Mechanism-Based Neuromodulation in Augmenting Respiratory Motor Function in Individuals with Spinal Cord Injury
Abstract
:1. Introduction
2. Concept and Mechanism of Respiration
2.1. Central Pattern Generator (CPG)
2.2. Neuroanatomical Structure and Function of R-CPG
2.3. Respiratory Neuron and Spinal Locomotor Generators
2.4. Respiratory Neuroplasticity After SCI
3. Respiratory Neurorehabilitation After SCI
3.1. Respiratory Rehabilitation Approaches
3.2. Respiratory Muscle Training (RMT)
3.3. Mechanism of Exercise-Induced Neuroplasticity in Motor Recovery
4. Neuromodulation for Respiratory Recovery After SCI
4.1. Spinal Cord Epidural Stimulation (scES)
4.2. Mechanism of scES in Inducing Respiratory Neuroplastic Changes
5. Other Methods Under Consideration for Improving Respiratory Function/Circuitry
5.1. Spinal Cord Transcutaneous Stimulation (scTS)
5.2. Limb Muscle Stimulation as a Therapy to Treat Respiratory Dysfunction Following SCI
5.3. Acute Intermittent Hypoxia (AIH)
5.4. Vocal Respiratory Training (VRT)
5.5. Gene Therapy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Paleville, D.G.L.T.; McKay, W.B.; Folz, R.J.; Ovechkin, A.V. Respiratory motor control disrupted by spinal cord injury: Mechanisms, evaluation, and restoration. Transl. Stroke Res. 2011, 2, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Randelman, M.; Zholudeva, L.V.; Vinit, S.; Lane, M.A. Respiratory training and plasticity after cervical spinal cord injury. Front. Cell. Neurosci. 2021, 15, 700821. [Google Scholar] [CrossRef]
- Fuller, D.D.; Mitchell, G.S. Respiratory neuroplasticity—Overview, significance and future directions. Exp. Neurol. 2017, 287, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Roth, E.J.; Stenson, K.W.; Powley, S.; Oken, J.; Primack, S.; Nussbaum, S.B.; Berkowitz, M. Expiratory muscle training in spinal cord injury: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2010, 91, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-C.; Lin, Y.-T.; Huang, C.-C.; Lin, M.-C.; Liaw, M.-Y.; Lu, C.-H. Effects of respiratory muscle training on baroreflex sensitivity, respiratory function, and serum oxidative stress in acute cervical spinal cord injury. J. Pers. Med. 2021, 11, 377. [Google Scholar] [CrossRef]
- Bilchak, J.N.; Caron, G.; Côté, M.-P. Exercise-induced plasticity in signaling pathways involved in motor recovery after spinal cord injury. Int. J. Mol. Sci. 2021, 22, 4858. [Google Scholar] [CrossRef]
- Ghali, M.G.Z.; Marchenko, V. Patterns of phrenic nerve discharge after complete high cervical spinal cord injury in the decerebrate rat. J. Neurotrauma 2016, 33, 1115–1127. [Google Scholar] [CrossRef]
- Bezdudnaya, T.; Lane, M.A.; Marchenko, V. Paced breathing and phrenic nerve responses evoked by epidural stimulation following complete high cervical spinal cord injury in rats. J. Appl. Physiol. 2018, 125, 687–696. [Google Scholar] [CrossRef]
- Sheel, W.; Reid, W.D.; Townson, A.; Ayas, N.; Konnyu, K. Effects of exercise training and inspiratory muscle training in spinal cord injury: A systematic review. J. Spinal Cord Med. 2008, 31, 500–508. [Google Scholar] [CrossRef]
- Berlowitz, D.J.; Wadsworth, B.; Ross, J. Respiratory problems and management in people with spinal cord injury. Breathe 2016, 12, 328–340. [Google Scholar] [CrossRef]
- Postma, K.; Haisma, J.A.; Hopman, M.T.; Bergen, M.P.; Stam, H.J.; Bussmann, J.B. Resistive inspiratory muscle training in people with spinal cord injury during inpatient rehabilitation: A randomized controlled trial. Phys. Ther. 2014, 94, 1709–1719. [Google Scholar] [CrossRef] [PubMed]
- McBain, R.A.; Boswell-Ruys, C.L.; Lee, B.B.; Gandevia, S.C.; Butler, J.E. Electrical stimulation of abdominal muscles to produce cough in spinal cord injury: Effect of stimulus intensity. Neurorehabilit. Neural Repair 2015, 29, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Hachmann, J.T.; Grahn, P.J.; Calvert, J.S.; Drubach, D.I.; Lee, K.H.; Lavrov, I.A. Electrical neuromodulation of the respiratory system after spinal cord injury. Present. Mayo Clin. Proc. 2017, 92, 1401–1414. [Google Scholar] [CrossRef] [PubMed]
- Galer, E.L. Cervical Epidural Electrical Stimulation Activation of Spinal Respiratory Sensorimotor Circuits; University of California: Los Angeles, CA, USA, 2021. [Google Scholar]
- Leemhuis, E.; Favieri, F.; Forte, G.; Pazzaglia, M. Integrated neuroregenerative techniques for plasticity of the injured spinal cord. Biomedicines 2022, 10, 2563. [Google Scholar] [CrossRef]
- Malone, I.G.; Kelly, M.N.; Nosacka, R.L.; Nash, M.A.; Yue, S.; Xue, W.; Otto, K.J.; Dale, E.A. Closed-loop, cervical, epidural stimulation elicits respiratory neuroplasticity after spinal cord injury in freely behaving rats. Eneuro 2022, 9, ENEURO.0426-21.2021. [Google Scholar] [CrossRef]
- Satkunendrarajah, K.; Karadimas, S.K.; Laliberte, A.M.; Montandon, G.; Fehlings, M.G. Cervical excitatory neurons sustain breathing after spinal cord injury. Nature 2018, 562, 419–422. [Google Scholar] [CrossRef]
- Kumru, H.; García-Alén, L.; Ros-Alsina, A.; Albu, S.; Valles, M.; Vidal, J. Transcutaneous spinal cord stimulation improves respiratory muscle strength and function in subjects with cervical spinal cord injury. Biomedicines 2023, 11, 2121. [Google Scholar] [CrossRef]
- Michel-Flutot, P.; Lane, M.A.; Lepore, A.C.; Vinit, S. Therapeutic strategies targeting respiratory recovery after spinal cord injury: From preclinical development to clinical translation. Cells 2023, 12, 1519. [Google Scholar] [CrossRef]
- Adeel, M.; Lin, B.-S.; Chen, H.-C.; Lai, C.-H.; Liou, J.-C.; Wu, C.-W.; Chan, W.P.; Peng, C.-W. Motor neuroplastic effects of a novel paired stimulation technology in an incomplete spinal cord injury animal model. Int. J. Mol. Sci. 2022, 23, 9447. [Google Scholar] [CrossRef]
- Marder, E.; Bucher, D. Central pattern generators and the control of rhythmic movements. Curr. Biol. 2001, 11, R986–R996. [Google Scholar] [CrossRef]
