Genetic Variants in Preeclampsia During Pregnancy: A Hospital-Based Case–Control Study
Abstract
1. Introduction
2. Methods
2.1. Sample Size Calculation and Power Analysis
2.2. Genotyping and Quality Control Measures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oladipo, A.F.; Jayade, M. Review of Laboratory Testing and Biomarker Screening for Preeclampsia. BioMed 2024, 4, 122–135. [Google Scholar] [CrossRef]
- Erez, O.; Romero, R.; Jung, E.; Chaemsaithong, P.; Bosco, M.; Suksai, M.; Gallo, D.M.; Gotsch, F. Preeclampsia and Eclampsia: The Conceptual Evolution of a Syndrome. Am. J. Obstet. Gynecol. 2022, 226, S786–S803. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.C.; Magee, L.A.; Verlohren, S.; Shennan, A.; von Dadelszen, P.; Sheiner, E.; Hadar, E.; Visser, G.; Da Silva Costa, F.; Kapur, A.; et al. A Literature Review and Best Practice Advice for Second and Third Trimester Risk Stratification, Monitoring, and Management of Pre-Eclampsia: Compiled by the Pregnancy and Non-Communicable Diseases Committee of FIGO (the International Federation of Gyneco. Int. J. Gynecol. Obstet. 2021, 154, 3–31. [Google Scholar] [CrossRef] [PubMed]
- Phipps, E.A.; Thadhani, R.; Benzing, T.; Karumanchi, S.A. Pre-Eclampsia: Pathogenesis, Novel Diagnostics and Therapies. Nat. Rev. Nephrol. 2019, 15, 275–289. [Google Scholar] [CrossRef]
- Chang, K.-J.; Seow, K.-M.; Chen, K.-H. Preeclampsia: Recent Advances in Predicting, Preventing, and Managing the Maternal and Fetal Life-Threatening Condition. Int. J. Environ. Res. Public Health 2023, 20, 2994. [Google Scholar] [CrossRef]
- Chaemsaithong, P.; Sahota, D.S.; Poon, L.C. First Trimester Preeclampsia Screening and Prediction. Am. J. Obstet. Gynecol. 2022, 226, S1071–S1097.e2. [Google Scholar] [CrossRef]
- Torres-Torres, J.; Espino-Y-Sosa, S.; Martinez-Portilla, R.; Borboa-Olivares, H.; Estrada-Gutierrez, G.; Acevedo-Gallegos, S.; Ruiz-Ramirez, E.; Velasco-Espin, M.; Cerda-Flores, P.; Ramirez-Gonzalez, A.; et al. A Narrative Review on the Pathophysiology of Preeclampsia. Int. J. Mol. Sci. 2024, 25, 7569. [Google Scholar] [CrossRef]
- Al Khalaf, S.Y.; O’Reilly, É.J.; McCarthy, F.P.; Kublickas, M.; Kublickiene, K.; Khashan, A.S. Pregnancy Outcomes in Women with Chronic Kidney Disease and Chronic Hypertension: A National Cohort Study. Am. J. Obstet. Gynecol. 2021, 225, e1–e298. [Google Scholar] [CrossRef]
- Bromfield, S.G.; Ma, Q.; DeVries, A.; Inglis, T.; Gordon, A.S. The Association between Hypertensive Disorders during Pregnancy and Maternal and Neonatal Outcomes: A Retrospective Claims Analysis. BMC Pregnancy Childbirth 2023, 23, 514. [Google Scholar] [CrossRef]
