Prospective Assessment of Cardiac Iron Deposition, Morphology, and Function by Magnetic Resonance Imaging in Non-Transfusion-Dependent and Neo-Transfusion-Dependent Thalassemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. MRI
2.3. Biochemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Comparison of Baseline Data
3.2. MRI Changes for NTDT Patients
3.3. MRI Changes for Neo-TDT Patients
3.4. Inter-Group Comparison
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weatherall, D.J.; Clegg, J.B. The Thalassemia Syndromes; Blackwell Science: Oxford, UK, 2001. [Google Scholar]
- Sadiq, I.Z.; Abubakar, F.S.; Usman, H.S.; Abdullahi, A.D.; Ibrahim, B.; Kastayal, B.S.; Ibrahim, M.; Hassan, H.A. Thalassemia: Pathophysiology, Diagnosis, and Advances in Treatment. Thalass. Rep. 2024, 14, 81–102. [Google Scholar] [CrossRef]
- Weatherall, D.J. The definition and epidemiology of non-transfusion-dependent thalassemia. Blood Rev. 2012, 26 (Suppl. S1), S3–S6. [Google Scholar] [CrossRef] [PubMed]
- Musallam, K.M.; Rivella, S.; Vichinsky, E.; Rachmilewitz, E.A. Non-transfusion-dependent thalassemias. Haematologica 2013, 98, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Taher, A.; Musallam, K.; Cappellini, M.D. Guidelines for the Management of Non-Transfusion-Dependent β-Thalassaemia [Internet], 3rd ed.; Thalassaemia International Federation: Nicosia, Cyprus, 2023. [Google Scholar]
- El-Beshlawy, A.; Dewedar, H.; Hindawi, S.; Alkindi, S.; Tantawy, A.A.; Yassin, M.A.; Taher, A.T. Management of transfusion-dependent β-thalassemia (TDT): Expert insights and practical overview from the Middle East. Blood Rev. 2024, 63, 101138. [Google Scholar] [CrossRef]
- Evangelidis, P.; Evangelidis, N.; Vlachaki, E.; Gavriilaki, E. What is the role of complement in bystander hemolysis? Old concept, new insights. Expert. Rev. Hematol. 2024, 17, 107–116. [Google Scholar] [CrossRef]
- Shander, A.; Cappellini, M.D.; Goodnough, L.T. Iron overload and toxicity: The hidden risk of multiple blood transfusions. Vox Sang. 2009, 97, 185–197. [Google Scholar] [CrossRef]
- Pahuja, S.; Mandal, P. Alloimmunization and autoimmunization among multitransfused thalassemia and sickle cell disease patients. Pediatr. Hematol. Oncol. J. 2024, 9, 200–206. [Google Scholar] [CrossRef]
- Lal, A. Challenges in chronic transfusion for patients with thalassemia. Hematology 2020, 2020, 160–166. [Google Scholar] [CrossRef]
- Taher, A.T.; Musallam, K.M.; El-Beshlawy, A.; Karimi, M.; Daar, S.; Belhoul, K.; Saned, M.S.; Graziadei, G.; Cappellini, M.D. Age-related complications in treatment-naive patients with thalassaemia intermedia. Br. J. Haematol. 2010, 150, 486–489. [Google Scholar] [CrossRef]
- Taher, A.T.; Musallam, K.M.; Karimi, M.; El-Beshlawy, A.; Belhoul, K.; Daar, S.; Saned, M.S.; El-Chafic, A.H.; Fasulo, M.R.; Cappellini, M.D. Overview on practices in thalassemia intermedia management aiming for lowering complication rates across a region of endemicity: The OPTIMAL CARE study. Blood 2010, 115, 1886–1892. [Google Scholar] [CrossRef]
