Prognostic Value of a Serological-Based Clinical Model for Gastric Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Standards
2.2. Patients
2.3. Clinicopathological Materials
2.4. Surgical Treatment
2.5. Follow-Up and Clinical Endpoints
2.6. Statistical Analysis
3. Results
3.1. Clinicopathological Characteristics
3.2. Screening Serological Indicators and Establishment of the Serscore
3.3. Survival Analysis and Prognostic Model Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEG | adenocarcinoma of the esophagogastric junction |
HR | hazard ratio |
CI | confidence interval |
C-index | concordance index |
AUC | area under curve |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.H.; Han, S.; Lee, Y.J.; Lee, S.G.; Kim, K.M.; Lim, Y.S.; Chung, Y.H.; Lee, Y.S.; Lee, H.C. Half-life of serum alpha-fetoprotein: An early prognostic index of recurrence and survival after hepatic resection for hepatocellular carcinoma. Ann. Surg. 2013, 257, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Al Abbas, A.I.; Zenati, M.; Reiser, C.J.; Hamad, A.; Jung, J.P.; Zureikat, A.H.; Zeh, H.J., 3rd; Hogg, M.E. Serum CA19-9 Response to Neoadjuvant Therapy Predicts Tumor Size Reduction and Survival in Pancreatic Adenocarcinoma. Ann. Surg. Oncol. 2020, 27, 2007–2014. [Google Scholar] [CrossRef] [PubMed]
- Moro, A.; Mehta, R.; Sahara, K.; Tsilimigras, D.I.; Paredes, A.Z.; Farooq, A.; Hyer, J.M.; Endo, I.; Shen, F.; Guglielmi, A.; et al. The Impact of Preoperative CA19-9 and CEA on Outcomes of Patients with Intrahepatic Cholangiocarcinoma. Ann. Surg. Oncol. 2020, 27, 2888–2901. [Google Scholar] [CrossRef]
- Shimada, H.; Noie, T.; Ohashi, M.; Oba, K.; Takahashi, Y. Clinical significance of serum tumor markers for gastric cancer: A systematic review of literature by the Task Force of the Japanese Gastric Cancer Association. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2014, 17, 26–33. [Google Scholar] [CrossRef]
- Lin, J.P.; Lin, J.X.; Ma, Y.B.; Xie, J.W.; Yan, S.; Wang, J.B.; Lu, J.; Chen, Q.Y.; Ma, X.F.; Cao, L.L.; et al. Prognostic significance of pre- and post-operative tumour markers for patients with gastric cancer. Br. J. Cancer 2020, 123, 418–425. [Google Scholar] [CrossRef]
- Uda, H.; Kanda, M.; Tanaka, C.; Kobayashi, D.; Inaoka, K.; Tanaka, Y.; Hayashi, M.; Iwata, N.; Yamada, S.; Fujii, T.; et al. Perioperative Serum Carcinoembryonic Antigen Levels Predict Recurrence and Survival of Patients with Pathological T2-4 Gastric Cancer Treated with Curative Gastrectomy. Dig. Surg. 2018, 35, 55–63. [Google Scholar] [CrossRef]
- Tong, Y.; Zhao, Y.; Shan, Z.; Zhang, J. CA724 predicts overall survival in locally advanced gastric cancer patients with neoadjuvant chemotherapy. BMC Cancer 2021, 21, 4. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef]
- Pietrantonio, F.; Miceli, R.; Raimondi, A.; Kim, Y.W.; Kang, W.K.; Langley, R.E.; Choi, Y.Y.; Kim, K.M.; Nankivell, M.G.; Morano, F.; et al. Individual Patient Data Meta-Analysis of the Value of Microsatellite Instability As a Biomarker in Gastric Cancer. J. Clin. Oncol. 2019, 37, 3392–3400. [Google Scholar] [CrossRef]
