Real-Life Performance of a Commercially Available AI Tool for Post-Traumatic Intracranial Hemorrhage Detection on CT Scans: A Supportive Tool
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.1.1. Data Collection
2.1.2. Data Selection
2.2. Intervention
2.2.1. Readers
2.2.2. Reading Workflow
2.2.3. Reading Setup
2.2.4. Ground Truth
2.3. AI Model
2.4. Statistical Analysis
2.5. Challenging Cases
3. Results
3.1. Overall AI Performance
3.2. Night Reads Subset
3.3. Challenging Cases
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ICH | Intracranial hemorrhage |
AIH | Acute intracranial hemorrhage |
CT | Computed tomography |
TBI | Traumatic brain injury |
AI | Artificial intelligence |
References
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.-C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2018, 130, 1080–1097. [Google Scholar] [CrossRef] [PubMed]
- Iaccarino, C.; Carretta, A.; Nicolosi, F.; Morselli, C. Epidemiology of severe traumatic brain injury. J. Neurosurg. Sci. 2018, 62, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.I.; Mendelow, A.D.; Hanley, D.F. Intracerebral haemorrhage. Lancet 2009, 373, 1632–1644. [Google Scholar] [CrossRef]
- van Asch, C.J.; Luitse, M.J.; Rinkel, G.J.; van der Tweel, I.; Algra, A.; Klijn, C.J. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: A systematic review and meta-analysis. Lancet Neurol. 2010, 9, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, L.; Wolfe, C.D.A.; Wang, Y. Incidence and Long-Term Survival of Spontaneous Intracerebral Hemorrhage Over Time: A Systematic Review and Meta-Analysis. Front. Neurol. 2022, 13, 819737. [Google Scholar] [CrossRef]
- Hemphill, J.C.; Greenberg, S.M.; Anderson, C.S.; Becker, K.; Bendok, B.R.; Cushman, M.; Fung, G.L.; Goldstein, J.N.; Macdonald, R.L.; Mitchell, P.H.; et al. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage. Stroke 2015, 46, 2032–2060. [Google Scholar] [CrossRef]
- Morotti, A.; Goldstein, J.N. Diagnosis and Management of Acute Intracerebral Hemorrhage. Emerg. Med. Clin. N. Am. 2016, 34, 883–899. [Google Scholar] [CrossRef]
- Hunter, T.B.; Krupinski, E.A.; Hunt, K.R.; Erly, W.K. Emergency department coverage by academic departments of radiology. Acad. Radiol. 2000, 7, 165–170. [Google Scholar] [CrossRef]
- Sellers, A.; Hillman, B.J.; Wintermark, M. Survey of after-hours coverage of emergency department imaging studies by US academic radiology departments. J. Am. Coll. Radiol. 2014, 11, 725–730. [Google Scholar] [CrossRef]
- Platts-Mills, T. Teleradiology Interpretations of Emergency Department Computed Tomography Scans. J. Emerg. Med. 2010, 38, 188–195. Available online: https://www.jem-journal.com/article/S0736-4679(08)00315-6/abstract (accessed on 31 March 2024). [CrossRef]
- Bruls, R.J.M.; Kwee, R.M. Workload for radiologists during on-call hours: Dramatic increase in the past 15 years. Insights Imaging 2020, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.J.; Schwartz, K.M.; Eckel, L.J.; Diehn, F.E.; Hunt, C.H.; Bartholmai, B.J.; Erickson, B.J.; Kallmes, D.F. The Effects of Changes in Utilization and Technological Advancements of Cross-Sectional Imaging on Radiologist Workload. Acad. Radiol. 2015, 22, 1191–1198. [Google Scholar] [CrossRef]
- Lee, C.S.; Nagy, P.G.; Weaver, S.J.; Newman-Toker, D.E. Cognitive and system factors contributing to diagnostic errors in radiology. AJR Am. J. Roentgenol. 2013, 201, 611–617. [Google Scholar] [CrossRef]