- Bucher, D.; Haspel, G.; Golowasch, J.; Nadim, F. Central pattern generators. eLS 2015, 11, 1–12. [Google Scholar]
- Guertin, P.A.; Steuer, I. Key central pattern generators of the spinal cord. J. Neurosci. Res. 2009, 87, 2399–2405. [Google Scholar] [CrossRef]
- MacKay-Lyons, M. Central pattern generation of locomotion: A review of the evidence. Phys. Ther. 2002, 82, 69–83. [Google Scholar] [CrossRef]
- Grillner, S. Biological pattern generation: The cellular and computational logic of networks in motion. Neuron 2006, 52, 751–766. [Google Scholar] [CrossRef] [PubMed]
- Grillner, S.; El Manira, A. Current principles of motor control, with special reference to vertebrate locomotion. Physiol. Rev. 2019, 100, 271–320. [Google Scholar] [CrossRef] [PubMed]
- Feldman, J.L.; Del Negro, C.A. Looking for inspiration: New perspectives on respiratory rhythm. Nat. Rev. Neurosci. 2006, 7, 232–241. [Google Scholar] [CrossRef]
- El-Hassar, L.; Hagenston, A.M.; D’angelo, L.B.; Yeckel, M.F. Metabotropic glutamate receptors regulate hippocampal ca1 pyramidal neuron excitability via ca2+ wave-dependent activation of sk and trpc channels. J. Physiol. 2011, 589, 3211–3229. [Google Scholar] [CrossRef]
- Critchley, H.D.; Harrison, N.A. Visceral influences on brain and behavior. Neuron 2013, 77, 624–638. [Google Scholar] [CrossRef]
- Alheid, G.F.; McCrimmon, D.R. The chemical neuroanatomy of breathing. Respir. Physiol. Neurobiol. 2008, 164, 3–11. [Google Scholar] [CrossRef]
- Smith, J.C.; Greer, J.J.; Liu, G.S.; Feldman, J.L. Neural mechanisms generating respiratory pattern in mammalian brain stem-spinal cord in vitro. I. Spatiotemporal patterns of motor and medullary neuron activity. J. Neurophysiol. 1990, 64, 1149–1169. [Google Scholar] [CrossRef]
- Guyenet, P.G.; Bayliss, D.A. Neural control of breathing and co2 homeostasis. Neuron 2015, 87, 946–961. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, S.; Forster, R.E., II. Co2/h+ sensing: Peripheral and central chemoreception. Int. J. Biochem. Cell Biol. 2003, 35, 1413–1435. [Google Scholar] [CrossRef] [PubMed]
- Sant’Ambrogio, G. Information arising from the tracheobronchial tree of mammals. Physiol. Rev. 1982, 62, 531–569. [Google Scholar] [CrossRef]
- Alilain, W.J.; Horn, K.P.; Hu, H.; Dick, T.E.; Silver, J. Functional regeneration of respiratory pathways after spinal cord injury. Nature 2011, 475, 196–200. [Google Scholar] [CrossRef]
- Brown, R.; DiMarco, A.F.; Hoit, J.D.; Garshick, E. Respiratory dysfunction and management in spinal cord injury. Respir. Care 2006, 51, 853–870. [Google Scholar]
- Mateika, J.H.; Duffin, J. A review of the control of breathing during exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 71, 1–27. [Google Scholar] [CrossRef]
- Gandevia, S.; McKenzie, D.; Neering, I. Endurance properties of respiratory and limb muscles. Respir. Physiol. 1983, 53, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Shevtsova, N.A.; Marchenko, V.; Bezdudnaya, T. Modulation of respiratory system by limb muscle afferents in intact and injured spinal cord. Front. Neurosci. 2019, 13, 289. [Google Scholar] [CrossRef]
- Giraudin, A.; Le Bon-Jégo, M.; Cabirol, M.-J.; Simmers, J.; Morin, D. Spinal and pontine relay pathways mediating respiratory rhythm entrainment by limb proprioceptive inputs in the neonatal rat. J. Neurosci. 2012, 32, 11841–11853. [Google Scholar] [CrossRef]
- Lee, K.-Z.; Fuller, D.D. Hypoxia-induced short-term potentiation of respiratory-modulated facial motor output in the rat. Respir. Physiol. Neurobiol. 2010, 173, 107–111. [Google Scholar] [CrossRef]
- Krogh, A.; Lindhard, J. The regulation of respiration and circulation during the initial stages of muscular work. J. Physiol. 1913, 47, 112. [Google Scholar] [CrossRef] [PubMed]
- Gariépy, J.-F.; Missaghi, K.; Chevallier, S.; Chartré, S.; Robert, M.; Auclair, F.; Lund, J.P.; Dubuc, R. Specific neural substrate linking respiration to locomotion. Proc. Natl. Acad. Sci. USA 2012, 109, E84–E92. [Google Scholar] [CrossRef] [PubMed]
- Palisses, R.; Perségol, L.; Viala, D. Evidence for respiratory interneurones in the c3-c5 cervical spinal cord in the decorticate rabbit. Exp. Brain Res. 1989, 78, 624–632. [Google Scholar] [CrossRef]
- Viala, D. Evidence for direct reciprocal interactions between the central rhythm generators for spinal respiratory and locomotor activities in the rabbit. Exp. Brain Res. 1986, 63, 225–232. [Google Scholar] [CrossRef]
- Le Gal, J.-P.; Juvin, L.; Cardoit, L.; Thoby-Brisson, M.; Morin, D. Remote control of respiratory neural network by spinal locomotor generators. PLoS ONE 2014, 9, e89670. [Google Scholar] [CrossRef]
- Di Pino, G.; Guglielmelli, E.; Rossini, P. Neuroplasticity in amputees: Main implications on bidirectional interfacing of cybernetic hand prostheses. Prog. Neurobiol. 2009, 88, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Nudo, R.J. Mechanisms for recovery of motor function following cortical damage. Curr. Opin. Neurobiol. 2006, 16, 638–644. [Google Scholar] [CrossRef]
- Behrman, A.L.P.; Ardolino, E.M.; Harkema, S.J. Activity-based therapy: From basic science to clinical application for recovery after spinal cord injury. J. Neurol. Phys. Ther. 2017, 41, S39–S45. [Google Scholar] [CrossRef]
- Cramer, S.C. Recovery after stroke. Contin. Lifelong Learn. Neurol. 2020, 26, 415–434. [Google Scholar] [CrossRef]
- Fawcett, J.W.; Curt, A.; Steeves, J.D.; Coleman, W.P.; Tuszynski, M.H.; Lammertse, D.; Bartlett, P.F.; Blight, A.R.; Dietz, V.; Ditunno, J. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the iccp panel: Spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 2007, 45, 190–205. [Google Scholar] [CrossRef]
- Fouad, K.; Pedersen, V.; Schwab, M.E.; Brösamle, C. Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses. Curr. Biol. 2001, 11, 1766–1770. [Google Scholar] [CrossRef] [PubMed]
