A Nomogram for Preoperative Prediction of Tumor Aggressiveness and Lymphovascular Space Involvement in Patients with Endometrial Cancer
Abstract
:1. Introduction
2. Materials and Methods
- Study population
- MRI protocol
- Image analysis
- Histological and laboratory data
- Statistical analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MRI | Magnetic Resonance Imaging |
EC | Endometrial Cancer |
FIGO | International Federation of Gynecology and Obstetrics |
LVSI | Lymphovascular Space Invasion |
References
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Berek, J.S.; Matias-Guiu, X.; Creutzberg, C.; Fotopoulou, C.; Gaffney, D.; Kehoe, S.; Lindemann, K.; Mutch, D.; Concin, N. FIGO staging of endometrial cancer: 2023. Int. J. Gynecol. Obstet. 2023, 162, 383–394. [Google Scholar] [CrossRef]
- Lavaud, P.; Fedida, B.; Canlorbe, G.; Bendifallah, S.; Darai, E.; Thomassin-Naggara, I. Preoperative MR imaging for ESMO-ESGO-ESTRO classification of endometrial cancer. Diagn. Interv. Imaging 2018, 99, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Zhang, X.H.; Guo, X.H.; Ying, Y.; Wang, X.; Luan, Z.H.; Lv, W.Q.; Wang, P.F. Prediction of Lymphovascular Space Invision in Endometrial Cancer based on Multi-parameter MRI Radiomics Model. Curr. Med. Imaging Former. Curr. Med. Imaging Rev. 2024, 20. [Google Scholar] [CrossRef]
- Taşkum, İ.; Bademkıran, M.H.; Çetin, F.; Sucu, S.; Yergin, E.; Balat, Ö.; Özkaya, H.; Uzun, E. A novel predictive model of lymphovascular space invasion in early-stage endometrial cancer. J. Turk. Soc. Obstet. Gynecol. 2024, 21, 37–42. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, Y.; Chen, Y.; Zheng, A.; Han, L. Evaluation of prognostic significance of lymphovascular space invasion in early stage endometrial cancer: A systematic review and meta-analysis. Front. Oncol. 2024, 13, 1286221. [Google Scholar] [CrossRef]
- Bonatti, M.; Pedrinolla, B.; Cybulski, A.J.; Lombardo, F.; Negri, G.; Messini, S.; Tagliaferri, T.; Manfredi, R.; Bonatti, G. Prediction of histological grade of endometrial cancer by means of MRI. Eur. J. Radiol. 2018, 103, 44–50. [Google Scholar] [CrossRef]
- Bonatti, M.; Stuefer, J.; Oberhofer, N.; Negri, G.; Tagliaferri, T.; Schifferle, G.; Messini, S.; Manfredi, R.; Bonatti, G. MRI for local staging of endometrial carcinoma: Is endovenous contrast medium administration still needed? Eur. J. Radiol. 2015, 84, 208–214. [Google Scholar] [CrossRef]
- Avesani, G.; Bonatti, M.; Venkatesan, A.M.; Nougaret, S.; Sala, E. RadioGraphics Update: 2023 FIGO Staging System for Endometrial Cancer. RadioGraphics 2024, 44, e240084. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.N.; He, X.Y.; Wu, J.J.; Fan, W.; Zhang, H.; Wang, C. Endometrioid adenocarcinoma: Combined multiparametric MRI and tumour marker HE4 to evaluate tumour grade and lymphovascular space invasion. Clin. Radiol. 2023, 78, e574–e581. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, P.; Yang, X.; Yu, Q.; Xu, X.; Zou, G.; Zhang, X. Association of Myometrial Invasion With Lymphovascular Space Invasion, Lymph Node Metastasis, Recurrence, and Overall Survival in Endometrial Cancer: A Meta-Analysis of 79 Studies With 68,870 Patients. Front. Oncol. 2021, 11, 762329. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-G.; Ji, L.-M.; Jia, C.-L.; Shao, M.-J. Effect of coexisting adenomyosis on tumour characteristics and prognosis of endometrial cancer: A systematic review and meta-analysis. Taiwan. J. Obstet. Gynecol. 2023, 62, 640–650. [Google Scholar] [CrossRef]