- Haddad, A.; Tyan, P.; Radwan, A.; Mallat, N.; Taher, A. β-Thalassemia Intermedia: A Bird’s-Eye View. Turk. J. Haematol. 2014, 31, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Ricchi, P.; Meloni, A.; Pistoia, L.; Spasiano, A.; Rita Gamberini, M.; Maggio, A.; Gerardi, C.; Messina, G.; Campisi, S.; Allo, M.; et al. Longitudinal follow-up of patients with thalassaemia intermedia who started transfusion therapy in adulthood: A cohort study. Br. J. Haematol. 2020, 191, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Musallam, K.M.; Cappellini, M.D.; Daar, S.; El-Beshlawy, A.; Belhoul, K.; Saned, M.S.; Temraz, S.; Koussa, S.; Taher, A.T. Risk factors for pulmonary hypertension in patients with beta thalassemia intermedia. Eur. J. Intern. Med. 2011, 22, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Taher, A.T.; Musallam, K.M.; Karimi, M.; El-Beshlawy, A.; Belhoul, K.; Daar, S.; Saned, M.; Cesaretti, C.; Cappellini, M.D. Splenectomy and thrombosis: The case of thalassemia intermedia. J. Thromb. Haemost. 2010, 8, 2152–2158. [Google Scholar] [CrossRef]
- Sleiman, J.; Tarhini, A.; Bou-Fakhredin, R.; Saliba, A.N.; Cappellini, M.D.; Taher, A.T. Non-Transfusion-Dependent Thalassemia: An Update on Complications and Management. Int. J. Mol. Sci. 2018, 19, 182. [Google Scholar] [CrossRef]
- Musallam, K.M.; Cappellini, M.D.; Viprakasit, V.; Kattamis, A.; Rivella, S.; Taher, A.T. Revisiting the non-transfusion-dependent (NTDT) vs. transfusion-dependent (TDT) thalassemia classification 10 years later. Am. J. Hematol. 2021, 96, E54–E56. [Google Scholar] [CrossRef]
- Akiki, N.; Hodroj, M.H.; Bou-Fakhredin, R.; Matli, K.; Taher, A.T. Cardiovascular Complications in β-Thalassemia: Getting to the Heart of It. Thalass. Rep. 2023, 13, 38–50. [Google Scholar] [CrossRef]
- Meloni, A.; Pistoia, L.; Ricchi, P.; Maggio, A.; Cecinati, V.; Longo, F.; Sorrentino, F.; Borsellino, Z.; Salvo, A.; Rossi, V.; et al. Prognostic Role of Multiparametric Cardiac Magnetic Resonance in Neo Transfusion-Dependent Thalassemia. J. Clin. Med. 2024, 13, 1281. [Google Scholar] [CrossRef]
- Situ, Y.; Birch, S.C.M.; Moreyra, C.; Holloway, C.J. Cardiovascular magnetic resonance imaging for structural heart disease. Cardiovasc. Diagn. Ther. 2020, 10, 361–375. [Google Scholar] [CrossRef]
- Ipek, R.; Holland, J.; Cramer, M.; Rider, O. CMR to characterize myocardial structure and function in heart failure with preserved left ventricular ejection fraction. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 1491–1504. [Google Scholar] [CrossRef]
- Simkowski, J.; Eck, B.; Wilson Tang, W.H.; Nguyen, C.; Kwon, D.H. Next-Generation Cardiac Magnetic Resonance Imaging Techniques for Characterization of Myocardial Disease. Curr. Treat. Options Cardiovasc. Med. 2024, 26, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Grothues, F.; Moon, J.C.; Bellenger, N.G.; Smith, G.S.; Klein, H.U.; Pennell, D.J. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am. Heart J. 2004, 147, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Messroghli, D.R.; Moon, J.C.; Ferreira, V.M.; Grosse-Wortmann, L.; He, T.; Kellman, P.; Mascherbauer, J.; Nezafat, R.; Salerno, M.; Schelbert, E.B.; et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J. Cardiovasc. Magn. Reson. 2017, 19, 75. [Google Scholar] [PubMed]
- Ferreira, V.M.; Piechnik, S.K. CMR Parametric Mapping as a Tool for Myocardial Tissue Characterization. Korean Circ. J. 2020, 50, 658–676. [Google Scholar] [CrossRef]