- Hormigo, K.M.; Zholudeva, L.V.; Spruance, V.M.; Marchenko, V.; Cote, M.-P.; Vinit, S.; Giszter, S.; Bezdudnaya, T.; Lane, M.A. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury. Exp. Neurol. 2017, 287, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Oza, C.S.; Giszter, S.F. Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training. Exp. Neurol. 2014, 256, 57–69. [Google Scholar] [CrossRef]
- Baptista, P.; Andrade, J.P. Adult hippocampal neurogenesis: Regulation and possible functional and clinical correlates. Front. Neuroanat. 2018, 12, 44. [Google Scholar] [CrossRef]
- Sachdeva, R.; Theisen, C.C.; Ninan, V.; Twiss, J.L.; Houlé, J.D. Exercise dependent increase in axon regeneration into peripheral nerve grafts by propriospinal but not sensory neurons after spinal cord injury is associated with modulation of regeneration-associated genes. Exp. Neurol. 2016, 276, 72–82. [Google Scholar] [CrossRef]
- Tashiro, S.; Nishimura, S.; Iwai, H.; Sugai, K.; Zhang, L.; Shinozaki, M.; Iwanami, A.; Toyama, Y.; Liu, M.; Okano, H. Functional recovery from neural stem/progenitor cell transplantation combined with treadmill training in mice with chronic spinal cord injury. Sci. Rep. 2016, 6, 30898. [Google Scholar] [CrossRef]
- Torres-Espín, A.; Beaudry, E.; Fenrich, K.; Fouad, K. Rehabilitative training in animal models of spinal cord injury. J. Neurotrauma 2018, 35, 1970–1985. [Google Scholar] [CrossRef]
- Armada-Da-Silva, P.A.; Pereira, C.; Amado, S.; Veloso, A.P. Role of physical exercise for improving posttraumatic nerve regeneration. Int. Rev. Neurobiol. 2013, 109, 125–149. [Google Scholar] [PubMed]
- Jones, M.L.; Evans, N.; Tefertiller, C.; Backus, D.; Sweatman, M.; Tansey, K.; Morrison, S. Activity-based therapy for recovery of walking in individuals with chronic spinal cord injury: Results from a randomized clinical trial. Arch. Phys. Med. Rehabil. 2014, 95, 2239–2246.e2. [Google Scholar] [CrossRef]
- Gosselink, R.; Bott, J.; Johnson, M.; Dean, E.; Nava, S.; Norrenberg, M.; Schönhofer, B.; Stiller, K.; van de Leur, H.; Vincent, J.L. Physiotherapy for adult patients with critical illness: Recommendations of the european respiratory society and european society of intensive care medicine task force on physiotherapy for critically ill patients. Intensive Care Med. 2008, 34, 1188–1199. [Google Scholar] [CrossRef]
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.-C.; et al. An official american thoracic society/european respiratory society statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef]
- Troosters, T.; Gosselink, R.; Janssens, W.; Decramer, M. Exercise training and pulmonary rehabilitation: New insights and remaining challenges. Eur. Respir. Rev. 2010, 19, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Aslan, G.K.; Gurses, H.N.; Issever, H.; Kiyan, E. Effects of respiratory muscle training on pulmonary functions in patients with slowly progressive neuromuscular disease: A randomized controlled trial. Clin. Rehabil. 2014, 28, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-W. Pulmonary rehabilitation in patients with neuromuscular disease. Yonsei Med. J. 2006, 47, 307. [Google Scholar] [CrossRef] [PubMed]
- DiMarco, A.F. Restoration of respiratory muscle function following spinal cord injury: Review of electrical and magnetic stimulation techniques. Respir. Physiol. Neurobiol. 2005, 147, 273–287. [Google Scholar] [CrossRef]
- Tamplin, J.; Baker, F.A.; Grocke, D.; Brazzale, D.J.; Pretto, J.J.; Ruehland, W.R.; Buttifant, M.; Brown, D.J.; Berlowitz, D.J. Effect of singing on respiratory function, voice, and mood after quadriplegia: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2013, 94, 426–434. [Google Scholar] [CrossRef]
- Shackleton, C.; Hodgkiss, D.; Samejima, S.; Miller, T.; Perez, M.A.; Nightingale, T.E.; Sachdeva, R.; Krassioukov, A.V. When the whole is greater than the sum of its parts: A scoping review of activity-based therapy paired with spinal cord stimulation following spinal cord injury. J. Neurophysiol. 2022, 128, 1292–1306. [Google Scholar] [CrossRef]
- Chiappa, G.R.; Roseguini, B.T.; Vieira, P.J.; Alves, C.N.; Tavares, A.; Winkelmann, E.R.; Ferlin, E.L.; Stein, R.; Ribeiro, J.P. Inspiratory muscle training improves blood flow to resting and exercising limbs in patients with chronic heart failure. J. Am. Coll. Cardiol. 2008, 51, 1663–1671. [Google Scholar] [CrossRef]
- Lötters, F.; van Tol, B.; Kwakkel, G.; Gosselink, R. Effects of controlled inspiratory muscle training in patients with copd: A meta-analysis. Eur. Respir. J. 2002, 20, 570–577. [Google Scholar] [CrossRef]
- Enright, S.; Chatham, K.; Ionescu, A.A.; Unnithan, V.B.; Shale, D.J. Inspiratory muscle training improves lung function and exercise capacity in adults with cystic fibrosis. Chest 2004, 126, 405–411. [Google Scholar] [CrossRef]
- Illi, S.K.; Held, U.; Frank, I.; Spengler, C.M. Effect of respiratory muscle training on exercise performance in healthy individuals: A systematic review and meta-analysis. Sports Med. 2012, 42, 707–724. [Google Scholar] [CrossRef] [PubMed]
- Vergès, S.; Flore, P.; Nantermoz, G.; Lafaix, P.A.; Wuyam, B. Respiratory muscle training in athletes with spinal cord injury. Int. J. Sports Med. 2009, 30, 526–532. [Google Scholar] [CrossRef] [PubMed]
- West, C.R.; Taylor, B.J.; Campbell, I.G.; Romer, L.M. Effects of inspiratory muscle training on exercise responses in p aralympic athletes with cervical spinal cord injury. Scand. J. Med. Sci. Sports 2014, 24, 764–772. [Google Scholar] [CrossRef]
- Zhang, W.; Pan, H.; Zong, Y.; Wang, J.; Xie, Q. Respiratory muscle training reduces respiratory complications and improves swallowing function after stroke: A systematic review and meta-analysis. Arch. Phys. Mpemd. Rehabil. 2022, 103, 1179–1191. [Google Scholar] [CrossRef]
- Mueller, G.; Hopman, M.; Perret, C. Comparison of respiratory muscle training methods in individuals with motor and sensory complete tetraplegia: A randomized controlled trial. J. Rehabil. Med. 2013, 45, 248–253. [Google Scholar] [CrossRef]