- Shawn LyBarger, K.; Miller, H.A.; Frieboes, H.B. CA125 as a predictor of endometrial cancer lymphovascular space invasion and lymph node metastasis for risk stratification in the preoperative setting. Sci. Rep. 2022, 12, 19783. [Google Scholar] [CrossRef]
- Lin, Q.; Lu, Y.; Lu, R.; Chen, Y.; Wang, L.; Lu, J.; Ye, X. Assessing Metabolic Risk Factors for LVSI in Endometrial Cancer: A Cross-Sectional Study. Ther. Clin. Risk Manag. 2022, 18, 789–798. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, H.; Wang, X. Preoperative CA125 and fibrinogen in patients with endometrial cancer: A risk model for predicting lymphovascular space invasion. J. Gynecol. Oncol. 2017, 28, e11. [Google Scholar] [CrossRef]
- Petrila, O.; Nistor, I.; Romedea, N.S.; Negru, D.; Scripcariu, V. Can the ADC Value Be Used as an Imaging “Biopsy” in Endometrial Cancer? Diagnostics 2024, 14, 325. [Google Scholar] [CrossRef]
- Celli, V.; Guerreri, M.; Pernazza, A.; Cuccu, I.; Palaia, I.; Tomao, F.; Di Donato, V.; Pricolo, P.; Ercolani, G.; Ciulla, S.; et al. MRI- and Histologic-Molecular-Based Radio-Genomics Nomogram for Preoperative Assessment of Risk Classes in Endometrial Cancer. Cancers 2022, 14, 5881. [Google Scholar] [CrossRef]
- Concin, N.; Matias-Guiu, X.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Int. J. Gynecol. Cancer 2021, 31, 12–39. [Google Scholar] [CrossRef]
- Harris, K.L.; Maurer, K.A.; Jarboe, E.; Werner, T.L.; Gaffney, D. LVSI positive and NX in early endometrial cancer: Surgical restaging (and no further treatment if N0), or adjuvant ERT? Gynecol. Oncol. 2020, 156, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Guntupalli, S.R.; Zighelboim, I.; Kizer, N.T.; Zhang, Q.; Powell, M.A.; Thaker, P.H.; Goodfellow, P.J.; Mutch, D.G. Lymphovascular space invasion is an independent risk factor for nodal disease and poor outcomes in endometrioid endometrial cancer. Gynecol. Oncol. 2012, 124, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Bosse, T.; Peters, E.E.M.; Creutzberg, C.L.; Jürgenliemk-Schulz, I.M.; Jobsen, J.J.; Mens, J.W.M.; Lutgens, L.C.; van der Steen-Banasik, E.M.; Smit, V.T.; Nout, R.A. Substantial lymph-vascular space invasion (LVSI) is a significant risk factor for recurrence in endometrial cancer—A pooled analysis of PORTEC 1 and 2 trials. Eur. J. Cancer 2015, 51, 1742–1750. [Google Scholar] [CrossRef]
- Kumar, S.; Bandyopadhyay, S.; Semaan, A.; Shah, J.P.; Mahdi, H.; Morris, R.; Munkarah, A.; Ali-Fehmi, R. The Role of Frozen Section in Surgical Staging of Low Risk Endometrial Cancer. PLoS ONE 2011, 6, e21912. [Google Scholar] [CrossRef]
- Sala, P.; Morotti, M.; Menada, M.V.; Cannavino, E.; Maffeo, I.; Abete, L.; Fulcheri, E.; Menoni, S.; Venturini, P.; Papadia, A. Intraoperative Frozen Section Risk Assessment Accurately Tailors the Surgical Staging in Patients Affected by Early-Stage Endometrial Cancer. Int. J. Gynecol. Cancer 2014, 24, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Mei, D.; Gong, J.; Zuo, M.; Guo, X. Multiparametric MRI-Based Radiomics Nomogram for Predicting Lymphovascular Space Invasion in Endometrial Carcinoma. J. Magn. Reson. Imaging 2020, 52, 1257–1262. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Yang, X.; Wang, J. Development and Validation of a Nomogram Based on Metabolic Risk Score for Assessing Lymphovascular Space Invasion in Patients with Endometrial Cancer. Int. J. Environ. Res. Public. Health 2022, 19, 15654. [Google Scholar] [CrossRef]