- Wood, J.C. Impact of iron assessment by MRI. Hematol. Am. Soc. Hematol. Educ. Program 2011, 2011, 443–450. [Google Scholar] [CrossRef]
- Pennell, D.J.; Udelson, J.E.; Arai, A.E.; Bozkurt, B.; Cohen, A.R.; Galanello, R.; Hoffman, T.M.; Kiernan, M.S.; Lerakis, S.; Piga, A.; et al. Cardiovascular function and treatment in beta-thalassemia major: A consensus statement from the American Heart Association. Circulation 2013, 128, 281–308. [Google Scholar] [CrossRef]
- Origa, R.; Barella, S.; Argiolas, G.M.; Bina, P.; Agus, A.; Galanello, R. No evidence of cardiac iron in 20 never- or minimally-transfused patients with thalassemia intermedia. Haematologica 2008, 93, 1095–1096. [Google Scholar] [CrossRef]
- Roghi, A.; Cappellini, M.D.; Wood, J.C.; Musallam, K.M.; Patrizia, P.; Fasulo, M.R.; Cesaretti, C.; Taher, A.T. Absence of cardiac siderosis despite hepatic iron overload in Italian patients with thalassemia intermedia: An MRI T2* study. Ann. Hematol. 2010, 89, 585–589. [Google Scholar] [CrossRef]
- Liguori, C.; Pitocco, F.; Di Giampietro, I.; De Vivo, A.E.; Schena, E.; Giurazza, F.; Sorrentino, F.; Zobel, B.B. Magnetic resonance comparison of left-right heart volumetric and functional parameters in thalassemia major and thalassemia intermedia patients. Biomed. Res. Int. 2015, 2015, 857642. [Google Scholar] [CrossRef]
- Taher, A.T.; Musallam, K.M.; Wood, J.C.; Cappellini, M.D. Magnetic resonance evaluation of hepatic and myocardial iron deposition in transfusion-independent thalassemia intermedia compared to regularly transfused thalassemia major patients. Am. J. Hematol. 2010, 85, 288–290. [Google Scholar] [CrossRef]
- Meloni, A.; Pistoia, L.; Gamberini, M.R.; Ricchi, P.; Cecinati, V.; Sorrentino, F.; Cuccia, L.; Allo, M.; Righi, R.; Fina, P.; et al. The Link of Pancreatic Iron with Glucose Metabolism and Cardiac Iron in Thalassemia Intermedia: A Large, Multicenter Observational Study. J. Clin. Med. 2021, 10, 5561. [Google Scholar] [CrossRef] [PubMed]
- Ricchi, P.; Meloni, A.; Pistoia, L.; Spasiano, A.; Spiga, A.; Allo, M.; Gamberini, M.R.; Lisi, R.; Campisi, S.; Peluso, A.; et al. The effect of desferrioxamine chelation versus no therapy in patients with non transfusion-dependent thalassaemia: A multicenter prospective comparison from the MIOT network. Ann. Hematol. 2018, 97, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Ricchi, P.; Meloni, A.; Spasiano, A.; Neri, M.G.; Gamberini, M.R.; Cuccia, L.; Caruso, V.; Gerardi, C.; D’Ascola, D.G.; Rosso, R.; et al. Extramedullary hematopoiesis is associated with lower cardiac iron loading in chronically transfused thalassemia patients. Am. J. Hematol. 2015, 90, 1008–1012. [Google Scholar] [CrossRef] [PubMed]
- Garbowski, M.W.; Evans, P.; Vlachodimitropoulou, E.; Hider, R.; Porter, J.B. Residual erythropoiesis protects against myocardial hemosiderosis in transfusion-dependent thalassemia by lowering labile plasma iron via transient generation of apotransferrin. Haematologica 2017, 102, 1640–1649. [Google Scholar] [CrossRef]
- Meloni, A.; Pistoia, L.; Ricchi, P.; Longo, F.; Cecinati, V.; Sorrentino, F.; Cuccia, L.; Corigliano, E.; Rossi, V.; Righi, R.; et al. Multiparametric cardiac magnetic resonance in patients with thalassemia intermedia: New insights from the E-MIOT network. Radiol. Med. 2024, 129, 879–889. [Google Scholar] [CrossRef]