- Al Khalaf, S.; Bodunde, E.; Maher, G.M.; O’Reilly, É.J.; McCarthy, F.P.; O’Shaughnessy, M.M.; O’Neill, S.M.; Khashan, A.S. Chronic Kidney Disease and Adverse Pregnancy Outcomes: A Systematic Review and Meta-Analysis. Am. J. Obstet. Gynecol. 2022, 226, 656–670.e32. [Google Scholar] [CrossRef]
- Oei, J.-L.; Kandasamy, Y. Population Data Suggest Persistently High Risk of Pregnancy Complications in Women with Chronic Kidney Disease. Evid. Based. Nurs. 2022, 25, 106. [Google Scholar] [CrossRef] [PubMed]
- Ives, C.W.; Sinkey, R.; Rajapreyar, I.; Tita, A.T.N.; Oparil, S. Preeclampsia—Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 1690–1702. [Google Scholar] [CrossRef] [PubMed]
- Parada-Niño, L.; Castillo-León, L.F.; Morel, A. Preeclampsia, Natural History, Genes, and MiRNAs Associated with the Syndrome. J. Pregnancy 2022, 2022, 3851225. [Google Scholar] [CrossRef]
- Mitranovici, M.-I.; Chiorean, D.M.; Moraru, R.; Moraru, L.; Caravia, L.; Tiron, A.T.; Craina, M.; Cotoi, O.S. Understanding the Pathophysiology of Preeclampsia: Exploring the Role of Antiphospholipid Antibodies and Future Directions. J. Clin. Med. 2024, 13, 2668. [Google Scholar] [CrossRef]
- Dimitriadis, E.; Rolnik, D.L.; Zhou, W.; Estrada-Gutierrez, G.; Koga, K.; Francisco, R.P.V.; Whitehead, C.; Hyett, J.; da Silva Costa, F.; Nicolaides, K.; et al. Pre-Eclampsia. Nat. Rev. Dis. Prim. 2023, 9, 8. [Google Scholar] [CrossRef]
- Nieves, C.; Victoria da Costa Ghignatti, P.; Aji, N.; Bertagnolli, M. Immune Cells and Infectious Diseases in Preeclampsia Susceptibility. Can. J. Cardiol. 2024, 40, 2340–2355. [Google Scholar] [CrossRef]
- Socol, F.G.; Bernad, E.; Craina, M.; Abu-Awwad, S.A.; Bernad, B.C.; Socol, I.D.; Abu-Awwad, A.; Farcas, S.S.; Pop, D.L.; Gurgus, D.; et al. Health Impacts of Pre-Eclampsia: A Comprehensive Analysis of Maternal and Neonatal Outcomes. Medicina 2024, 60, 1486. [Google Scholar] [CrossRef]
- Balduit, A.; Agostinis, C.; Mangogna, A.; Zito, G.; Stampalija, T.; Ricci, G.; Bulla, R. Systematic Review of the Complement Components as Potential Biomarkers of Pre-Eclampsia: Pitfalls and Opportunities. Front. Immunol. 2024, 15, 1419540. [Google Scholar] [CrossRef]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) Initiative on Pre-Eclampsia: A Pragmatic Guide for First-Trimester Screening and Prevention. Int. J. Gynaecol. Obstet. 2019, 145 (Suppl. 1), 1–33. [Google Scholar] [CrossRef]
- Wu, C.-T.; Kuo, C.-F.; Lin, C.-P.; Huang, Y.-T.; Chen, S.-W.; Wu, H.-M.; Chu, P.-H. Association of Family History with Incidence and Gestational Hypertension Outcomes of Preeclampsia. Int. J. Cardiol. Hypertens. 2021, 9, 100084. [Google Scholar] [CrossRef]
