, L.; Guo, Y.; Wu, J.L. Influence of mode of delivery on infant gut microbiota composition: A pilot study. J. Obstet. Gynaecol. 2024, 44, 2368829. [Google Scholar] [CrossRef] [PubMed]
- Sterpu, I.; Fransson, E.; Hugerth, L.W.; Du, J.; Pereira, M.; Cheng, L.; Radu, S.A.; Calderón-Pérez, L.; Zha, Y.; Angelidou, P.; et al. No evidence for a placental microbiome in human pregnancies at term. Am. J. Obstet. Gynecol. 2021, 224, 296.e1–296.e23. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, E.; Gomez-Arango, L.F.; Barrett, H.L.; Nitert, M.D. Review: Maternal health and the placental microbiome. Placenta 2017, 54, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Uddipto, K.; Quinlivan, J.A.; Mendz, G.L. The Existence of an Intra-Amniotic Microbiome: Assessing a Controversy. Biology 2024, 13, 888. [Google Scholar] [CrossRef] [PubMed]
- Uberoi, A.; McCready-Vangi, A.; Grice, E.A. The wound microbiota: Microbial mechanisms of impaired wound healing and infection. Nat. Rev. Microbiol. 2024, 22, 507–521. [Google Scholar] [CrossRef] [PubMed]
- Rippon, M.G.; Westgate, S.; Rogers, A.A. Implications of endotoxins in wound healing: A narrative review. J. Wound Care 2022, 31, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Brothers, K.M.; Stella, N.A.; Hunt, K.M.; Romanowski, E.G.; Liu, X.; Klarlund, J.K.; Shanks, R.M. Putting on the brakes: Bacterial impediment of wound healing. Sci. Rep. 2015, 5, 14003. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coggins, S.A.; Puopolo, K.M. Neonatal Group B Streptococcus Disease. Pediatr. Rev. 2024, 45, 63–73. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Russell, N.J.; Seale, A.C.; O’Driscoll, M.; O’Sullivan, C.; Bianchi-Jassir, F.; Gonzalez-Guarin, J.; Lawn, J.E.; Baker, C.J.; Bartlett, L.; GBS Maternal Colonization Investigator Group; et al. Maternal Colonization With Group B Streptococcus and Serotype Distribution Worldwide: Systematic Review and Meta-analyses. Clin. Infect. Dis. 2017, 65, S100–S111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brzychczy-Wloch, M.; Wojkowska-Mach, J.; Helwich, E.; Heczko, P.B. Incidence of maternal GBS colonization and neonatal GBS disease among very low birth weight Polish neonates. Med. Sci. Monit. 2013, 19, 34–39. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Cao, S.; Fu, X.; Ni, Y.; Huang, B.; Wu, J.; Chen, L.; Huang, S.; Cao, J.; Yu, W.; et al. The risk factors for Group B Streptococcus colonization during pregnancy and influences of intrapartum antibiotic prophylaxis on maternal and neonatal outcomes. BMC Pregnancy Childbirth 2023, 23, 207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Lissovoy, G.; Fraeman, K.; Hutchins, V.; Murphy, D.; Song, D.; Vaughn, B.B. Surgical site infection: Incidence and impact on hospital utilization and treatment costs. Am. J. Infect. Control. 2009, 37, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Stropnicky, P.V.; Kandemir, F.; Schäffer, M.; Pochhammer, J. Abdominal fascia dehiscence: Is there a connection to a special microbial spectrum? Hernia 2023, 27, 549–556. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Turtiainen, J.; Hakala, T.; Hakkarainen, T.; Karhukorpi, J. The impact of surgical wound bacterial colonization on the incidence of surgical site infection after lower limb vascular surgery: A prospective observational study. Eur. J. Vasc. Endovasc. Surg. 2014, 47, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Rood, K.M.; Buhimschi, I.A.; Jurcisek, J.A.; Summerfield, T.L.; Zhao, G.; Ackerman, W.E.; Wang, W.; Rumpf, R.W.; Thung, S.F.; Bakaletz, L.O.; et al. Skin Microbiota in Obese Women at Risk for Surgical Site Infection After Cesarean Delivery. Sci. Rep. 2018, 8, 8756. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hadar, E.; Melamed, N.; Tzadikevitch-Geffen, K.; Yogev, Y. Timing and risk factors of maternal complications of cesarean section. Arch. Gynecol. Obstet. 2011, 283, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Kamble, N.S.; Bera, S.; Bhedase, S.A.; Gaur, V.; Chowdhury, D. Review on Applied Applications of Microbiome on Human Lives. Bacteria 2024, 3, 141–159. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, C.; Wen, Y.; Sheng, D.; Wei, T.; Hu, T.; Dai, J.; Zhao, G.; Yang, S.; Wang, Q.; et al. Modulation of local immunity by the vaginal microbiome is associated with triggering spontaneous preterm birth. Front. Immunol. 2024, 15, 1481611. [Google Scholar] [CrossRef] [PubMed]
- Amabebe, E.; Bhatnagar, N.; Kamble, N.; Reynolds, S.; Anumba, D.O. Exploring the antimicrobial properties of vaginal Lactobacillus crispatus against preterm birth-associated bacteria. Reprod. Fertil. 2022, 3, L6–L8. [Google Scholar] [CrossRef] [PubMed]
- Mazur, N.; Siereńska, J.; Ejankowski, M.; Wąż, P.; Grzybowska, M.E. Cervical infection as a novel risk factor for perineal obstetrical trauma: A cross-sectional study. In Proceedings of the IUGA 49th Annual Meeting, Singapore, 19–22 June 2024. [Google Scholar]
Variables | Intact Perineum (n = 361) | Perineal Tear 1st–4th Degrees (n = 371) | p-Value |
---|---|---|---|
Age (years) | 0.48 f | ||
<19 | 0 | 1 (0.3%) | |
19–29 | 110 (30.5%) | 119 (32.1%) | |
30–39 | 234 (64.8%) | 227 (61.2%) | |
≥40 | 17 (4.7%) | 24 (6.5%) | |
BMI (kg/m2) | 0.14 f | ||
<18.5 | 0 | 1 (0.3%) | |
18.5–24.99 | 49 (13.6%) | 66 (1.8%) | |
25–29.99 | 187 (51.8%) | 172 (92.0%) | |
30–34.99 | 89 (24.7%) | 107 (28.8%) | |
35–39.99 | 25 (6.9%) | 19 (5.1%) | |
≥40 | 11 (3.1%) | 6 (0.2%) | |
BMI median (kg/m2) | 28 (26; 31) | 28 (25; 31) | 0.23 w |
Fetal weight (grams) | 3372.5 (3000; 3637.5) | 3481.3 ± 446.8 | <0.0001 w |
Pregnancy number | <0.0001 f | ||
1st | 48 (13.3%) | 103 (27.8%) | |
2nd | 149 (41.3%) | 153 (41.2%) | |
3rd | 81 (22.4%) | 69 (18.6%) | |
4th | 33 (9.1%) | 35 (9.4%) | |
5th | 30 (8.3%) | 7 (1.9%) | |
≥6th | 20 (5.5%) | 4 (1.1%) | |
Vaginal birth number | <0.0001 f | ||
1st | 59 (16.3%) | 130 (35.0%) | |
2nd | 182 (50.4%) | 183 (49.3%) | |
3rd | 78 (21.6%) | 40 (10.8%) | |
4th | 24 (6.6%) | 14 (3.8%) | |
5th | 10 (2.8%) | 2 (0.5%) | |
≥6th | 8 (2.2%) | 2 (0.5%) | |
Premature rupture of membranes (PROM) | 0.25 c | ||
No n = 645 | 316 (87.5%) | 329 (88.7%) | |
Yes n = 87 | 45 (12.5%) | 42 (11.3%) | |
First stage of labor | 0.14 c | ||
<3 h | 118 (32.7%) | 104 (28.0%) | |
3–6 h | 171 (47.4%) | 177 (47.7%) | |
6–9 h | 57 (15.8%) | 61 (16.4%) | |
≥9 h | 15 (4.2%) | 29 (7.8%) | |
Preinduction of labor | 0.96 c | ||
Foley catheter | 63 (17.5%) | 63 (17.0%) | |
Induction of labor | 0.42 c | ||
Oxytocin | 97 (26.9%) | 89 (24.0%) | |
Concomitant diseases | 0.09 f | ||
No hypertension | 332 (92.0%) | 346 (93.3%) | |
Gestational hypertension (GH) | 20 (5.5%) | 23 (6.2%) | |
Chronic hypertension | 9 (2.5%) | 2 (0.5%) | |
Concomitant diseases | 0.91 f | ||
No diabetes | 314 (87.0%) | 320 (86.3%) | |
Gestational diabetes (GDMG1) | 16 (4.4%) | 16 (4.3%) | |
Gestational diabetes (GDMG2) | 27 (7.5%) | 32 (8.6%) | |
Diabetes mellitus (DM) | 4 (1.1%) | 3 (0.8%) | |
Previous cesarian section | 0.25 c | ||
No | 337 (93.4%) | 357 (96.%) | |
Yes | 24 (6.7%) | 14 (3.8%) | |
Second stage of labor | 0.02 f | ||
<1 h | 322 (89.2%) | 303 (81.7%) | |
1–1.5 h | 25 (6.9%) | 37 (10.0%) | |