- Varat, M.A.; Adolph, R.J.; Fowler, N.O. Cardiovascular effects of anemia. Am. Heart J. 1972, 83, 415–426. [Google Scholar] [CrossRef]
- Dahiya, A.; Vollbon, W.; Jellis, C.; Prior, D.; Wahi, S.; Marwick, T. Echocardiographic assessment of raised pulmonary vascular resistance: Application to diagnosis and follow-up of pulmonary hypertension. Heart 2010, 96, 2005–2009. [Google Scholar] [CrossRef]
- Lindsay, J., Jr.; Meshel, J.C.; Patterson, R.H. The cardiovascular manifestations of sickle cell disease. Arch. Intern. Med. 1974, 133, 643–651. [Google Scholar] [CrossRef]
- Kremastinos, D.T.; Tsiapras, D.P.; Tsetsos, G.A.; Rentoukas, E.I.; Vretou, H.P.; Toutouzas, P.K. Left ventricular diastolic Doppler characteristics in beta-thalassemia major. Circulation 1993, 88, 1127–1135. [Google Scholar] [CrossRef]
- Ramazzotti, A.; Pepe, A.; Positano, V.; Rossi, G.; De Marchi, D.; Brizi, M.G.; Luciani, A.; Midiri, M.; Sallustio, G.; Valeri, G.; et al. Multicenter validation of the magnetic resonance t2* technique for segmental and global quantification of myocardial iron. J. Magn. Reson. Imaging 2009, 30, 62–68. [Google Scholar] [CrossRef]
- Meloni, A.; Luciani, A.; Positano, V.; De Marchi, D.; Valeri, G.; Restaino, G.; Cracolici, E.; Caruso, V.; Dell’amico, M.C.; Favilli, B.; et al. Single region of interest versus multislice T2* MRI approach for the quantification of hepatic iron overload. J. Magn. Reson. Imaging 2011, 33, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Meloni, A.; Restaino, G.; Borsellino, Z.; Caruso, V.; Spasiano, A.; Zuccarelli, A.; Valeri, G.; Toia, P.; Salvatori, C.; Positano, V.; et al. Different patterns of myocardial iron distribution by whole-heart T2* magnetic resonance as risk markers for heart complications in thalassemia major. Int. J. Cardiol. 2014, 177, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.C.; Enriquez, C.; Ghugre, N.; Tyzka, J.M.; Carson, S.; Nelson, M.D.; Coates, T.D. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005, 106, 1460–1465. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, M.D.; Weissman, N.J.; Dilsizian, V.; Jacobs, A.K.; Kaul, S.; Laskey, W.K.; Pennell, D.J.; Rumberger, J.A.; Ryan, T.; Verani, M.S. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002, 105, 539–542. [Google Scholar]
- Positano, V.; Pepe, A.; Santarelli, M.F.; Scattini, B.; De Marchi, D.; Ramazzotti, A.; Forni, G.; Borgna-Pignatti, C.; Lai, M.E.; Midiri, M.; et al. Standardized T2* map of normal human heart in vivo to correct T2* segmental artefacts. NMR Biomed. 2007, 20, 578–590. [Google Scholar] [CrossRef]
- Angelucci, E.; Brittenham, G.M.; McLaren, C.E.; Ripalti, M.; Baronciani, D.; Giardini, C.; Galimberti, M.; Polchi, P.; Lucarelli, G. Hepatic iron concentration and total body iron stores in thalassemia major. N. Engl. J. Med. 2000, 343, 327–331. [Google Scholar] [CrossRef]
- Anderson, L.J.; Holden, S.; Davis, B.; Prescott, E.; Charrier, C.C.; Bunce, N.H.; Firmin, D.N.; Wonke, B.; Porter, J.; Walker, J.M.; et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur. Heart J. 2001, 22, 2171–2179. [Google Scholar] [CrossRef]
- Alfakih, K.; Plein, S.; Thiele, H.; Jones, T.; Ridgway, J.P.; Sivananthan, M.U. Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J. Magn. Reson. Imaging 2003, 17, 323–329. [Google Scholar] [CrossRef]