- Van Houtte, S.; Vanlandewijck, Y.; Gosselink, R. Respiratory muscle training in persons with spinal cord injury: A systematic review. Respir. Med. 2006, 100, 1886–1895. [Google Scholar] [CrossRef]
- Côté, M.-P.; Murray, M.; Lemay, M.A. Rehabilitation strategies after spinal cord injury: Inquiry into the mechanisms of success and failure. J. Neurotrauma 2017, 34, 1841–1857. [Google Scholar] [CrossRef] [PubMed]
- Fouad, K.; Tetzlaff, W. Rehabilitative training and plasticity following spinal cord injury. Exp. Neurol. 2012, 235, 91–99. [Google Scholar] [CrossRef]
- Grau, J.W.; Baine, R.E.; Bean, P.A.; Davis, J.A.; Fauss, G.N.; Henwood, M.K.; Hudson, K.E.; Johnston, D.T.; Tarbet, M.M.; Strain, M.M. Strain. Learning to promote recovery after spinal cord injury. Exp. Neurol. 2020, 330, 113334. [Google Scholar] [CrossRef]
- Van Houtte, S.; Vanlandewijck, Y.; Kiekens, C.; Spengler, C.; Gosselink, R. Patients with acute spinal cord injury benefit from normocapnic hyperpnoea training. J. Rehabil. Med. 2008, 40, 119–125. [Google Scholar] [CrossRef]
- Angeli, C.A.; Edgerton, V.R.; Gerasimenko, Y.P.; Harkema, S.J. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 2014, 137, 1394–1409. [Google Scholar] [CrossRef] [PubMed]
- Gigliotti, F.; Coli, C.; Bianchi, R.; Grazzini, M.; Stendardi, L.; Castellani, C.; Scano, G. Arm exercise and hyperinflation in patients with copd: Effect of arm training. Chest 2005, 128, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Ries, A.L.; Bauldoff, G.S.; Carlin, B.W.; Casaburi, R.; Emery, C.F.; Mahler, D.A.; Make, B.; Rochester, C.L.; ZuWallack, R.; Herrerias, C. Pulmonary rehabilitation: Joint accp/aacvpr evidence-based clinical practice guidelines. Chest 2007, 131, 4S–42S. [Google Scholar] [CrossRef]
- Costa, D.; Cancelliero, K.M.; Ike, D.; Laranjeira, T.L.; Pantoni, C.B.F.; Borghi-Silva, A. Strategy for respiratory exercise pattern associated with upper limb movements in copd patients. Clinics 2011, 66, 299–305. [Google Scholar] [CrossRef]
- Mutluay, F.; Demir, R.; Ozyilmaz, S.; Caglar, A.; Altintas, A.; Gurses, H. Breathing-enhanced upper extremity exercises for patients with multiple sclerosis. Clin. Rehabil. 2007, 21, 595–602. [Google Scholar] [CrossRef]
- Leite, M.A.; Osaku, E.F.; Albert, J.; Costa, C.R.L.d.M.; Garcia, A.M.; Czapiesvski, F.D.N.; Ogasawara, S.M.; Bertolini, G.R.F.; Jorge, A.C.; Duarte, P.A.D. Effects of neuromuscular electrical stimulation of the quadriceps and diaphragm in critically ill patients: A pilot study. Crit. Care Res. Pract. 2018, 2018, 4298583. [Google Scholar] [CrossRef]
- Kim, D.-H.; Jang, S.-H. Effects of an upper-limb exercise program for improving muscular strength and range of movement on respiratory function of stroke patients. J. Phys. Ther. Sci. 2001, 28, 2785–2788. [Google Scholar] [CrossRef] [PubMed]
- Gallegos, C.; Carey, M.; Zheng, Y.; He, X.; Cao, Q.L. Reaching and grasping training improves functional recovery after chronic cervical spinal cord injury. Front. Cell. Neurosci. 2020, 14, 110. [Google Scholar] [CrossRef]
- Engesser-Cesar, C.; Ichiyama, R.M.; Nefas, A.L.; Hill, M.A.; Edgerton, V.R.; Cotman, C.W.; Anderson, A.J. Wheel running following spinal cord injury improves locomotor recovery and stimulates serotonergic fiber growth. Eur. J. Neurosci. 2007, 25, 1931–1939. [Google Scholar] [CrossRef]
- Loy, K.; Schmalz, A.; Hoche, T.; Jacobi, A.; Kreutzfeldt, M.; Merkler, D.; Bareyre, F.M. Enhanced voluntary exercise improves functional recovery following spinal cord injury by impacting the local neuroglial injury response and supporting the rewiring of supraspinal circuits. J. Neurotrauma 2018, 35, 2904–2915. [Google Scholar] [CrossRef]
- Bareyre, F.M.; Kerschensteiner, M.; Raineteau, O.; Mettenleiter, T.C.; Weinmann, O.; E Schwab, M. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 2004, 7, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Courtine, G.; Song, B.; Roy, R.R.; Zhong, H.; E Herrmann, J.; Ao, Y.; Qi, J.; Edgerton, V.R.; Sofroniew, M.V. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 2008, 14, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Goshgarian, H.G. Invited review: The crossed phrenic phenomenon: A model for plasticity in the respiratory pathways following spinal cord injury. J. Appl. Physiol. 2003, 94, 795–810. [Google Scholar] [CrossRef]
- Asboth, L.; Friedli, L.; Beauparlant, J.; Martinez-Gonzalez, C.; Anil, S.; Rey, E.; Baud, L.; Pidpruzhnykova, G.; Anderson, M.A.; Shkorbatova, P. Shkorbatova. Cortico–reticulo–spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nat. Neurosci. 2018, 21, 576–588. [Google Scholar] [CrossRef]
- Porter, W.T. The path of the respiratory impulse from the bulb to the phrenic nuclei. J. Physiol. 1895, 17, 455. [Google Scholar] [CrossRef]
- Sandhu, M.; Dougherty, B.; Lane, M.; Bolser, D.; Kirkwood, P.; Reier, P.; Fuller, D. Respiratory recovery following high cervical hemisection. Respir. Physiol. Neurobiol. 2009, 169, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Vinit, S.; Kastner, A. Descending bulbospinal pathways and recovery of respiratory motor function following spinal cord injury. Respir. Physiol. Neurobiol. 2009, 169, 115–122. [Google Scholar] [CrossRef]
- Ghali, M.G.Z. The bulbospinal network controlling the phrenic motor system: Laterality and course of descending projections. Neurosci. Res. 2017, 121, 7–17. [Google Scholar] [CrossRef]
- Ling, L.; Fuller, D.D.; Bach, K.B.; Kinkead, R.; Olson, E.B.; Mitchell, G.S. Chronic intermittent hypoxia elicits serotonin-dependent plasticity in the central neural control of breathing. J. Neurosci. 2001, 21, 5381–5388. [Google Scholar] [CrossRef]
- Hsu, S.-H.; Lee, K.-Z. Effects of serotonergic agents on respiratory recovery after cervical spinal injury. J. Appl. Physiol. 2015, 119, 1075–1087. [Google Scholar] [CrossRef]
- Vinit, S.; Stamegna, J.-C.; Boulenguez, P.; Gauthier, P.; Kastner, A. Restorative respiratory pathways after partial cervical spinal cord injury: Role of ipsilateral phrenic afferents. Eur. J. Neurosci. 2007, 25, 3551–3560. [Google Scholar] [CrossRef] [PubMed]