- Itri, J.N.; Tappouni, R.R.; McEachern, R.O.; Pesch, A.J.; Patel, S.H. Fundamentals of Diagnostic Error in Imaging. Radiographics 2018, 38, 1845–1865. [Google Scholar] [CrossRef]
- Pinto, A.; Reginelli, A.; Pinto, F.; Lo Re, G.; Midiri, F.; Muzj, C.; Romano, L.; Brunese, L. Errors in imaging patients in the emergency setting. Br. J. Radiol. 2016, 89, 20150914. [Google Scholar] [CrossRef] [PubMed]
- Alexander, R.; Waite, S.; Bruno, M.A.; Krupinski, E.A.; Berlin, L.; Macknik, S.; Martinez-Conde, S. Mandating Limits on Workload, Duty, and Speed in Radiology. Radiology 2022, 304, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Hanna, T.N.; Lamoureux, C.; Krupinski, E.A.; Weber, S.; Johnson, J.-O. Effect of Shift, Schedule, and Volume on Interpretive Accuracy: A Retrospective Analysis of 2.9 Million Radiologic Examinations. Radiology 2018, 287, 205–212. [Google Scholar] [CrossRef]
- Patel, A.G.; Pizzitola, V.J.; Johnson, C.D.; Zhang, N.; Patel, M.D. Radiologists Make More Errors Interpreting Off-Hours Body CT Studies during Overnight Assignments as Compared with Daytime Assignments. Radiology 2020, 297, 374–379. [Google Scholar] [CrossRef]
- Ojeda, P.; Zawaideh, M.; Mossa-Basha, M.; Haynor, D. The utility of deep learning: Evaluation of a convolutional neural network for detection of intracranial bleeds on non-contrast head computed tomography studies. In Medical Imaging 2019: Image Processing; SPIE: Bellingham, WA, USA, 2019; Volume 10949, p. 109493J. [Google Scholar] [CrossRef]
- Chilamkurthy, S.; Ghosh, R.; Tanamala, S.; Biviji, M.; Campeau, N.G.; Venugopal, V.K.; Mahajan, V.; Rao, P.; Warier, P. Deep learning algorithms for detection of critical findings in head CT scans: A retrospective study. Lancet 2018, 392, 2388–2396. [Google Scholar] [CrossRef]
- Van Leeuwen, K.; Schalekamp, S.; Rutten, M.; Ginneken, B.; de Rooij, M. Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur. Radiol. 2021, 31, 3797–3804. [Google Scholar] [CrossRef]
- Health AI Register. Available online: https://healthairegister.com/ (accessed on 9 April 2024).
- Wintermark, M.; Li, Y.; Ding, V.Y.; Xu, Y.; Jiang, B.; Ball, R.L.; Zeineh, M.; Gean, A.; Sanelli, P. Neuroimaging Radiological Interpretation System for Acute Traumatic Brain Injury. J. Neurotrauma 2018, 35, 2665–2672. [Google Scholar] [CrossRef]
- Wang, D.; Jin, R.; Shieh, C.-C.; Ng, A.Y.; Pham, H.; Dugal, T.; Barnett, M.; Winoto, L.; Wang, C.; Barnett, Y. Real world validation of an AI-based CT hemorrhage detection tool. Front. Neurol. 2023, 14, 1177723. [Google Scholar] [CrossRef] [PubMed]
- Maghami, M.; Sattari, S.A.; Tahmasbi, M.; Panahi, P.; Mozafari, J.; Shirbandi, K. Diagnostic test accuracy of machine learning algorithms for the detection intracranial hemorrhage: A systematic review and meta-analysis study. Biomed. Eng. Online 2023, 22, 114. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Wood, D.; Grzeda, M.; Suresh, C.; Din, M.; Cole, J.; Modat, M.; Booth, T.C. Systematic Review of Artificial Intelligence for Abnormality Detection in High-volume Neuroimaging and Subgroup Meta-analysis for Intracranial Hemorrhage Detection. Clin. Neuroradiol. 2023, 33, 943–956. [Google Scholar] [CrossRef]
- Lexa, F.J.; Jha, S. Artificial Intelligence for Image Interpretation: Counterpoint—The Radiologist’s Incremental Foe. Am. J. Roentgenol. 2021, 217, 558–559. [Google Scholar] [CrossRef]
- O’Neill, T.; Xi, Y.; Stehel, E.; Browning, T.; Ng, Y.; Baker, C.; Peshock, R. Active Reprioritization of the Reading Worklist Using Artificial Intelligence Has a Beneficial Effect on the Turnaround Time for Interpretation of Head CT with Intracranial Hemorrhage. Radiol. Artif. Intell. 2020, 3, e200024. [Google Scholar] [CrossRef] [PubMed]