- Meloni, A.; Righi, R.; Missere, M.; Renne, S.; Schicchi, N.; Gamberini, M.R.; Cuccia, L.; Lisi, R.; Spasiano, A.; Roberti, M.G.; et al. Biventricular Reference Values by Body Surface Area, Age, and Gender in a Large Cohort of Well-Treated Thalassemia Major Patients Without Heart Damage Using a Multiparametric CMR Approach. J. Magn. Reson. Imaging 2021, 53, 61–70. [Google Scholar] [CrossRef]
- Aquaro, G.D.; Camastra, G.; Monti, L.; Lombardi, M.; Pepe, A.; Castelletti, S.; Maestrini, V.; Todiere, G.; Masci, P.; di Giovine, G.; et al. Reference values of cardiac volumes, dimensions, and new functional parameters by MR: A multicenter, multivendor study. J. Magn. Reson. Imaging 2016, 45, 1055–1067. [Google Scholar] [CrossRef]
- Wang, Y.; Moss, J.; Thisted, R. Predictors of body surface area. J. Clin. Anesth. 1992, 4, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Jenista, E.R.; Wendell, D.C.; Azevedo, C.F.; Klem, I.; Judd, R.M.; Kim, R.J.; Kim, H.W. Revisiting how we perform late gadolinium enhancement CMR: Insights gleaned over 25 years of clinical practice. J. Cardiovasc. Magn. Reson. 2023, 25, 18. [Google Scholar] [CrossRef] [PubMed]
- Pennell, D.; Porter, J.B.; Cappellini, M.D.; Li, C.-K.; Aydinok, Y.; Lee, C.L.; Kattamis, A.; Smith, G.; Habr, D.; Domokos, G.; et al. Efficacy and Safety of Deferasirox (Exjade®) in Reducing Cardiac Iron in Patients with β-Thalassemia Major: Results from the Cardiac Substudy of the EPIC Trial. Blood 2008, 112, 3873. [Google Scholar] [CrossRef]
- Wood, J.C.; Thompson, A.A.; Paley, C.; Kang, B.; Giardina, P.; Harmatz, P.; Virkus, J.; Coates, T.D. Deferasirox (Exjade®) Monotherapy Significantly Reduces Cardiac Iron Burden in Chronically Transfused β-Thalassemia Patients: An MRI T2* Study. Blood 2008, 112, 3882. [Google Scholar] [CrossRef]
- Berdoukas, V.; Farmaki, K.; Carson, S.; Wood, J.; Coates, T. Treating thalassemia major-related iron overload: The role of deferiprone. J. Blood Med. 2012, 3, 119–129. [Google Scholar] [CrossRef]
- Pepe, A.; Meloni, A.; Pistoia, L.; Cuccia, L.; Gamberini, M.R.; Lisi, R.; D’Ascola, D.G.; Rosso, R.; Allo, M.; Spasiano, A.; et al. MRI multicentre prospective survey in thalassaemia major patients treated with deferasirox versus deferiprone and desferrioxamine. Br. J. Haematol. 2018, 183, 783–795. [Google Scholar] [CrossRef]
- Chuang, T.Y.; Li, J.P.; Weng, T.F.; Wu, K.H.; Chao, Y.H. Combined chelation with high-dose deferiprone and deferoxamine to improve survival and restore cardiac function effectively in patients with transfusion-dependent thalassemia presenting severe cardiac complications. Ann. Hematol. 2020, 99, 2289–2294. [Google Scholar] [CrossRef]
- Cui, X.; Jing, M.; Ren, L.; Hou, X.; Song, Q.; Li, K.; Wang, X. Evaluation of left ventricular systolic function in patients with iron deficiency anemia based on non-invasive left ventricular pressure–strain loops. Biomed. Eng. OnLine 2024, 23, 82. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Braunwald, E.; Moye, L.A.; Basta, L.; Brown, E.J., Jr.; Cuddy, T.E.; Davis, B.R.; Geltman, E.M.; Goldman, S.; Flaker, G.C.; et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N. Engl. J. Med. 1992, 327, 669–677. [Google Scholar] [CrossRef]