- Nair, J.; Bezdudnaya, T.; Zholudeva, L.V.; Detloff, M.R.; Reier, P.J.; Lane, M.A.; Fuller, D.D. Histological identification of phrenic afferent projections to the spinal cord. Respir. Physiol. Neurobiol. 2017, 236, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Raineteau, O.; Schwab, M.E. Plasticity of motor systems after incomplete spinal cord injury. Nat. Rev. Neurosci. 2001, 2, 263–273. [Google Scholar] [CrossRef]
- Oza, C.S.; Giszter, S.F. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats. J. Neurosci. 2015, 35, 7174–7189. [Google Scholar] [CrossRef] [PubMed]
- Darlot, F.; Cayetanot, F.; Gauthier, P.; Matarazzo, V.; Kastner, A. Extensive respiratory plasticity after cervical spinal cord injury in rats: Axonal sprouting and rerouting of ventrolateral bulbospinal pathways. Exp. Neurol. 2012, 236, 88–102. [Google Scholar] [CrossRef]
- Baker-Herman, T.L.; Fuller, D.D.; Bavis, R.W.; Zabka, A.G.; Golder, F.J.; Doperalski, N.J.; A Johnson, R.; Watters, J.J.; Mitchell, G.S. Bdnf is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat. Neurosci. 2004, 7, 48–55. [Google Scholar] [CrossRef]
- Hernandez-Torres, V.; Gransee, H.M.; Mantilla, C.B.; Wang, Y.; Zhan, W.-Z.; Sieck, G.C. Bdnf effects on functional recovery across motor behaviors after cervical spinal cord injury. J. Neurophysiol. 2017, 117, 537–544. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, L.; Guo, S.; Peng, R.; Gong, H.; Yang, M. Changes in respiratory structure and function after traumatic cervical spinal cord injury: Observations from spinal cord and brain. Front. Neurol. 2023, 14, 1251833. [Google Scholar] [CrossRef]
- Laskin, J.J.; Waheed, Z.; Thorogood, N.P.; Nightingale, T.E.; Noonan, V.K. Spinal cord stimulation research in the restoration of motor, sensory, and autonomic function for individuals living with spinal cord injuries: A scoping review. Arch. Phys. Med. Rehabil. 2022, 103, 1387–1397. [Google Scholar] [CrossRef]
- Rejc, E.; Angeli, C.A.; Ichiyama, R.M. Editorial: Advances in spinal cord epidural stimulation for motor and autonomic functions recovery after severe spinal cord injury. Front. Syst. Neurosci. 2022, 15, 820913. [Google Scholar] [CrossRef]
- Harkema, S.; Gerasimenko, Y.; Hodes, J.; Burdick, J.; Angeli, C.; Chen, Y.; Ferreira, C.; Willhite, A.; Rejc, E.; Grossman, R.G. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: A case study. Lancet 2011, 377, 1938–1947. [Google Scholar] [CrossRef] [PubMed]
- Rejc, E.; Angeli, C.A.; Atkinson, D.; Harkema, S.J. Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic. Sci. Rep. 2017, 7, 13476. [Google Scholar] [CrossRef] [PubMed]
- Darrow, D.; Balser, D.; Netoff, T.I.; Krassioukov, A.; Phillips, A.; Parr, A.; Samadani, U. Epidural spinal cord stimulation facilitates immediate restoration of dormant motor and autonomic supraspinal pathways after chronic neurologically complete spinal cord injury. J. Neurotrauma 2019, 36, 2325–2336. [Google Scholar] [CrossRef]
- Brand, R.v.D.; Mignardot, J.-B.; von Zitzewitz, J.; Le Goff, C.; Fumeaux, N.; Wagner, F.; Capogrosso, M.; Moraud, E.M.; Micera, S.; Schurch, B. Neuroprosthetic technologies to augment the impact of neurorehabilitation after spinal cord injury. Ann. Phys. Rehabil. Med. 2015, 58, 232–237. [Google Scholar] [CrossRef]
- Nagel, S.J.; Wilson, S.; Johnson, M.D.; Machado, A.; Frizon, L.; Chardon, M.K.; Reddy, C.G.; Gillies, G.T.; Howard, M.A., III. Spinal cord stimulation for spasticity: Historical approaches, current status, and future directions. Neuromodulation Technol. Neural Interface 2017, 20, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Harmsen, I.E.; Hasanova, D.; Elias, G.J.; Boutet, A.; Neudorfer, C.; Loh, A.; Germann, J.; Lozano, A.M. Trends in clinical trials for spinal cord stimulation. Stereotact. Funct. Neurosurg. 2021, 99, 123–134. [Google Scholar] [CrossRef]
- Kathe, C.; Skinnider, M.A.; Hutson, T.H.; Regazzi, N.; Gautier, M.; Demesmaeker, R.; Komi, S.; Ceto, S.; James, N.D.; Cho, N. The neurons that restore walking after paralysis. Nature 2022, 611, 540–547. [Google Scholar] [CrossRef]
- Greiner, N.; Barra, B.; Schiavone, G.; Lorach, H.; James, N.; Conti, S.; Kaeser, M.; Fallegger, F.; Borgognon, S.; Lacour, S. Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal cord. Nat. Commun. 2021, 12, 435. [Google Scholar] [CrossRef]
- Singh, G.; Sharma, P.; Forrest, G.; Harkema, S.; Behrman, A.; Gerasimenko, Y. Spinal cord transcutaneous stimulation in cervical spinal cord injury: A review examining upper extremity neuromotor control, recovery mechanisms, and future directions. J. Neurotrauma 2024, 41, 2056–2074. [Google Scholar] [CrossRef]
- Inanici, F.; Brighton, L.N.; Samejima, S.; Hofstetter, C.P.; Moritz, C.T. Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 310–319. [Google Scholar] [CrossRef]
- Angeli, C.A.; Boakye, M.; Morton, R.A.; Vogt, J.; Benton, K.; Chen, Y.; Ferreira, C.K.; Harkema, S.J. Recovery of over-ground walking after chronic motor complete spinal cord injury. N. Engl. J. Med. 2018, 379, 1244–1250. [Google Scholar] [CrossRef] [PubMed]
- Sayenko, D.G.; Angeli, C.; Harkema, S.J.; Edgerton, V.R.; Gerasimenko, Y.P. Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals. J. Neurophysiol. 2014, 111, 1088–1099. [Google Scholar] [CrossRef] [PubMed]
- Hachmann, J.T.; Yousak, A.; Wallner, J.J.; Gad, P.N.; Edgerton, V.R.; Gorgey, A.S. Epidural spinal cord stimulation as an intervention for motor recovery after motor complete spinal cord injury. J. Neurophysiol. 2021, 126, 1843–1859. [Google Scholar] [CrossRef]
- Herrity, A.N.; Williams, C.S.; Angeli, C.A.; Harkema, S.J.; Hubscher, C.H. Lumbosacral spinal cord epidural stimulation improves voiding function after human spinal cord injury. Sci. Rep. 2018, 8, 8688. [Google Scholar] [CrossRef]
- Edgerton, V.R.; Harkema, S. Epidural stimulation of the spinal cord in spinal cord injury: Current status and future challenges. Expert Rev. Neurother. 2011, 11, 1351–1353. [Google Scholar] [CrossRef]