- Fox, R.; Kitt, J.; Leeson, P.; Aye, C.Y.L.; Lewandowski, A.J. Preeclampsia: Risk Factors, Diagnosis, Management, and the Cardiovascular Impact on the Offspring. J. Clin. Med. 2019, 8, 1625. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.T.; Bernth Jensen, J.M.; Hvas, A.-M.; Christiansen, M. The Genetic Component of Preeclampsia: A Whole-Exome Sequencing Study. PLoS ONE 2018, 13, e0197217. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Thanh, T.; Nguyen-Vu, P.T.; Le-Thi, Q.A.; Phan-Thi, T.N.; Ha, T.M.T. Association between Maternal and Fetal Genetic Variants and Preeclampsia: Evidence from a Meta-Analysis. Curr. Issues Mol. Biol. 2024, 46, 8282–8300. [Google Scholar] [CrossRef]
- Steinthorsdottir, V.; McGinnis, R.; Williams, N.O.; Stefansdottir, L.; Thorleifsson, G.; Shooter, S.; Fadista, J.; Sigurdsson, J.K.; Auro, K.M.; Berezina, G.; et al. Genetic Predisposition to Hypertension Is Associated with Preeclampsia in European and Central Asian Women. Nat. Commun. 2020, 11, 5976. [Google Scholar] [CrossRef]
- Montagnana, M.; Benati, M.; Tagetti, A.; Raffaelli, R.; Danese, E.; Zatti, N.; Marcon, D.; Branz, L.; Micheli, C.; Franchi, M.; et al. Evaluation of Circ_100219 and MiR-135b in Serum and Exosomes of Healthy Pregnant Women. J. Matern. Fetal. Neonatal Med. 2021, 34, 3645–3650. [Google Scholar] [CrossRef]
- Ferreira, L.C.; Gomes, C.E.M.; Duggal, P.; De Paula Holanda, I.; de Lima, A.S.; do Nascimento, P.R.P.; Jeronimo, S.M.B. Genetic Association of ERAP1 and ERAP2 with Eclampsia and Preeclampsia in Northeastern Brazilian Women. Sci. Rep. 2021, 11, 6764. [Google Scholar] [CrossRef]
- Seamon, K.; Kurlak, L.O.; Warthan, M.; Stratikos, E.; Strauss, J.F., 3rd; Mistry, H.D.; Lee, E.D. The Differential Expression of ERAP1/ERAP2 and Immune Cell Activation in Pre-Eclampsia. Front Immunol. 2020, 11, 396. [Google Scholar] [CrossRef]
- Tyrmi, J.S.; Kaartokallio, T.; Lokki, A.I.; Jääskeläinen, T.; Kortelainen, E.; Ruotsalainen, S.; Karjalainen, J.; Ripatti, S.; Kivioja, A.; Laisk, T.; et al. Genetic Risk Factors Associated With Preeclampsia and Hypertensive Disorders of Pregnancy. JAMA Cardiol. 2023, 8, 674–683. [Google Scholar] [CrossRef]
- O’Brien, K.A.; Gu, W.; Houck, J.A.; Holzner, L.M.W.; Yung, H.W.; Armstrong, J.L.; Sowton, A.P.; Baxter, R.; Darwin, P.M.; Toledo-Jaldin, L.; et al. Genomic Selection Signals in Andean Highlanders Reveal Adaptive Placental Metabolic Phenotypes That Are Disrupted in Preeclampsia. Hypertens 2024, 81, 319–329. [Google Scholar] [CrossRef]
- Pacheco-Romero, J.; Acosta, O.; Huerta, D.; Cabrera, S.; Vargas, M.; Mascaro, P.; Huamán, M.; Sandoval, J.; López, R.; Mateus, J.; et al. Genetic Markers for Preeclampsia in Peruvian Women. Colomb. Medica 2021, 52, e2014437. [Google Scholar] [CrossRef]