- Cygankiewicz, I.; Zareba, W.; Vazquez, R.; Bayes-Genis, A.; Pascual, D.; Macaya, C.; Almendral, J.; Fiol, M.; Bardaji, A.; Gonzalez-Juanatey, J.R.; et al. Risk stratification of mortality in patients with heart failure and left ventricular ejection fraction >35%. Am. J. Cardiol. 2009, 103, 1003–1010. [Google Scholar] [CrossRef]
- Tops, L.F.; Delgado, V.; Marsan, N.A.; Bax, J.J. Myocardial strain to detect subtle left ventricular systolic dysfunction. Eur. J. Heart Fail. 2017, 19, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Chung, F.P.; Chao, T.F.; Lee, A.S.; Sung, K.T.; Huang, W.H.; Hsiao, C.C.; Su, C.H.; Yang, L.T.; Chen, Y.J.; Chen, Y.Y.; et al. Discriminative Ability of Left Ventricular Strain in Mildly Reduced Ejection Fraction Heart Failure. JACC Adv. 2023, 2, 100654. [Google Scholar] [CrossRef] [PubMed]
- Bashir, Z.; Ataklte, F.; Wang, S.; Chen, E.W.; Kadiyala, V.; Sherrod, C.F.; Has, P.; Song, C.; Ventetuolo, C.E.; Simmons, J.; et al. Comparison of Left Ventricular Global Longitudinal Strain and Left Ventricular Ejection Fraction in Acute Respiratory Failure Patients Requiring Invasive Mechanical Ventilation. J. Cardiovasc. Dev. Dis. 2024, 11, 339. [Google Scholar] [CrossRef] [PubMed]
- Meloni, A.; Saba, L.; Positano, V.; Pistoia, L.; Campanella, A.; Spasiano, A.; Putti, M.C.; Fotzi, I.; Cossu, A.; Corigliano, E.; et al. Global longitudinal strain by cardiac magnetic resonance is associated with cardiac iron and complications in beta-thalassemia major patients. Int. J. Cardiol. 2024, 413, 132319. [Google Scholar] [CrossRef]
- Detterich, J.; Noetzli, L.; Dorey, F.; Bar-Cohen, Y.; Harmatz, P.; Coates, T.; Wood, J. Electrocardiographic consequences of cardiac iron overload in thalassemia major. Am. J. Hematol. 2012, 87, 139–144. [Google Scholar] [CrossRef]
- Kraigher-Krainer, E.; Shah, A.M.; Gupta, D.K.; Santos, A.; Claggett, B.; Pieske, B.; Zile, M.R.; Voors, A.A.; Lefkowitz, M.P.; Packer, M.; et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 2014, 63, 447–456. [Google Scholar] [CrossRef]
NTDT Patients (N = 32) | Neo-TDT Patients (N = 58) | p-Value | |
---|---|---|---|
Age (years) | 42.78 ± 12.62 | 44.08 ± 14.13 | 0.666 |
Female gender, N (%) | 17 (53.1) | 27 (46.6) | 0.550 |
Splenectomy, N (%) | 19 (59.4) | 49 (84.5) | 0.008 |
On chelation therapy, N (%) | 13 (40.6) | 57 (98.3) | <0.0001 |
Serum hemoglobin (g/dL) | 8.99 ± 0.92 | 9.62 ± 0.62 | 0.003 |
Mean serum ferritin (ng/mL) | 575.21 ± 631.42 | 753.95 ± 688.94 | 0.077 |
MRI LIC (mg/g dL) | 7.23 ± 7.42 | 4.86 ± 7.56 | 0.002 |
Hepatic iron overload, N (%) | 24 (75.0) | 21 (36.2) | <0.0001 |
Global heart T2* (ms) | 40.27 ± 6.45 | 39.13 ± 4.58 | 0.246 |
Global heart T2* < 20 ms, N (%) | 1 (3.1) | 0 (0.0) | 0.356 |
Al least one cardiac segment with T2* < 20 ms, N (%) | 3 (9.4) | 4 (6.9) | 0.696 |
LV end-diastolic volume index (mL/m2) | 94.19 ± 17.14 | 86.34 ± 16.22 | 0.034 |
LV end-systolic volume index (mL/m2) | 35.28 ± 11.08 | 31.30 ± 11.72 | 0.078 |
LV stroke volume index (mL/m2) | 58.63 ± 9.49 | 55.46 ± 10.08 | 0.148 |
LV mass index (g/m2) | 62.03 ± 12.61 | 58.02 ± 11.72 | 0.134 |
LV cardiac index (L/min/m2) | 4.08 ± 0.87 | 3.67 ± 0.89 | 0.040 |
LV ejection fraction (%) | 63.00 ± 5.74 | 65.29 ± 7.31 | 0.129 |
RV end-diastolic volume index (mL/m2) | 88.92 ± 19.19 | 82.53 ± 16.66 | 0.103 |