- Batra, K.; Xi, Y.; Bhagwat, S.; Espino, A.; Peshock, R.M. Radiologist Worklist Reprioritization Using Artificial Intelligence: Impact on Report Turnaround Times for CTPA Examinations Positive for Acute Pulmonary Embolism. AJR Am. J. Roentgenol. 2023, 221, 324–333. [Google Scholar] [CrossRef]
- Field, N.C.; Entezami, P.; Boulos, A.S.; Dalfino, J.; Paul, A.R. Artificial intelligence improves transfer times and ischemic stroke workflow metrics. Interv. Neuroradiol. 2023, 15910199231209080. [Google Scholar] [CrossRef]
- Smith, C.W.; Malhotra, A.K.; Hammill, C.; Beaton, D.; Harrington, E.M.; He, Y.; Shakil, H.; McFarlan, A.; Jones, B.; Lin, H.M.; et al. Vision Transformer–based Decision Support for Neurosurgical Intervention in Acute Traumatic Brain Injury: Automated Surgical Intervention Support Tool. Radiol. Artif. Intell. 2024, 6, e230088. [Google Scholar] [CrossRef]
- Follette, C.; Halimeh, B.; Chaparro, A.; Shi, A.; Winfield, R. Futile trauma transfers: An infrequent but costly component of regionalized trauma care. J. Trauma Acute Care Surg. 2021, 91, 72–76. [Google Scholar] [CrossRef]
- Kim, S.; Ollinger, J.; Song, C.; Raiciulescu, S.; Seenivasan, S.; Wolfgang, A.; Werner, J.K.; P.-Yeh, H. White Matter Alterations in Military Service Members with Remote Mild Traumatic Brain Injury. JAMA Netw. Open 2024, 7, e248121. [Google Scholar] [CrossRef] [PubMed]
- Huisman, M.; Ranschaert, E.; Parker, W.; Mastrodicasa, D.; Koci, M.; Pinto de Santos, D.; Coppola, F.; Morozov, S.; Zins, M.; Bohyn, C.; et al. An international survey on AI in radiology in 1,041 radiologists and radiology residents part 1: Fear of replacement, knowledge, and attitude. Eur. Radiol. 2021, 31, 7058–7066. [Google Scholar] [CrossRef] [PubMed]
- Aidoc AI PE Solution Clinically Proven to Shorten Stay, Expedite Access to Treatment, Healthcare AI | Aidoc Always-on AI. Available online: https://www.aidoc.com/about/news/aidocs-ai-pert-consortium-2023/ (accessed on 31 March 2024).
- Melvin, R.L.; Broyles, M.G.; Duggan, E.W.; John, S.; Smith, A.D.; Berkowitz, D.E. Artificial Intelligence in Perioperative Medicine: A Proposed Common Language with Applications to FDA-Approved Devices. Front. Digit. Health 2022, 4, 872675. [Google Scholar] [CrossRef] [PubMed]
- Kwee, T.C.; Kwee, R.M. Workload of diagnostic radiologists in the foreseeable future based on recent scientific advances: Growth expectations and role of artificial intelligence. Insights Into Imaging 2021, 12, 88. [Google Scholar] [CrossRef]
- Yu, F.; Moehring, A.; Banerjee, O.; Salz, T.; Agarwal, N.; Rajpurkar, P. Heterogeneity and predictors of thintofects of AI assistance on radiologists. Nat. Med. 2024, 30, 837–849. [Google Scholar] [CrossRef]
Characteristics (n = 682) | ||
---|---|---|
Age | Mean Range; median (IQR) | 69.48 18–101; 76 (56–87) |
Gender (%) | Female Male | 262 (38.4%) 420 (61.6%) |
Trauma (%) | Minor Major | 570 (83.6%) 112 (16.4%) |
Hours (%) | Day shift Night shift | 518 (76%) 164 (24%) |
By trauma severity | ||
Major trauma (n = 112; 16.5%) | ||
Age | Mean Range; median (IQR) | 42.34 18–86; 38 (26.75–54) |
Gender | Female Male | 23 89 |
Hours | Day shift Night shift | 85 27 |
Minor trauma (n = 570; 83.5%) | ||
Age | Mean Range; median (IQR) | 72.82 18–101; 81 (68–89) |
Gender | Female Male | 239 331 |
Hours | Day shift Night shift | 433 137 |
By reading session | ||
Day shift (n = 518; 76%) | ||
Age | Mean Range; median (IQR) | 70.2 18–101; 76 (59–87) |