- Buurma, A.J.; Turner, R.J.; Driessen, J.H.M.; Mooyaart, A.L.; Schoones, J.W.; Bruijn, J.A.; Bloemenkamp, K.W.M.; Dekkers, O.M.; Baelde, H.J. Genetic Variants in Pre-Eclampsia: A Meta-Analysis. Hum. Reprod. Update 2013, 19, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.; Marks, L.; May, G.H.W.; Wilson, J.B. The Genetic Basis of Disease. Essays Biochem. 2018, 62, 643–723. [Google Scholar] [CrossRef] [PubMed]
- Tise, C.G.; Byers, H.M. Genetics of Recurrent Pregnancy Loss: A Review. Curr. Opin. Obstet. Gynecol. 2021, 33, 106–111. [Google Scholar] [CrossRef]
- Wei, W.; Wang, X.; Zhou, Y.; Shang, X.; Yu, H. The Genetic Risk Factors for Pregnancy-Induced Hypertension: Evidence from Genetic Polymorphisms. FASEB J. 2022, 36, e22413. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Ma, M.; Ye, S.; Liu, Y.; Zhao, X.; Wang, Y. Association of IL-17 and IL-27 Polymorphisms with Susceptibility to Recurrent Pregnancy Loss and Pre-Eclampsia: A Systematic Review and Meta-Analysis. Immunity, Inflamm. Dis. 2023, 11, e1057. [Google Scholar] [CrossRef]
- Dryllis, G.; Liakou, P.; Politou, M. Genetic Polymorphisms Implicated in Major Pregnancy Complications: A Review. Folia Med. (Plovdiv). 2020, 62, 230–237. [Google Scholar] [CrossRef]
- Angelakopoulou, A.; Shah, T.; Sofat, R.; Shah, S.; Berry, D.J.; Cooper, J.; Palmen, J.; Tzoulaki, I.; Wong, A.; Jefferis, B.J.; et al. Comparative Analysis of Genome-Wide Association Studies Signals for Lipids, Diabetes, and Coronary Heart Disease: Cardiovascular Biomarker Genetics Collaboration. Eur. Heart J. 2012, 33, 393–407. [Google Scholar] [CrossRef]
- Walsh, R.; Jurgens, S.J.; Erdmann, J.; Bezzina, C.R. Genome-Wide Association Studies of Cardiovascular Disease. Physiol. Rev. 2023, 103, 2039–2055. [Google Scholar] [CrossRef]
- Opichka, M.A.; Rappelt, M.W.; Gutterman, D.D.; Grobe, J.L.; McIntosh, J.J. Vascular Dysfunction in Preeclampsia. Cells 2021, 10, 3055. [Google Scholar] [CrossRef]
- Tran, N.; Garcia, T.; Aniqa, M.; Ali, S.; Ally, A.; Nauli, S.M. Endothelial Nitric Oxide Synthase (ENOS) and the Cardiovascular System: In Physiology and in Disease States. Am. J. Biomed. Sci. Res. 2022, 15, 153–177. [Google Scholar]
- Ta, N.; Liu, M.; Wang, Y.; Zeng, F.; Nie, F.; Shang, M.; Wang, X.; Yang, Y.; Liang, M.; Wen, L.; et al. Association of Polymorphisms in Endothelial Dysfunction-Related Genes with Susceptibility to Essential Hypertension in Elderly Han Population in Liaoning Province, China. Rev. Cardiovasc. Med. 2021, 22, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Fu, X.; Wang, G.; Liu, G.; Bai, X. Genetic Variant Rs10757278 on Chromosome 9p21 Contributes to Myocardial Infarction Susceptibility. Int. J. Mol. Sci. 2015, 16, 11678–11688. [Google Scholar] [CrossRef]