- Rejc, E.; Angeli, C.A.; Bryant, N.; Harkema, S.J. Effects of stand and step training with epidural stimulation on motor function for standing in chronic complete paraplegics. J. Neurotrauma 2017, 34, 1787–1802. [Google Scholar] [CrossRef]
- Gill, M.; Linde, M.; Fautsch, K.; Hale, R.; Lopez, C.; Veith, D.; Calvert, J.; Beck, L.; Garlanger, K.; Edgerton, R. Epidural electrical stimulation of the lumbosacral spinal cord improves trunk stability during seated reaching in two humans with severe thoracic spinal cord injury. Front. Syst. Neurosci. 2020, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Sayenko, D.G.; Atkinson, D.A.; Dy, C.J.; Gurley, K.M.; Smith, V.L.; Angeli, C.; Harkema, S.J.; Edgerton, V.R.; Gerasimenko, Y.P. Spinal segment-specific transcutaneous stimulation differentially shapes activation pattern among motor pools in humans. J. Appl. Physiol. 2015, 118, 1364–1374. [Google Scholar] [CrossRef]
- Moshonkina, T.; Grishin, A.; Bogacheva, I.; Gorodnichev, R.; Ovechkin, A.; Siu, R.; Edgerton, V.R.; Gerasimenko, Y. Novel non-invasive strategy for spinal neuromodulation to control human locomotion. Front. Hum. Neurosci. 2021, 14, 622533. [Google Scholar] [CrossRef]
- Miller, J.P.; Eldabe, S.; Buchser, E.; Johanek, L.M.; Guan, Y.; Linderoth, B. Parameters of spinal cord stimulation and their role in electrical charge delivery: A review. Neuromodulation Technol. Neural Interface 2016, 19, 373–384. [Google Scholar] [CrossRef]
- Ibáñez, J.; Angeli, C.A.; Harkema, S.J.; Farina, D.; Rejc, E. Recruitment order of motor neurons promoted by epidural stimulation in individuals with spinal cord injury. J. Appl. Physiol. 2021, 131, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Goshgarian, H.G. The crossed phrenic phenomenon and recovery of function following spinal cord injury. Respir. Physiol. Neurobiol. 2009, 169, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Lewis, L.J.; Brookhart, J.M.; Komnenov, D.; Solarewicz, J.Z.; Afzal, F.; Nantwi, K.D.; Kuhn, D.M.; Mateika, J.H.; Lee, K.-Z.; Sandhu, M.S. Significance of the crossed phrenic phenomenon. Am. J. Physiol. Leg. Content 1951, 166, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Kubasak, M.D.; Jindrich, D.L.; Zhong, H.; Takeoka, A.; McFarland, K.C.; Muñoz-Quiles, C.; Roy, R.R.; Edgerton, V.R.; Ramón-Cueto, A.; Phelps, P.E. Oeg implantation and step training enhance hindlimb-stepping ability in adult spinal transected rats. Brain 2008, 131, 264–276. [Google Scholar] [CrossRef]
- Muñoz-Quiles, C.; Santos-Benito, F.F.; Llamusí, M.B.; Ramón-Cueto, A. Chronic spinal injury repair by olfactory bulb ensheathing glia and feasibility for autologous therapy. J. Neuropathol. Exp. Neurol. 2009, 68, 1294–1308. [Google Scholar] [CrossRef]
- Takeoka, A.; Jindrich, D.L.; Muñoz-Quiles, C.; Zhong, H.; Brand, R.v.D.; Pham, D.L.; Ziegler, M.D.; Ramón-Cueto, A.; Roy, R.R.; Edgerton, V.R. Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation. J. Neurosci. 2011, 31, 4298–4310. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Zdunowski, S.; Edgerton, V.R.; Roy, R.R.; Zhong, H.; Hsiao, I.; Lin, V.W. Improvement of gait patterns in step-trained, complete spinal cord-transected rats treated with a peripheral nerve graft and acidic fibroblast growth factor. Exp. Neurol. 2010, 224, 429–437. [Google Scholar] [CrossRef]
- Rahman, A.; Tharu, N.S.; Gustin, S.M.; Zheng, Y.-P.; Alam, M. Trans-spinal electrical stimulation therapy for functional rehabilitation after spinal cord injury. J. Clin. Med. 2022, 11, 1550. [Google Scholar] [CrossRef]
- Tharu, N.S.; Lee, T.T.-Y.; Lai, K.K.-L.; Lau, T.-E.; Chan, C.-Y.; Zheng, Y.-P. Sagittal spinal alignment in people with chronic spinal cord injury and normal individual: A comparison study using 3d ultrasound imaging. J. Clin. Med. 2023, 12, 3854. [Google Scholar] [CrossRef]
- McGeady, C.; Vučković, A.; Tharu, N.S.; Zheng, Y.-P.; Alam, M. Brain-computer interface priming for cervical transcutaneous spinal cord stimulation therapy: An exploratory case study. Front. Rehabil. Sci. 2022, 3, 896766. [Google Scholar] [CrossRef]
- Inanici, F.; Samejima, S.; Gad, P.; Edgerton, V.R.; Hofstetter, C.P.; Moritz, C.T. Transcutaneous electrical spinal stimulation promotes long-term recovery of upper extremity function in chronic tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Ling, Y.T.; Wong, A.Y.L.; Zhong, H.; Edgerton, V.R.; Zheng, Y. Reversing 21 years of chronic paralysis via non-invasive spinal cord neuromodulation: A case study. Ann. Clin. Transl. Neurol. 2020, 7, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Hofstoetter, U.S.; Krenn, M.; Danner, S.M.; Hofer, C.; Kern, H.; McKay, W.B.; Mayr, W.; Minassian, K. Augmentation of voluntary locomotor activity by transcutaneous spinal cord stimulation in motor-incomplete spinal cord-injured individuals. Artif. Organs 2015, 39, E176–E186. [Google Scholar] [CrossRef]
- Tharu, N.S.; Alam, M.; Ling, Y.T.; Wong, A.Y.; Zheng, Y.-P. Combined transcutaneous electrical spinal cord stimulation and task-specific rehabilitation improves trunk and sitting functions in people with chronic tetraplegia. Biomedicines 2022, 11, 34. [Google Scholar] [CrossRef]
- Tharu, N.S.; Wong, A.Y.L.; Zheng, Y.-P. Neuromodulation for recovery of trunk and sitting functions following spinal cord injury: A comprehensive review of the literature. Bioelectron. Med. 2023, 9, 11. [Google Scholar]
- Rath, M.; Vette, A.H.; Ramasubramaniam, S.; Li, K.; Burdick, J.; Edgerton, V.R.; Gerasimenko, Y.P.; Sayenko, D.G. Trunk stability enabled by noninvasive spinal electrical stimulation after spinal cord injury. J. Neurotrauma 2018, 35, 2540–2553. [Google Scholar] [CrossRef] [PubMed]
- Kumru, H.; Flores, Á.; Rodríguez-Cañón, M.; Edgerton, V.R.; García, L.; Benito-Penalva, J.; Navarro, X.; Gerasimenko, Y.; García-Alías, G.; Vidal, J. Cervical electrical neuromodulation effectively enhances hand motor output in healthy subjects by engaging a use-dependent intervention. J. Clin. Med. 2021, 10, 195. [Google Scholar] [CrossRef]