1.5–2 h | 9 (2.5%) | 18 (4.9%) | |
≥2 h | 5 (1.4%) | 13 (3.5%) | |
GBS colonization 35th–37th weeks: rectovaginal * | 0.025 a | ||
Negative n = 474 (76.82%) | 235 (81.0%) | 239 (73.1%) | |
Positive n = 143 (23.18%) | 55 (19.0%) | 88 (26.9%) | |
At admission: | 0.023 a | ||
Physiological swab | 244 (67.6%) | 219 (59.0%) | |
Pathological swab | 117 (32.4%) | 152 (41.0%) |
Variables | Physiological Swab (n = 463) | Pathological Swab (n = 269) | p-Value |
---|---|---|---|
Perineal tear degree | 0.012 f | ||
No tear (n = 361) | 244 (52.7%) | 117 (43.5%) | |
1st (n = 288) | 163 (35.2%) | 125 (46.5%) | |
2nd (n = 78) | 54 (11.7%) | 24 (8.9%) | |
3rd (n = 4) | 2 (0.4%) | 2 (0.7%) | |
4th (n = 1) | 0 | 1 (0.4%) | |
Perineal tear | 0.023 a | ||
No tear | 244 (52.7%) | 117 (43.5%) | |
Tears: 1st, 2nd, 3rd, 4th | 219 (47.3%) | 152 (56.5%) |
Variables | No GBS Colonization at the 35th–37th Weeks n = 474 * | GBS Colonization at the 35th–37th Weeks n = 143 * | p-Value |
---|---|---|---|
Perineal tear degree | 0.017 f | ||
No tear | 235 (49.6%) | 55 (38.5%) | |
1st | 180 (38.0%) | 73 (51.1%) | |
2nd | 56 (11.8%) | 13 (9.1%) | |
3rd | 3 (0.6%) | 1 (0.7%) | |
4th | 0 | 1 (0.7%) | |
Perineal tear | 0.025 a | ||
No tear | 235 (49.6%) | 55 (38.5%) | |
Tears: 1st, 2nd, 3rd, 4th | 239 (50.4%) | 88 (61.5%) |
Variable | Estimate | Standard Error | Z Value | p-Value | Odds Ratio |
---|---|---|---|---|---|
(Intercept) | −1.6201 | 0.6722569 | −2.410 | 0.016 | |
Z1—GBS colonization in the 35th–37th weeks of pregnancy | 0.4450 | 0.2113007 | 2.106 | 0.035 | 1.5604 |
Z2—Cervical swab at admission | 0.4345 | 0.1846144 | 2.354 | 0.019 | 1.5442 |
Z3—Vaginal birth | −0.7197 | 0.1060768 | −6.785 | <0.00001 | 0.4869 |
Z4—Birthweight | 0.0009 | 0.0001945 | 4.425 | 0.00001 | 1.0009, 2.3641 |
Bacterial Species Cultured from Cervical/Vaginal Swab at Admission | Number of Patients (n = 732) | Percentage of the Study Population | Gram Positive (+), Gram Negative (−), or Fungi (F) |
---|---|---|---|
Lactobacillus spp. | 463 | 62.9% | + |
Ureaplasma urealyticum | 101 | 13.7% | + |
Streptococcus agalactiae (GBS) | 74 | 10.1% | + |
Candida spp. | 32 | 4.3% | F |
Enterococcus faecalis | 22 | 3.0% | + |
Escherichia coli | 18 | 2.4% | − |
Staphylococcus haemolyticus | 9 | 1.2% | + |
Klebsiella spp. | 6 | 0.8% | − |
Mycoplasma spp. | 5 | 0.7% | + |
Proteus mirabilis | 1 | 0.2% | − |
Staphylococcus epidermidis | 1 | 0.2% | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazur-Ejankowska, N.K.; Ejankowski, M.; Wąż, P.; Chyc-Myrmuła, A.; Grzybowska, M.E. Cervical Infection as a Novel Risk Factor for Perineal Obstetrical Trauma: A Cross-Sectional Study. J. Clin. Med. 2025, 14, 4477. https://doi.org/10.3390/jcm14134477
Mazur-Ejankowska NK, Ejankowski M, Wąż P, Chyc-Myrmuła A, Grzybowska ME. Cervical Infection as a Novel Risk Factor for Perineal Obstetrical Trauma: A Cross-Sectional Study. Journal of Clinical Medicine. 2025; 14(13):4477. https://doi.org/10.3390/jcm14134477
Chicago/Turabian StyleMazur-Ejankowska, Natalia Katarzyna, Maciej Ejankowski, Piotr Wąż, Anna Chyc-Myrmuła, and Magdalena Emilia Grzybowska. 2025. "Cervical Infection as a Novel Risk Factor for Perineal Obstetrical Trauma: A Cross-Sectional Study" Journal of Clinical Medicine 14, no. 13: 4477. https://doi.org/10.3390/jcm14134477
APA StyleMazur-Ejankowska, N. K., Ejankowski, M., Wąż, P., Chyc-Myrmuła, A., & Grzybowska, M. E. (2025). Cervical Infection as a Novel Risk Factor for Perineal Obstetrical Trauma: A Cross-Sectional Study. Journal of Clinical Medicine, 14(13), 4477. https://doi.org/10.3390/jcm14134477