- Kim, S.I.; Yoon, J.H.; Lee, S.J.; Song, M.J.; Kim, J.H.; Lee, H.N.; Jung, G.; Yoo, J.G. Prediction of lymphovascular space invasion in patients with endometrial cancer. Int. J. Med. Sci. 2021, 18, 2828–2834. [Google Scholar] [CrossRef]
- Meydanli, M.M.; Aslan, K.; Öz, M.; Muftuoglu, K.H.; Yalcin, I.; Engin-Ustun, Y. Is It Possible to Develop a Prediction Model for Lymphovascular Space Invasion in Endometrioid Endometrial Cancer? Int. J. Gynecol. Pathol. 2020, 39, 213–220. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, Y.; Song, Q.; Meng, X.; Xu, Q.; Tian, S.; Chen, L.; Wang, N.; Song, Q.; Lin, L.; et al. Multi-parametric MRI-based radiomics for preoperative prediction of multiple biological characteristics in endometrial cancer. Front. Oncol. 2023, 13, 1280022. [Google Scholar] [CrossRef]
- Rafiee, A.; Mohammadizadeh, F. Association of Lymphovascular Space Invasion (LVSI) with Histological Tumor Grade and Myometrial Invasion in Endometrial Carcinoma: A Review Study. Adv. Biomed. Res. 2023, 12, 159. [Google Scholar] [CrossRef] [PubMed]
- Buechi, C.A.; Siegenthaler, F.; Sahli, L.; Papadia, A.; Saner, F.A.M.; Mohr, S.; Rau, T.T.; Solass, W.; Imboden, S.; Mueller, M.D. Real-World Data Assessing the Impact of Lymphovascular Space Invasion on the Diagnostic Performance of Sentinel Lymph Node Mapping in Endometrial Cancer. Cancers 2023, 16, 67. [Google Scholar] [CrossRef] [PubMed]
Pulse Sequence | Scanning Plane | TR/TE (ms) | Voxel Size (mm) | FoV (mm) |
---|---|---|---|---|
FS T2-weighted TSE | Axial (pelvis) | 7700/83 | 1.3 × 0.9 × 6.0 | 400 |
T1-weighted TSE | Axial (pelvis) | 730/10 | 0.9 × 0.6 × 6.0 | 350 |
T2-weighted TSE | Para-sagittal, para-axial, para-coronal (uterus) | 3200/82 | 0.5 × 0.5 × 4.0 | 250 |
EPI (b = 0, 500, 1000 s/mm2) | Para-sagittal, pasa-axial (uterus) | 3100/98 | 2.0 × 1.0 × 5.0 | 250 |
Contrast-enhanced T1-weighted TSE | Para-sagittal, para-axial, para-coronal (uterus) | 606/9.5 | 1.3 × 0.8 × 4.0 | 250 |
Dynamic contrast-enhanced MR perfusion (DCE; optional sequence) | Axial, Para-Sagittal | 3.8/1.7 | 0.5 × 0.5 × 4.0 | 250 |
Variable | NO LVSI (n = 179) | Substantial LVSI (n = 66) | p | |
---|---|---|---|---|
Aggressive histological subtype at biopsy | 44 (24.6%) | 30 (45.5%) | 0.0016 | |
Presence of myometrial invasion on MRI | 139 (77.7%) | 65 (98.5%) | 0.0001 | |
Presence of myometrial infiltration exceeding 50% on MRI | 43 (27.7%) | 43 (66.2%) | <0.0001 | |
EC/uterus on MRI (median) | 0.03 (IQR: 0.01–0.088) | 0.16 (IQR: 0.1–0.3) | <0.0001 | |
Infiltration depth on MRI | 0 | 39 (21.8%) | 1 (1.5%) | <0.0001 |
1 | 97 (54.2%) | 22 (33.3%) | ||
2 | 43 (24%) | 43 (65.2%) | ||
Minimal tumor-to-serosa distance on MRI (median, mm) | 6.0 (IQR: 3.0–9.0) | 3.0 (2.0–5.0) | <0.0001 | |
Serosal or subserosal involvement on MRI | 2 (1.1%) | 11 (16.7%) | <0.0001 | |
Tubaric or adnexal involvement on MRI | 3 (1.7%) | 2 (3%) | 0.5068 | |
Cervical stromal invasion on MRI | 6 (3.4%) | 19 (28.8%) | <0.0001 | |