- Gad, P.N.; Kreydin, E.; Zhong, H.; Edgerton, V.R. Enabling respiratory control after severe chronic tetraplegia: An exploratory case study. J. Neurophysiol. 2020, 124, 774–780. [Google Scholar] [CrossRef]
- de Paleville, D.T.; McKay, W.; Aslan, S.; Folz, R.; Sayenko, D.; Ovechkin, A. Locomotor step training with body weight support improves respiratory motor function in individuals with chronic spinal cord injury. Respir. Physiol. Neurobiol. 2013, 189, 491–497. [Google Scholar] [CrossRef]
- Massey, S.; Konig, D.; Upadhyay, P.; Evcil, Z.B.; Melin, R.; Fatima, M.; Hannah, R.; Duffell, L. The effects of transcutaneous spinal cord stimulation delivered with and without high-frequency modulation on spinal and corticospinal excitability. Artif. Organs 2024, 48, 297–308. [Google Scholar] [CrossRef]
- Tharu, N.S.; Wong, A.Y.L.; Zheng, Y.-P. Transcutaneous electrical spinal cord stimulation increased target-specific muscle strength and locomotion in chronic spinal cord injury. Brain Sci. 2024, 14, 640. [Google Scholar] [CrossRef]
- Estes, S.; Zarkou, A.; Hope, J.M.; Suri, C.; Field-Fote, E.C. Combined transcutaneous spinal stimulation and locomotor training to improve walking function and reduce spasticity in subacute spinal cord injury: A randomized study of clinical feasibility and efficacy. J. Clin. Med. 2021, 10, 1167. [Google Scholar] [CrossRef] [PubMed]
- Tharu, N.S.; Suthar, A.; Gerasimenko, Y.; Castillo, C.; Ng, A.; Ovechkin, A. Noninvasive electrical modalities to alleviate respiratory deficits following spinal cord injury. Life 2024, 14, 1657. [Google Scholar] [CrossRef] [PubMed]
- Kandhari, S.; Sharma, D.; Tomar, A.K.; Matis, G.; Lavrov, I.A.; Majumdar, P. Epidural electrical spinal cord stimulation of the thoracic segments (t2-t5) facilitates respiratory function in patients with complete spinal cord injury. Respir. Physiol. Neurobiol. 2022, 300, 103885. [Google Scholar] [CrossRef] [PubMed]
- DiMarco, A.F.; Geertman, R.T.; Tabbaa, K.; Kowalski, K.E. Complete restoration of respiratory muscle function in three subjects with spinal cord injury: Pilot interventional clinical trial. Am. J. Phys. Med. Rehabil. 2019, 98, 43–50. [Google Scholar] [CrossRef]
- DiMarco, A.F.; Geertman, R.T.; Tabbaa, K.; Nemunaitis, G.A.; Kowalski, K.E. Restoration of cough via spinal cord stimulation improves pulmonary function in tetraplegics. J. Spinal Cord Med. 2020, 43, 579–585. [Google Scholar] [CrossRef]
- Kjølhede, T.; Vissing, K.; Dalgas, U. Multiple sclerosis and progressive resistance training: A systematic review. Mult. Scler. J. 2012, 18, 1215–1228. [Google Scholar] [CrossRef]
- Shin, S.-O.; Kim, N.-S. Upper extremity resistance exercise with elastic bands for respiratory function in children with cerebral palsy. J. Phys. Ther. Sci. 2017, 29, 2077–2080. [Google Scholar] [CrossRef]
- Okumuş, B.; Akıncı, B.; Aytutuldu, G.K.; Baran, M.S. Impact of upper extremity robotic rehabilitation on respiratory parameters, functional capacity and dyspnea in patients with stroke: A randomized controlled study. Neurol. Sci. 2024, 46, 1257–1266. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Hsiao, H.-F.; Li, L.-F.; Chen, N.-H.; Huang, C.-C. Effects of electrical muscle stimulation in subjects undergoing prolonged mechanical ventilation. Respir. Care 2019, 64, 262–271. [Google Scholar] [CrossRef]
- Pichardo, R.; Adam, J.S.; Rosow, E.; Bronzino, J.; Eisenfeld, L. Vibrotactile stimulation system to treat apnea of prematurity. Biomed. Instrum. Technol. 2003, 37, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Panza, G.S.; A Guccione, A.; Chin, L.M.; Gollie, J.M.; E Herrick, J.; Collins, J.P. Effects of overground locomotor training on the ventilatory response to volitional treadmill walking in individuals with incomplete spinal cord injury: A pilot study. Spinal Cord Ser. Cases 2017, 3, 17011. [Google Scholar] [CrossRef] [PubMed]
- Hettinga, D.M.; Andrews, B.J. Oxygen consumption during functional electrical stimulation-assisted exercise in persons with spinal cord injury: Implications for fitness and health. Sports Med. 2008, 38, 825–838. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, M. Effects of arm cranking exercise on muscle oxygenation between active and inactive muscles in people with spinal cord injury. J. Spinal Cord Med. 2021, 44, 931–939. [Google Scholar] [CrossRef]
- Luo, S.; Xu, H.; Zuo, Y.; Liu, X.; All, A.H. A review of functional electrical stimulation treatment in spinal cord injury. Neuromol. Med. 2020, 22, 447–463. [Google Scholar] [CrossRef]
- Golder, F.J.; Mitchell, G.S. Spinal synaptic enhancement with acute intermittent hypoxia improves respiratory function after chronic cervical spinal cord injury. J. Neurosci. 2005, 25, 2925–2932. [Google Scholar] [CrossRef] [PubMed]
- Sutor, T.; Cavka, K.; Vose, A.K.; Welch, J.F.; Davenport, P.; Fuller, D.D.; Mitchell, G.S.; Fox, E.J. Single-session effects of acute intermittent hypoxia on breathing function after human spinal cord injury. Exp. Neurol. 2021, 342, 113735. [Google Scholar] [CrossRef]
- Fuller, D.D.; Mitchell, G.S.; Bavis, R.W. Respiratory neuroplasticity: Respiratory gases, development, and spinal injury. In Pharmacology and Pathophysiology of the Control of Breathing; CRC Press: Boca Raton, FL, USA, 2005; pp. 193–262. [Google Scholar]
- Prabhakar, N.R.; Semenza, G.L. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol. Rev. 2012, 92, 967–1003. [Google Scholar] [CrossRef]
- Dale-Nagle, E.A.; Hoffman, M.S.; MacFarlane, P.M.; Satriotomo, I.; Lovett-Barr, M.R.; Vinit, S.; Mitchell, G.S. Spinal plasticity following intermittent hypoxia: Implications for spinal injury. Ann. N. Y. Acad. Sci. 2010, 1198, 252–259. [Google Scholar] [CrossRef]