RV end-systolic volume index (mL/m2) | 35.29 ± 14.69 | 29.16 ± 9.58 | 0.059 |
RV stroke volume index (mL/m2) | 55.48 ±11.22 | 53.13 ± 10.74 | 0.331 |
RV ejection fraction (%) | 62.50 ± 5.85 | 64.21 ± 6.46 | 0.218 |
Left atrial area index (cm2/m2) | 13.74 ± 2.59 | 13.12 ± 2.48 | 0.526 |
Right atrial area index (cm2/m2) | 12.54 ± 2.44 | 12.08 ± 1.95 | 0.420 |
Replacement myocardial fibrosis, N (%) | 4/16 (25.0) | 4/19 (21.1) | 0.782 |
Baseline MRI | Follow-Up MRI | p-Value | |
---|---|---|---|
MRI LIC (mg/g dw) | 7.23 ± 7.42 | 6.25 ± 4.63 | 0.128 |
Global heart T2* (ms) | 40.27 ± 6.45 | 41.84 ± 5.16 | 0.331 |
LV end-diastolic volume index (mL/m2) | 94.19 ± 17.14 | 96.69 ± 16.61 | 0.204 |
LV end-systolic volume index (mL/m2) | 35.28 ± 11.08 | 35.81 ± 10.39 | 0.722 |
LV stroke volume index (mL/m2) | 58.63 ± 9.49 | 61.35 ± 9.85 | 0.139 |
LV mass index (g/m2) | 62.03 ± 12.61 | 64.04 ± 10.94 | 0.469 |
LV cardiac index (L/min/m2) | 4.08 ± 0.87 | 4.32 ± 0.87 | 0.107 |
LV ejection fraction (%) | 63.00 ± 5.74 | 64.00 ± 4.98 | 0.408 |
RV end-diastolic volume index (mL/m2) | 88.92 ± 19.19 | 93.75 ± 19.29 | 0.063 |
RV end-systolic volume index (mL/m2) | 35.29 ± 14.69 | 35.97 ± 10.83 | 0.155 |
RV stroke volume index (mL/m2) | 55.48 ± 11.22 | 58.18 ± 10.35 | 0.187 |
RV ejection fraction (%) | 62.50 ± 5.85 | 62.34 ± 5.21 | 0.874 |
Left atrial area index (cm2/m2) | 13.74 ± 2.59 | 13.97 ± 3.68 | 0.738 |
Right atrial area index (cm2/m2) | 12.54 ± 2.44 | 12.78 ± 2.97 | 0.454 |
NTDT Patients (N = 32) | Neo-TDT Patients (N = 58) | |
---|---|---|
Correlation (r, p-Value) with Baseline Serum Hemoglobin Levels | ||
Diff LV end-diastolic volume index | r = −0.003, p = 0.989 | r = −0.169, p = 0.231 |
Diff LV end-systolic volume index | r = −0.282, p = 0.154 | r = 0.030, p = 0.834 |
Diff LV stroke volume index | r = 0.350, p = 0.073 | r = −0.280, p = 0.084 |
Diff LV mass index | r = −0.330, p = 0.092 | r = 0.004, p = 0.978 |
Diff LV cardiac index | r = 0.225, p = 0.260 | r = −0.086, p = 0.545 |
Diff LV ejection fraction | r = 0.179, p = 0.074 | r = −0.045, p = 0.574 |
Diff RV end-diastolic volume index | r = −0.271, p = 0.171 | r = 0.062, p = 0.661 |
Diff RV end-systolic volume index | r = 0.140, p = 0.485 | r = −0.077, p = 0.586 |
Diff RV stroke volume index | r = 0.163, p = 0416 | r = −0.216, p = 0.125 |
Diff RV ejection fraction | r = 0.310, p = 0.116 | r = −0.084, p = 0.556 |
Diff left atrial area index | r = −0.182, p = 0.430 | r = −0.110, p = 0.523 |
Diff right atrial area index | r = 0.148, p = 0.522 | r = −0.283, p = 0.094 |
Baseline MRI | Follow-Up MRI | p-Value | |
---|---|---|---|
MRI LIC (mg/g dw) | 4.86 ± 7.56 | 4.45 ± 6.53 | 0.792 |
Global heart T2* (ms) | 39.13 ± 4.58 | 39.21 ± 5.53 | 0.941 |
LV end-diastolic volume index (mL/m2) | 86.34 ± 16.22 | 84.24 ± 16.65 | 0.195 |
LV end-systolic volume index (mL/m2) | 31.30 ± 11.72 | 30.83 ± 9.85 | 0.721 |
LV stroke volume index (mL/m2) | 55.46 ± 10.08 | 54.21 ± 13.51 | 0.036 |
LV mass index (g/m2) | 58.02 ± 11.72 | 58.78 ± 10.63 | 0.528 |
LV cardiac index (L/min/m2) | 3.67 ± 0.89 | 3.45 ± 0.97 | 0.031 |
LV ejection fraction (%) | 65.29 ± 7.31 | 63.95 ± 7.15 | 0.098 |
RV end-diastolic volume index (mL/m2) | 82.53 ± 16.66 | 78.63 ± 18.49 | 0.034 |