- Shu, Y.; Zhang, W.; Hou, Q.; Zhao, L.; Zhang, S.; Zhou, J.; Song, X.; Zhang, Y.; Jiang, D.; Chen, X.; et al. Prognostic significance of frequent CLDN18-ARHGAP26/6 fusion in gastric signet-ring cell cancer. Nat. Commun. 2018, 9, 2447. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Z.; Yang, Y.C.; Chen, Y.; Wu, C.C.; Lin, R.F.; Wang, Z.N.; Zhang, X. Preoperative Anemia or Low Hemoglobin Predicts Poor Prognosis in Gastric Cancer Patients: A Meta-Analysis. Dis. Markers 2019, 2019, 7606128. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, D.; Sawayama, H.; Kurashige, J.; Iwatsuki, M.; Eto, T.; Tokunaga, R.; Kitano, Y.; Yamamura, K.; Ouchi, M.; Nakamura, K.; et al. Controlling Nutritional Status (CONUT) score is a prognostic marker for gastric cancer patients after curative resection. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2018, 21, 204–212. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, P.; Song, Y.; Sun, J.; Chen, X.; Zhao, J.; Ma, B.; Wang, Z. The prognostic nutritional index is a predictive indicator of prognosis and postoperative complications in gastric cancer: A meta-analysis. Eur. J. Surg. Oncol. 2016, 42, 1176–1182. [Google Scholar] [CrossRef]
- Namikawa, T.; Yokota, K.; Tanioka, N.; Fukudome, I.; Iwabu, J.; Munekage, M.; Uemura, S.; Maeda, H.; Kitagawa, H.; Kobayashi, M.; et al. Systemic inflammatory response and nutritional biomarkers as predictors of nivolumab efficacy for gastric cancer. Surg. Today 2020, 50, 1486–1495. [Google Scholar] [CrossRef]
- Wakatsuki, K.; Matsumoto, S.; Migita, K.; Kunishige, T.; Nakade, H.; Miyao, S.; Sho, M. Prognostic value of the fibrinogen-to-platelet ratio as an inflammatory and coagulative index in patients with gastric cancer. Surg. Today 2019, 49, 334–342. [Google Scholar] [CrossRef]
- Liu, Z.; Ge, H.; Miao, Z.; Shao, S.; Shi, H.; Dong, C. Dynamic Changes in the Systemic Inflammation Response Index Predict the Outcome of Resectable Gastric Cancer Patients. Front. Oncol. 2021, 11, 577043. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2017, 20, 1–19. [Google Scholar] [CrossRef]
- Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2010 (ver. 3). Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2011, 14, 113–123. [Google Scholar] [CrossRef]
- Lien, Y.C.; Hsieh, C.C.; Wu, Y.C.; Hsu, H.S.; Hsu, W.H.; Wang, L.S.; Huang, M.H.; Huang, B.S. Preoperative serum albumin level is a prognostic indicator for adenocarcinoma of the gastric cardia. J. Gastrointest. Surg. 2004, 8, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Kuzu, O.F.; Noory, M.A.; Robertson, G.P. The Role of Cholesterol in Cancer. Cancer Res. 2016, 76, 2063–2070. [Google Scholar] [CrossRef] [PubMed]
- Guo, E.; Chen, L.; Xie, Q.; Chen, J.; Tang, Z.; Wu, Y. Serum HDL-C as a potential biomarker for nodal stages in gastric cancer. Ann. Surg. Oncol. 2007, 14, 2528–2534. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, T.J. Effects of three proposed inhibitors of adipocyte glucose transport on the reconstituted transporter. Biochim. Biophys. Acta 1989, 979, 331–340. [Google Scholar] [CrossRef]
- de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 2020, 8, e180–e190. [Google Scholar] [CrossRef]
- Yoon, K.; Kim, N.; Kim, J.; Lee, J.W.; Lee, H.S.; Lee, J.C.; Yoon, H.; Shin, C.M.; Park, Y.S.; Ahn, S.H.; et al. Dynamic Changes in Helicobacter pylori Status Following Gastric Cancer Surgery. Gut Liver 2017, 11, 209–215. [Google Scholar] [CrossRef]