- Bogari, N.M.; Allam, R.M.; Bouazzaoui, A.; Elkhateeb, O.; Porqueddu, M.; Colombo, G.I. Coronary Artery Disease: Association Study of 5 Loci with Angiographic Indices of Disease Severity. Dis. Markers 2021, 2021, 5522539. [Google Scholar] [CrossRef]
- Bhaktha, G.; Nayak, S. Genotype-Based Prediction for Cardiovascular Disease Risk Using Polymorphism in Rs10757278 at 9p21 Locus. J. Clin. Prev. Cardiol. 2021, 10, 133–138. [Google Scholar] [CrossRef]
- Arking, D.E.; Sotoodehnia, N. The Genetics of Sudden Cardiac Death. Annu. Rev. Genomics Hum. Genet. 2012, 13, 223–239. [Google Scholar] [CrossRef]
- Elliot, M.G.; Crespi, B.J. Genetic Recapitulation of Human Pre-Eclampsia Risk during Convergent Evolution of Reduced Placental Invasiveness in Eutherian Mammals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2015, 370, 20140069. [Google Scholar] [CrossRef]
- Laurila, P.-P.; Naukkarinen, J.; Kristiansson, K.; Ripatti, S.; Kauttu, T.; Silander, K.; Salomaa, V.; Perola, M.; Karhunen, P.J.; Barter, P.J.; et al. Genetic Association and Interaction Analysis of USF1 and APOA5 on Lipid Levels and Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 346–352. [Google Scholar] [CrossRef]
- Wang, R.-M.; Liu, Z.-Z.; Gong, Y.-H.; Chen, L.-J.; Jia, Q.; Wang, Y.-J.; Fang, F.; Lv, H.; Zhang, G.-J.; Kang, X.-X. Association Analysis of USF1 Gene Polymorphisms and Total Unstable Carotid Plaque Area in Atherosclerotic Stroke Patients. J. Thromb. Thrombolysis 2013, 36, 317–323. [Google Scholar] [CrossRef]
- Niemiec, P.; Nowak, T.; Iwanicki, T.; Gorczynska-Kosiorz, S.; Balcerzyk, A.; Krauze, J.; Grzeszczak, W.; Wiecha, M.; Zak, I. The Rs2516839 Polymorphism of the USF1 Gene May Modulate Serum Triglyceride Levels in Response to Cigarette Smoking. Int. J. Mol. Sci. 2015, 16, 13203–13216. [Google Scholar] [CrossRef]
- Fan, Y.-M.; Hernesniemi, J.; Oksala, N.; Levula, M.; Raitoharju, E.; Collings, A.; Hutri-Kähönen, N.; Juonala, M.; Marniemi, J.; Lyytikäinen, L.-P.; et al. Upstream Transcription Factor 1 (USF1) Allelic Variants Regulate Lipoprotein Metabolism in Women and USF1 Expression in Atherosclerotic Plaque. Sci. Rep. 2014, 4, 4650. [Google Scholar] [CrossRef]
- Chiarella, P.; Capone, P.; Sisto, R. Contribution of Genetic Polymorphisms in Human Health. Int. J. Environ. Res. Public Health 2023, 20, 912. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.J.; Broughton Pipkin, F. The Genetics of Pre-Eclampsia and Other Hypertensive Disorders of Pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 405–417. [Google Scholar] [CrossRef]