Gender | Female Male | 203 315 |
Severity | Minor Major | 433 85 |
Night shift (n = 164; 24%) | ||
Age | Mean Range; median (IQR) | 67.1 18–101; 77 (43.75–88) |
Gender | Female Male | 59 105 |
Severity | Minor Major | 137 27 |
ICH Positive | ICH Negative | |
---|---|---|
Overall (n = 682) | 98 (14.4%) | 584 |
By trauma severity | ||
Major (n = 112) Minor (n = 570) | 43 (38.4%) 55 (9.6%) | 69 515 |
By reading session | ||
Day (n = 518) | 77 (14.9%) | 441 |
Major (n = 85) Minor (n = 433) | 32 (37.6%) 45 (10.4%) | 53 388 |
Night (n = 164) | 21 (12.8%) | 143 |
Major (n = 27) Minor (n = 137) | 11 (40.7%) 10 (7.3%) | 16 127 |
Performance | SN | SP | PPV | NPV | Accuracy | F1 Score |
Overall | 88.8% (81–93.6) | 92.1% (89.7–94) | 65.4% (57–73) | 98% (96.5–98.9) | 91.6% | 90.2% |
Minor trauma | 85.5% (73.8–92.4) | 92.8% (90.3–94.7) | 56% (45.3–66.1) | 98.4% (96.8–99.2) | 92.1% | 88.7% |
Major trauma | 93% (81.4–97.6) | 87% (77–93) | 81.6% (68.6–90) | 95.2% (86.9–98.4) | 89.3% | 91.1% |
Contingency | TP | FP | TN | FN | ||
Overall | 87 | 46 | 538 | 11 | ||
Minor trauma | 47 | 37 | 478 | 8 | ||
Major trauma | 40 | 9 | 60 | 3 |
Performance | SN | SP | PPV | NPV | Accuracy | F1 Score |
AI | 90.5% (71.1–97.4) | 95.8% (91.2–98.1) | 76% (56.6–88.6) | 98.6% (94.9–99.6) | 95.2% | 92.8% |
Junior | 85.7% (65.4–95) | 99.3% (96.2–99.9) | 94.7% (75.4–99.1) | 98% (94.1–99.3) | 97.6% | 91.3% |
Junior + AI | 95.2% (77.3–99.2) | 99.3% (96.2–99.9) | 95.2% (77.3–99.2) | 99.3% (96.2–99.9) | 98.8% | 97% |
Contingency | TP | FP | TN | FN | ||
AI | 19 | 6 | 137 | 2 | ||
Junior | 18 | 1 | 142 | 3 | ||
Junior + AI | 20 | 1 | 142 | 1 |
Age | Gender | Type | NIRIS Score | GCS | Hospitalization (Days) | Surgery | Outcome |
---|---|---|---|---|---|---|---|
95 | F | SAH | 1 | 15 | 20 | No | Death |
93 | F | SDH | 1 | 15 | 24 | No | LTCF |
90 | M | SDH | 1 | 15 | 11 | No | LTCF |
99 | F | IPH | 1 | 15 | 11 | No | Home |
60 | M | SAH | 1 | 15 | 2 | No | Home |
44 | M | SDH | 1 | 15 | 1 | No | Home |
101 | M | SAH | 1 | 15 | 11 | No | Death |
83 | M | IVH | 2 | 15 | 4 | No | Home |
48 | M | SAH | 1 | 14 | 7 | No | Home |
75 | M | SAH + IPH | 1 | 15 | 7 | No | Home |
83 | M | IPH | 1 | 10 | 7 | No | Home |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabit, L.; Lepoittevin, M.; Valls, M.; Thomas, C.; Guillevin, R.; Herpe, G. Real-Life Performance of a Commercially Available AI Tool for Post-Traumatic Intracranial Hemorrhage Detection on CT Scans: A Supportive Tool. J. Clin. Med. 2025, 14, 4403. https://doi.org/10.3390/jcm14134403
Mabit L, Lepoittevin M, Valls M, Thomas C, Guillevin R, Herpe G. Real-Life Performance of a Commercially Available AI Tool for Post-Traumatic Intracranial Hemorrhage Detection on CT Scans: A Supportive Tool. Journal of Clinical Medicine. 2025; 14(13):4403. https://doi.org/10.3390/jcm14134403
Chicago/Turabian StyleMabit, Léo, Maryne Lepoittevin, Martin Valls, Clément Thomas, Rémy Guillevin, and Guillaume Herpe. 2025. "Real-Life Performance of a Commercially Available AI Tool for Post-Traumatic Intracranial Hemorrhage Detection on CT Scans: A Supportive Tool" Journal of Clinical Medicine 14, no. 13: 4403. https://doi.org/10.3390/jcm14134403
APA StyleMabit, L., Lepoittevin, M., Valls, M., Thomas, C., Guillevin, R., & Herpe, G. (2025). Real-Life Performance of a Commercially Available AI Tool for Post-Traumatic Intracranial Hemorrhage Detection on CT Scans: A Supportive Tool. Journal of Clinical Medicine, 14(13), 4403. https://doi.org/10.3390/jcm14134403