RV end-systolic volume index (mL/m2) | 29.16 ± 9.57 | 29.31 ± 8.65 | 0.929 |
RV stroke volume index (mL/m2) | 53.13 ± 10.74 | 50.14 ± 11.49 | 0.033 |
RV ejection fraction (%) | 64.21 ± 6.46 | 62.91 ± 6.17 | 0.099 |
Left atrial area index (cm2/m2) | 13.12 ± 2.48 | 13.54 ± 2.49 | 0.188 |
Right atrial area index (cm2/m2) | 12.08 ± 1.95 | 12.14 ± 2.02 | 0.844 |
NTDT Patients (N = 32) | Neo-TDT Patients (N = 58) | p-Value | |
---|---|---|---|
Mean Diff MRI LIC (mg/g dw) | −0.97 ± 5.09 | −0.41 ± 3.64 | 0.433 |
Mean Diff Global heart T2* (ms) | 1.58 ± 5.70 | 0.08 ± 4.30 | 0.316 |
Mean Diff LV end-diastolic volume index (mL/m2) | 2.50 ± 10.89 | −2.10 ± 12.22 | 0.079 |
Mean Diff LV end-systolic volume index (mL/m2) | 0.53 ± 8.33 | −0.47 ± 10.01 | 0.856 |
Mean Diff LV stroke volume index (mL/m2) | 2.72 ± 10.13 | −1.25 ± 10.99 | 0.006 |
Mean Diff LV mass index (g/m2) | 2.01 ± 12.45 | 0.76 ± 9.11 | 0.627 |
Mean Diff LV cardiac index (l/min/m2) | 0.24 ± 0.83 | −0.22 ± 0.76 | 0.009 |
Mean Diff LV ejection fraction (%) | 1.00 ± 6.74 | −1.34 ± 5.71 | 0.102 |
Mean Diff RV end-diastolic volume index (mL/m2) | 4.83 ± 4.18 | −3.91 ± 13.67 | 0.005 |
Mean Diff RV end-systolic volume index (mL/m2) | 0.68 ± 9.91 | 0.14 ± 5.57 | 0.742 |
Mean Diff RV stroke volume index (mL/m2) | 2.70 ± 11.32 | −2.99 ± 10.43 | 0.018 |
Mean Diff RV ejection fraction (%) | −0.16 ± 5.51 | −1.29 ± 5.87 | 0.403 |
Mean Diff left atrial area index (cm2/m2) | 0.23 ± 3.22 | 0.42 ± 2.03 | 0.554 |
Mean Diff right atrial area index (cm2/m2) | 0.25 ± 1.53 | 0.06 ± 2.09 | 0.484 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meloni, A.; Pistoia, L.; Longo, F.; Spasiano, A.; Cecinati, V.; Corigliano, E.; Borsellino, Z.; Fotzi, I.; Positano, V.; Zerbini, M.; et al. Prospective Assessment of Cardiac Iron Deposition, Morphology, and Function by Magnetic Resonance Imaging in Non-Transfusion-Dependent and Neo-Transfusion-Dependent Thalassemia. J. Clin. Med. 2025, 14, 4020. https://doi.org/10.3390/jcm14124020
Meloni A, Pistoia L, Longo F, Spasiano A, Cecinati V, Corigliano E, Borsellino Z, Fotzi I, Positano V, Zerbini M, et al. Prospective Assessment of Cardiac Iron Deposition, Morphology, and Function by Magnetic Resonance Imaging in Non-Transfusion-Dependent and Neo-Transfusion-Dependent Thalassemia. Journal of Clinical Medicine. 2025; 14(12):4020. https://doi.org/10.3390/jcm14124020
Chicago/Turabian StyleMeloni, Antonella, Laura Pistoia, Filomena Longo, Anna Spasiano, Valerio Cecinati, Elisabetta Corigliano, Zelia Borsellino, Ilaria Fotzi, Vincenzo Positano, Michela Zerbini, and et al. 2025. "Prospective Assessment of Cardiac Iron Deposition, Morphology, and Function by Magnetic Resonance Imaging in Non-Transfusion-Dependent and Neo-Transfusion-Dependent Thalassemia" Journal of Clinical Medicine 14, no. 12: 4020. https://doi.org/10.3390/jcm14124020
APA StyleMeloni, A., Pistoia, L., Longo, F., Spasiano, A., Cecinati, V., Corigliano, E., Borsellino, Z., Fotzi, I., Positano, V., Zerbini, M., Renne, S., Barbuto, L., Clemente, A., & Ricchi, P. (2025). Prospective Assessment of Cardiac Iron Deposition, Morphology, and Function by Magnetic Resonance Imaging in Non-Transfusion-Dependent and Neo-Transfusion-Dependent Thalassemia. Journal of Clinical Medicine, 14(12), 4020. https://doi.org/10.3390/jcm14124020