SNP | Group | Ntotal | A1 | A2 | A1.p | A2.p | Hom1 | Het | Hom2 | Hom1.p | Het.p | Hom2.p | HWE.p |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rs2516839 | 0 | 44 | C | T | 0.65 | 0.35 | C/C | C/T | T/T | 0.5 | 0.3 | 0.2 | 0.118973 |
rs2516839 | 1 | 50 | C | T | 0.517 | 0.483 | C/C | C/T | T/T | 0.2 | 0.633 | 0.167 | 0.231098 |
rs17672135 | 0 | 44 | T | C | 0.818 | 0.182 | T/T | C/T | C/C | 0.697 | 0.242 | 0.061 | 0.561007 |
rs17672135 | 1 | 50 | T | C | 0.944 | 0.056 | T/T | C/T | 0.889 | 0.111 | 0.23904 | ||
rs1799963 | 0 | 44 | G | A | 0.935 | 0.065 | A/A | G/G | 0.065 | 0.935 | 0.000004 | ||
rs1799963 | 1 | 50 | G | A | 0.984 | 0.016 | G/G | A/G | 0.968 | 0.032 | 0 | ||
rs268 | 0 | 44 | A | G | 0.978 | 0.022 | A/A | A/G | 0.957 | 0.043 | 0.000002 | ||
rs268 | 1 | 50 | A | 1 | A/A | 1 | 1 | ||||||
rs10757278 | 0 | 44 | G | A | 0.439 | 0.561 | A/A | A/G | G/G | 0.303 | 0.515 | 0.182 | 0.929546 |
rs10757278 | 1 | 50 | A | G | 0.554 | 0.446 | A/A | A/G | G/G | 0.432 | 0.243 | 0.324 | 0.004521 |
Rs | Reference Allele | Group | Allele_Count | Allele_ChiSq_p |
---|---|---|---|---|
rs2516839 | C | 0 and 1 | C 39 31|T 21 29 | 0.195 |
rs17672135 | T | 0 and 1 | T 54 68|C 12 4 | 0.04 |
rs2713604 | T | 0 and 1 | C 26 43|T 24 17 | 0.054 |
rs10757278 | A | 0 and 1 | A 37 41|G 29 33 | 0.158 |
RS | Codominant | Dominant | Recessive | Overdominant | Log-Additive |
---|---|---|---|---|---|
rs2516839 | 0.02099012 | 0.01366728 | 0.73850577 | 0.00896657 | 0.14975684 |
rs17672135 | 0.06454852 | 0.04535291 | 0.08246722 | 0.14821373 | 0.03228683 |
rs17576 | 0.14034989 | 0.05884431 | 0.22915966 | 0.50011448 | 0.06086446 |
rs688034 | 0.03574551 | 0.3213518 | 0.01020996 | 0.89354502 | 0.1006745 |
rs10757278 | 0.05757895 | 0.26176113 | 0.16953678 | 0.01808611 | 0.94478469 |
Rs | Model Inheritance | GROUP 0 | GROUP 1 | OR 95 CI | p-Value | OR 95 CI Adj. by Age | p-Value Adj by Age |
---|---|---|---|---|---|---|---|
rs17672135 | Codominant | ||||||
C/C | 2 (6.1%) | 0 (0%) | 1 | 0.10244 | 1 | 0.07282 | |
C/T | 8 (24.2%) | 4 (11.1%) | NA [0–NA] | NA [0–NA] | |||
T/T | 23 (69.7%) | 32 (88.9%) | NA [0–NA] | NA [0–NA] | |||
Dominant | |||||||
C/C | 2 (6.1%) | 0 (0%) | 1 | 0.22506 | 1 | 0.02857 | |
C/T-T/T | 31 (93.9%) | 36 (100%) | NA [0–NA] | NA [0–NA] | |||
Recessive | |||||||
C/C-C/T | 10 (30.3%) | 4 (11.1%) | 1 | 0.04535 | 1 | 0.20085 | |
T/T | 23 (69.7%) | 32 (88.9%) | 3.48 [0.97–12.48] | 2.85 [0.54–15] | |||
Overdominant | |||||||
C/C-T/T | 25 (75.8%) | 32 (88.9%) | 1 | 0.14821 | 1 | 0.63632 | |
C/T | 8 (24.2%) | 4 (11.1%) | 0.39 [0.11–1.45] | 0.68 [0.13–3.48] | |||
Log-Additive | |||||||
0,1,2 | 33 (47.8%) | 36 (52.2%) | 3.36 [1.04–10.91] | 0.10244 | 3.52 [0.83–14.99] | 0.07328 | |
rs10757278 | Codominant | ||||||
A/A | 10 (30.3%) | 16 (43.2%) | 1 | 0.05758 | 1 | 0.05801 | |