- Shimamoto, T.; Yamamichi, N.; Gondo, K.; Takahashi, Y.; Takeuchi, C.; Wada, R.; Mitsushima, T.; Koike, K. The association of Helicobacter pylori infection with serum lipid profiles: An evaluation based on a combination of meta-analysis and a propensity score-based observational approach. PLoS ONE 2020, 15, e0234433. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Shen, Z.; Lin, C.; Wang, X.; Qin, J.; Qin, X.; Xu, J.; Sun, Y. Tumor-infiltrating Neutrophils is Prognostic and Predictive for Postoperative Adjuvant Chemotherapy Benefit in Patients With Gastric Cancer. Ann. Surg. 2018, 267, 311–318. [Google Scholar] [CrossRef]
- Jiang, Y.; Xie, J.; Huang, W.; Chen, H.; Xi, S.; Han, Z.; Huang, L.; Lin, T.; Zhao, L.Y.; Hu, Y.F.; et al. Tumor Immune Microenvironment and Chemosensitivity Signature for Predicting Response to Chemotherapy in Gastric Cancer. Cancer Immunol. Res. 2019, 7, 2065–2073. [Google Scholar] [CrossRef]
- Miyamoto, R.; Inagawa, S.; Sano, N.; Tadano, S.; Adachi, S.; Yamamoto, M. The neutrophil-to-lymphocyte ratio (NLR) predicts short-term and long-term outcomes in gastric cancer patients. Eur. J. Surg. Oncol. 2018, 44, 607–612. [Google Scholar] [CrossRef]
- Hirahara, N.; Tajima, Y.; Matsubara, T.; Fujii, Y.; Kaji, S.; Kawabata, Y.; Hyakudomi, R.; Yamamoto, T.; Uchida, Y.; Taniura, T. Systemic Immune-Inflammation Index Predicts Overall Survival in Patients with Gastric Cancer: A Propensity Score-Matched Analysis. J. Gastrointest. Surg. 2021, 25, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Szczerba, B.M.; Castro-Giner, F.; Vetter, M.; Krol, I.; Gkountela, S.; Landin, J.; Scheidmann, M.C.; Donato, C.; Scherrer, R.; Singer, J.; et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 2019, 566, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Headley, M.B.; Bins, A.; Nip, A.; Roberts, E.W.; Looney, M.R.; Gerard, A.; Krummel, M.F. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature 2016, 531, 513–517. [Google Scholar] [CrossRef]
- Caine, G.J.; Stonelake, P.S.; Lip, G.Y.; Kehoe, S.T. The hypercoagulable state of malignancy: Pathogenesis and current debate. Neoplasia 2002, 4, 465–473. [Google Scholar] [CrossRef]
- Hirahara, T.; Arigami, T.; Yanagita, S.; Matsushita, D.; Uchikado, Y.; Kita, Y.; Mori, S.; Sasaki, K.; Omoto, I.; Kurahara, H.; et al. Combined neutrophil-lymphocyte ratio and platelet-lymphocyte ratio predicts chemotherapy response and prognosis in patients with advanced gastric cancer. BMC Cancer 2019, 19, 672. [Google Scholar] [CrossRef]
- Cong, X.; Li, S.; Zhang, Y.; Zhu, Z.; Wang, Y.; Song, S.; Ma, Y.; Xie, R.; Xue, Y. The combination of preoperative fibrinogen and neutrophil-lymphocyte ratio is a predictive prognostic factor in esophagogastric junction and upper gastric cancer. J. Cancer 2019, 10, 5518–5526. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Zhao, Y.L.; Wang, J.J.; Zhao, Q.D.; Yi, W.Q.; Yuan, Q.; Chen, X.Z.; Li, Y.; Yang, K.; Chen, X.L.; et al. Is Preoperative Fibrinogen Associated with the Survival Prognosis of Gastric Cancer Patients? A Multi-centered, Propensity Score-Matched Retrospective Study. World J. Surg. 2020, 44, 213–222. [Google Scholar] [CrossRef]
- Gan, L.; Meng, J.; Xu, M.; Liu, M.; Qi, Y.; Tan, C.; Wang, Y.; Zhang, P.; Weng, W.; Sheng, W.; et al. Extracellular matrix protein 1 promotes cell metastasis and glucose metabolism by inducing integrin beta4/FAK/SOX2/HIF-1alpha signaling pathway in gastric cancer. Oncogene 2018, 37, 744–755. [Google Scholar] [CrossRef]