Parametrial involvement on MRI | 0 (0%) | 5 (7.6%) | 0.0002 | |
Vaginal involvement on MRI | 0 (0%) | 3 (4.5%) | 0.0042 | |
Pelvic nodal involvement on MRI | 5 (2.8%) | 16 (24.2%) | <0.0001 | |
Lumbar nodal involvement on MRI | 0 (0%) | 2 (3%) | 0.0196 | |
Pelvic peritoneal carcinosis | 2 (1.1%) | 1 (1.5%) | 0.821 |
Variable | Non-Aggressive Histotype (n = 159) | Aggressive Histotype (n = 86) | p | |
---|---|---|---|---|
Histology type at biopsy | Endometroid | 156 (98.1%) | 51 (59.3%) | <0.0001 |
Non Endometroid | 3 (1.9%) | 35 (40.7%) | ||
Histology grade at biopsy | 1 | 86 (54.1%) | 8 (9.3%) | <0.0001 |
2 | 65 (40.9%) | 16 (18.6%) | ||
3 | 8 (5%) | 62 (72.1) | ||
Aggressive histological subtype at biopsy | 10 (6.3%) | 64 (74.4%) | <0.0001 | |
Presence of myometrial invasion on MRI | 125 (78.6%) | 79 (91.9%) | 0.0082 | |
Presence of myometrial infiltration exceeding 50% of its thickness on MRI | 45 (32.8%) | 41 (49.4%) | 0.015 | |
EC/uterus (median) | 0.03 (IQR: 0.01–0.098) | 0.11 (IQR: 0.1–0.28) | <0.0001 | |
Infiltration depth MRI | 0 | 33 (20.8%) | 7 (8.1%) | 0.0026 |
1 | 81 (50.9%) | 38 (44.2%) | ||
2 | 45 (28.3%) | 41 (47.7%) | ||
Minimal tumor-to-serosa distance on MRI (median, mm) | 6.0 (IQR: 3.0–9.0) | 4.0 (2.0–6.0) | 0.0003 | |
Serosal or subserosal involvement on MRI | 2 (1.3%) | 11 (12.8%) | 0.0001 | |
Tubaric or adnexal involvement on MRI | 2 (1.3%) | 3 (3.5%) | 0.239 | |
Cervical stromal invasion on MRI | 9 (5.7%) | 16 (18.6%) | 0.0014 | |
Parametrial involvement on MRI | 0 (0%) | 5 (5.8%) | 0.0022 | |
Vaginal involvement on MRI | 0 (0%) | 3 (3.5%) | 0.018 | |
Pelvic nodal involvement on MRI | 7 (4.4%) | 14 (16.3%) | 0.0016 | |
Lumbar nodal involvement on MRI | 0 (0%) | 2 (2.3%) | 0.054 | |
Pelvic peritoneal carcinosis on MRI | 2 (1.3%) | 1 (1.2%) | 0.9486 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valletta, R.; Avesani, G.; Vingiani, V.; Proner, B.; Steinkasserer, M.; Notaro, S.; Vanzo, F.; Negri, G.; Vercelli, C.; Bonatti, M. A Nomogram for Preoperative Prediction of Tumor Aggressiveness and Lymphovascular Space Involvement in Patients with Endometrial Cancer. J. Clin. Med. 2025, 14, 3914. https://doi.org/10.3390/jcm14113914
Valletta R, Avesani G, Vingiani V, Proner B, Steinkasserer M, Notaro S, Vanzo F, Negri G, Vercelli C, Bonatti M. A Nomogram for Preoperative Prediction of Tumor Aggressiveness and Lymphovascular Space Involvement in Patients with Endometrial Cancer. Journal of Clinical Medicine. 2025; 14(11):3914. https://doi.org/10.3390/jcm14113914
Chicago/Turabian StyleValletta, Riccardo, Giacomo Avesani, Vincenzo Vingiani, Bernardo Proner, Martin Steinkasserer, Sara Notaro, Francesca Vanzo, Giovanni Negri, Caterina Vercelli, and Matteo Bonatti. 2025. "A Nomogram for Preoperative Prediction of Tumor Aggressiveness and Lymphovascular Space Involvement in Patients with Endometrial Cancer" Journal of Clinical Medicine 14, no. 11: 3914. https://doi.org/10.3390/jcm14113914
APA StyleValletta, R., Avesani, G., Vingiani, V., Proner, B., Steinkasserer, M., Notaro, S., Vanzo, F., Negri, G., Vercelli, C., & Bonatti, M. (2025). A Nomogram for Preoperative Prediction of Tumor Aggressiveness and Lymphovascular Space Involvement in Patients with Endometrial Cancer. Journal of Clinical Medicine, 14(11), 3914. https://doi.org/10.3390/jcm14113914