A/G | 17 (51.5%) | 9 (24.3%) | 0.33 [0.11–1.02] | 0.18 [0.04–0.9] | |||
G/G | 6 (18.2%) | 12 (32.4%) | 1.25 [0.35–4.4] | 0.85 [0.15–4.88] | |||
Dominant | |||||||
A/A | 10 (30.3%) | 16 (43.2%) | 1 | 0.26176 | 1 | 0.08921 | |
A/G-G/G | 23 (69.7%) | 21 (56.8%) | 0.57 [0.21–1.53] | 0.32 [0.08–1.24] | |||
Recessive | |||||||
A/A-A/G | 27 (81.8%) | 25 (67.6%) | 1 | 0.16954 | 1 | 0.42866 | |
G/G | 6 (18.2%) | 12 (32.4%) | 2.16 [0.7–6.63] | 1.86 [0.4–8.72] | |||
Overdominant | |||||||
A/A-G/G | 16 (48.5%) | 28 (75.7%) | 1 | 0.01809 | 1 | 0.01735 | |
A/G | 17 (51.5%) | 9 (24.3%) | 0.3 [0.11–0.83] | 0.19 [0.04–0.84] | |||
Log-Additive | |||||||
0,1,2 | 33 (47.1%) | 37 (52.9%) | 1.02 [0.56–1.86] | 0.94438 | 0.75 [0.32–1.74] | 0.4939 | |
rs2516839 | Codominant | ||||||
C/C | 15 (50%) | 6 (20%) | 1 | 0.02099 | 1 | 0.02357 | |
C/T | 9 (30%) | 19 (63.3%) | 5.28 [1.53–18.15] | 9.58 [1.53–59.85] | |||
T/T | 6 (20%) | 5 (16.7%) | 2.08 [0.46–9.51] | 5.08 [0.55–47.08] | |||
Dominant | |||||||
C/C | 15 (50%) | 6 (20%) | 1 | 0.01367 | 1 | 0.0079 | |
C/T-T/T | 15 (50%) | 24 (80%) | 4 [1.27–12.58] | 8.13 [1.41–46.96] | |||
Recessive | |||||||
C/C-C/T | 24 (80%) | 25 (83.3%) | 1 | 0.73851 | 1 | 0.84195 | |
T/T | 6 (20%) | 5 (16.7%) | 0.8 [0.22–2.97] | 1.19 [0.21–6.7] | |||
Overdominant | |||||||
C/C-T/T | 21 (70%) | 11 (36.7%) | 1 | 0.00897 | 1 | 0.02085 | |
C/T | 9 (30%) | 19 (63.3%) | 4.03 [1.37–11.84] | 4.93 [1.19–20.48] | |||
Log-Additive | |||||||
0,1,2 | 30 (50%) | 30 (50%) | 1.72 [0.82–3.59] | 0.14395 | 2.54 [0.91–7.06] | 0.06087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slobodchikova, T.; Tayzhanova, D.; Amirbekova, Z.; Vazenmiller, D.; Mustafin, R.; Izmailovich, M. Genetic Variants in Preeclampsia During Pregnancy: A Hospital-Based Case–Control Study. J. Clin. Med. 2025, 14, 3850. https://doi.org/10.3390/jcm14113850
Slobodchikova T, Tayzhanova D, Amirbekova Z, Vazenmiller D, Mustafin R, Izmailovich M. Genetic Variants in Preeclampsia During Pregnancy: A Hospital-Based Case–Control Study. Journal of Clinical Medicine. 2025; 14(11):3850. https://doi.org/10.3390/jcm14113850
Chicago/Turabian StyleSlobodchikova, Tatyana, Dana Tayzhanova, Zhanna Amirbekova, Dmitriy Vazenmiller, Ramil Mustafin, and Marina Izmailovich. 2025. "Genetic Variants in Preeclampsia During Pregnancy: A Hospital-Based Case–Control Study" Journal of Clinical Medicine 14, no. 11: 3850. https://doi.org/10.3390/jcm14113850
APA StyleSlobodchikova, T., Tayzhanova, D., Amirbekova, Z., Vazenmiller, D., Mustafin, R., & Izmailovich, M. (2025). Genetic Variants in Preeclampsia During Pregnancy: A Hospital-Based Case–Control Study. Journal of Clinical Medicine, 14(11), 3850. https://doi.org/10.3390/jcm14113850