- Zhao, Z.; Han, F.; Yang, S.; Wu, J.; Zhan, W. Oxamate-mediated inhibition of lactate dehydrogenase induces protective autophagy in gastric cancer cells: Involvement of the Akt-mTOR signaling pathway. Cancer Lett. 2015, 358, 17–26. [Google Scholar] [CrossRef]
- Xu, J.; Deng, X.; Wu, X.; Zhu, H.; Zhu, Y.; Liu, J.; Chen, Q.; Yuan, C.; Liu, G.; Wang, C. Primary cilia regulate gastric cancer-induced bone loss via cilia/Wnt/beta-catenin signaling pathway. Aging 2021, 13, 8989–9010. [Google Scholar] [CrossRef]
- Jomrich, G.; Hollenstein, M.; John, M.; Ristl, R.; Paireder, M.; Kristo, I.; Asari, R.; Schoppmann, S.F. High Mean Corpuscular Volume Predicts Poor Outcome for Patients With Gastroesophageal Adenocarcinoma. Ann. Surg. Oncol. 2019, 26, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Pih, G.Y.; Gong, E.J.; Choi, J.Y.; Kim, M.J.; Ahn, J.Y.; Choe, J.; Bae, S.E.; Chang, H.S.; Na, H.K.; Lee, J.H.; et al. Associations of Serum Lipid Level with Gastric Cancer Risk, Pathology, and Prognosis. Cancer Res. Treat. 2021, 53, 445–456. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All Patients | Training Cohort | Validation Cohort | p Value | |
---|---|---|---|---|---|
N = 4636 (%) | N = 2781 (%) | N = 1855 (%) | |||
Age | Years | 58.3 ± 11.5 | 58.2 ± 11.4 | 58.4 ± 11.5 | 0.460 |
Gender | Male | 3212 (69.3) | 1922 (69.1) | 1290 (69.5) | 0.781 |
Female | 1424 (30.7) | 859 (30.9) | 565 (30.5) | ||
Tumor location | AEG | 1001 (21.6) | 610 (21.9) | 391 (21.1) | 0.511 |
Non-AEG | 3635 (78.4) | 2171 (78.1) | 1464 (78.9) | ||
Tumor size | cm | 4.7 ± 2.6 | 4.7 ± 2.6 | 4.60 ± 2.6 | 0.256 |
Degree of differentiation | G1 | 79 (1.7) | 50 (1.8) | 29 (1.6) | 0.512 |
G2 | 868 (18.7) | 533 (19.2) | 335 (18.1) | ||
G3 | 3689 (79.6) | 2198 (79.0) | 1491 (80.4) | ||
Macroscopic type | 0 | 1118 (24.1) | 647 (23.3) | 471 (25.4) | 0.151 |
I | 69 (1.5) | 48 (1.7) | 21 (1.1) | ||
II | 1420 (30.6) | 871 (31.3) | 549 (29.6) | ||
III | 1847 (39.8) | 1100 (39.6) | 747 (40.3) | ||
IV | 182 (3.9) | 115 (4.1) | 67 (3.6) | ||
T stage | T1 | 1118 (24.1) | 647 (23.3) | 471 (25.4) | 0.283 |
T2 | 728 (15.7) | 452 (16.3) | 276 (14.9) | ||
T3 | 1081 (23.3) | 645 (23.2) | 436 (23.5) | ||
T4 | 1709 (36.9) | 1037 (37.3) | 672 (36.2) | ||
N stage | N0 | 1684 (36.3) | 1008 (36.2) | 676 (36.4) | 0.619 |
N1 | 769 (16.6) | 477 (17.2) | 292 (15.7) | ||
N2 | 835 (18.0) | 499 (17.9) | 336 (18.1) | ||
N3 | 1348 (29.1) | 797 (28.7) | 551 (29.7) | ||
TNM stage | I | 1326 (28.6) | 793 (28.5) | 533 (28.7) | 0.906 |
II | 1123 (24.2) | 680 (24.5) | 443 (23.9) | ||
III | 2187 (47.2) | 1308 (47.0) | 879 (47.4) | ||
Adjuvant chemotherapy | No | 2102 (45.3) | 1232 (44.3) | 870 (46.9) | 0.087 |
Yes | 2534 (54.7) | 1549 (55.7) | 985 (53.1) |
Characteristics | Univariate | Multivariate | |||||
---|---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | ||
SerScore | 2.914 | 2.487–3.415 | <0.001 | 2.080 | 1.724–2.509 | <0.001 | |
Age | Years | 1.018 | 1.012–1.024 | <0.001 | 1.012 | 1.006–1.019 | <0.001 |
Gender | Female vs. Male | 0.905 | 0.783–1.045 | 0.173 | 0.919 | 0.792–1.066 | 0.266 |
Tumor size | ≥5 cm vs. <5 cm | 2.707 | 2.356–3.111 | <0.001 | 1.043 | 0.883–1.232 | 0.617 |
Tumor location | Non-AEG vs. AEG | 0.669 | 0.578–0.774 | <0.001 | 0.754 | 0.648–0.877 | <0.001 |
Degree of differentiation | G3 vs. G1-G2 | 1.577 | 1.316–1.890 | <0.001 | 1.153 | 0.956–1.390 | 0.137 |
Macroscopic type | Type III–IV vs. Type 0–II | 1.550 | 1.359–1.768 | <0.001 | 0.908 | 0.789–1.044 | 0.174 |
T stage | T2 vs. T1 | 1.789 | 1.303–2.457 | <0.001 | 1.309 | 0.940–1.824 | 0.111 |
T3 vs. T1 | 3.163 | 2.408–4.155 | <0.001 | 1.637 | 1.195–2.243 | 0.002 | |
T4 vs. T1 | 6.508 | 5.072–8.349 | <0.001 | 2.732 | 2.004–3.726 | <0.001 | |
N stage | N1 vs. N0 | 1.914 | 1.500–2.443 | <0.001 | 1.491 | 1.157–1.922 | 0.002 |
N2 vs. N0 | 2.988 | 2.397–3.726 | <0.001 | 2.034 | 1.599–2.586 | <0.001 | |
N3 vs. N0 | 5.856 | 4.844–7.078 | <0.001 | 3.470 | 2.776–4.338 | <0.001 | |
Adjuvant chemotherapy | No vs. Yes | 1.076 | 0.942–1.228 | 0.281 | 0.903 | 0.789–1.034 | 0.141 |
Characteristics | Univariate | Multivariate | |||||
---|---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | ||
SerScore | 2.917 | 2.439–3.489 | <0.001 | 1.877 | 1.491–2.362 | <0.001 | |
Age | Years | 1.023 | 1.015–1.030 | <0.001 | 1.017 | 1.010–1.025 | <0.001 |
Gender | Female vs. Male | 0.857 | 0.720–1.021 | 0.084 | 0.954 | 0.797–1.142 | 0.608 |
Tumor size | ≥5 cm vs. <5 cm | 3.259 | 2.752–3.859 | <0.001 | 1.295 | 1.059–1.585 | 0.012 |
Tumor location | Non-AEG vs. AEG | 0.584 | 0.492–0.693 | <0.001 | 0.800 | 0.669–0.956 | 0.014 |
Degree of differentiation | G3 vs. G1-G2 | 1.345 | 1.089–1.661 | 0.006 | 1.027 | 0.826–1.278 | 0.809 |
Macroscopic type | Type III–IV vs. Type 0–II | 1.736 | 1.484–2.031 | <0.001 | 0.885 | 0.749–1.047 | 0.154 |
T stage | T2 vs. T1 | 2.729 | 1.844–4.037 | <0.001 | 2.085 | 1.382–3.145 | <0.001 |
T3 vs. T1 | 4.660 | 3.311–6.559 | <0.001 | 2.593 | 1.755–3.831 | <0.001 | |
T4 vs. T1 | 8.801 | 6.395–12.112 | <0.001 | 3.344 | 2.259–4.950 | <0.001 | |
N stage | N1 vs. N0 | 1.930 | 1.442–2.584 | <0.001 | 1.248 | 0.923–1.688 | 0.150 |
N2 vs. N0 | 2.477 | 1.895–3.238 | <0.001 | 1.371 | 1.030–1.826 | 0.031 | |
N3 vs. N0 | 5.941 | 4.755–7.422 | <0.001 | 3.175 | 2.458–4.102 | <0.001 | |
Adjuvant chemotherapy | No vs. Yes | 1.302 | 1.111–1.527 | <0.001 | 1.082 | 0.920–1.271 | 0.341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, H.-H.; Zhang, W.-H.; Liu, K.; Chen, X.-L.; Zhao, L.-Y.; Chen, X.-Z.; Yang, K.; Hu, J.-K. Prognostic Value of a Serological-Based Clinical Model for Gastric Cancer Patients. J. Clin. Med. 2025, 14, 4043. https://doi.org/10.3390/jcm14124043
Feng H-H, Zhang W-H, Liu K, Chen X-L, Zhao L-Y, Chen X-Z, Yang K, Hu J-K. Prognostic Value of a Serological-Based Clinical Model for Gastric Cancer Patients. Journal of Clinical Medicine. 2025; 14(12):4043. https://doi.org/10.3390/jcm14124043
Chicago/Turabian StyleFeng, Hai-Huan, Wei-Han Zhang, Kai Liu, Xiao-Long Chen, Lin-Yong Zhao, Xin-Zu Chen, Kun Yang, and Jian-Kun Hu. 2025. "Prognostic Value of a Serological-Based Clinical Model for Gastric Cancer Patients" Journal of Clinical Medicine 14, no. 12: 4043. https://doi.org/10.3390/jcm14124043
APA StyleFeng, H.-H., Zhang, W.-H., Liu, K., Chen, X.-L., Zhao, L.-Y., Chen, X.-Z., Yang, K., & Hu, J.-K. (2025). Prognostic Value of a Serological-Based Clinical Model for Gastric Cancer Patients. Journal of Clinical Medicine, 14(12), 4043. https://doi.org/10.3390/jcm14124043