- Li, J.-J.; Zhang, X.-Y.; Yu, W.-Y.; Teng, W.-J.; Song, Y.-C.; Yang, D.-G.; Liu, H.-W.; Liu, S.-H.; Li, X.-B.; Wang, W.-Z. Effect of vocal respiratory training on respiratory function and respiratory neural plasticity in patients with cervical spinal cord injury: A randomized controlled trial. Neural Regen. Res. 2022, 17, 1065–1071. [Google Scholar] [CrossRef]
- Stegemöller, E.L. Exploring a neuroplasticity model of music therapy. J. Music Ther. 2014, 51, 211–227. [Google Scholar] [CrossRef] [PubMed]
- Ang, K.; Maddocks, M.; Xu, H.; Higginson, I.J. The effectiveness of singing or playing a wind instrument in improving respiratory function in patients with long-term neurological conditions: A systematic review. J. Music Ther. 2017, 54, 108–131. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Samulski, R.J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 2020, 21, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Steele, J.C.; Rao, A.; Marsden, J.R.; Armstrong, C.J.; Berhane, S.; Billingham, L.J.; Graham, N.; Roberts, C.; Ryan, G.; Uppal, H. Phase i/ii trial of a dendritic cell vaccine transfected with DNA encoding melan a and gp100 for patients with metastatic melanoma. Gene Ther. 2011, 18, 584–593. [Google Scholar] [CrossRef]
- Alton, E.W.; Boyd, A.C.; Davies, J.C.; Gill, D.R.; Griesenbach, U.; Harman, T.E.; Hyde, S.C.; McLachlan, G. Gene therapy for respiratory diseases: Progress and a changing context. Hum. Gene Ther. 2020, 31, 911–916. [Google Scholar] [CrossRef]
- Shah, M.; Peterson, C.; Yilmaz, E.; Halalmeh, D.R.; Moisi, M. Current advancements in the management of spinal cord injury: A comprehensive review of literature. Surg. Neurol. Int. 2020, 11, 2. [Google Scholar] [CrossRef]
- Yang, L.-Y.; Tsai, M.-Y.; Juan, S.-H.; Chang, S.-F.; Yu, C.-T.R.; Lin, J.-C.; Johnson, K.R.; Lim, H.G.-M.; Fann, Y.C.; Lee, Y.-C.G. Exerting the appropriate application of methylprednisolone in acute spinal cord injury based on time course transcriptomics analysis. Int. J. Mol. Sci. 2021, 22, 13024. [Google Scholar] [CrossRef]
- Li, W.; Chen, J.; Zhao, S.; Huang, T.; Ying, H.; Trujillo, C.; Molinaro, G.; Zhou, Z.; Jiang, T.; Liu, W. High drug-loaded microspheres enabled by controlled in-droplet precipitation promote functional recovery after spinal cord injury. Nat. Commun. 2022, 13, 1262. [Google Scholar] [CrossRef]
- Nagoshi, N.; Tsuji, O.; Nakamura, M.; Okano, H. Cell therapy for spinal cord injury using induced pluripotent stem cells. Regen. Ther. 2019, 11, 75–80. [Google Scholar] [CrossRef]
- Dasari, V.R.; Veeravalli, K.K.; Dinh, D.H. Mesenchymal stem cells in the treatment of spinal cord injuries: A review. World J. Stem Cells 2014, 6, 120. [Google Scholar] [CrossRef]
- Zhu, Y.; Uezono, N.; Yasui, T.; Nakashima, K. Neural stem cell therapy aiming at better functional recovery after spinal cord injury. Dev. Dyn. 2018, 247, 75–84. [Google Scholar] [CrossRef] [PubMed]
Author | Subjects & LOI | Mechanism | Outcomes | Clinical Limitations |
---|---|---|---|---|
Spinal cord epidural stimulation (scES) | ||||
Kandhari et al. [155]; DiMarco et al. [156]; [157] | 3 males-C2–C4; 2 males-C2–C4; 10 males-C4–T1 | scES modulates intrinsic spinal pathways and interneuronal connections exerting either facilitative or inhibitory effects on the motor output, possibly via mono- or polysynaptic integration at the level of the dorsal column and/or via complex interneuronal networks. | Showed evoked muscle activation of physiological breathing, increasing the inspiratory–expiratory effort, and airway pressure generation. In addition, scES demonstrated potential in evoking respiratory function by recruiting inspiratory intercostal muscles with improved maximum inspiratory pressure, maximum expiratory pressure, total lung capacity, etc. | Much of the progress in clinical applications has relied on the early discoveries made in animal models lacking human research. While scES is promising, it requires a highly invasive neurosurgical procedure, which is expectedly associated with significant morbidity. There could be the potential for adverse electrical interactions due to the high stimulus intensities required to activate each muscle group. |
Spinal cord transcutaneous stimulation (scTS) | ||||
Kumru et al. [18]; Gad et al. [149]; Tharu et al. [154] | 10 males/1 female-C4–C7; 1 male-C5; 1 female-C4 | Activation of inaccessible neuronal networks of the spinal cord likely including the recruitment of afferent fibers (large–medium) in the posterior root in order to elevate spinal network excitability | Excites neuronal circuits and facilitates functional recovery, including autonomic functions. It showed improved respiratory function with significant improvements in maximum inspiratory pressure, maximum expiratory pressure, and forced vital capacity (FVC), as well as in subjective measures of dyspnea. In addition, the placement of electrodes for scTS could target specific segments of the spinal cord and promote the desired functional outcomes. | It is still necessary to explore and understand the optimal parameters of scTS at different segments of the spinal cord. Further research is needed to validate the results and establish the long-term benefits of scTS. Additionally, the mechanisms underlying the action of scTS are partially overlapping, as it is combined with training that may involve different and perhaps synergistic processes, suggesting more clinical trials are needed to understand the efficient reorganization of neural circuits. |
Author | Intervention | Outcomes | Clinical Limitations | Advantages |
---|---|---|---|---|
Galer [14]; Rejc et al. [111]; Harkema et al. [112]; Darrow et al. [114]; Sayenko et al. [123] | scES | Reactivating neuronal networks in the lumbosacral segments into functional states showed potential in enhancing respiratory function, as well as other autonomic systems, including bowel, bladder, sexual, and cardiovascular functions. | Invasive method, requires surgery, expensive, risk of infection, technical issues, etc. Majority of studies are in animals, therefore research in larger mammals and humans is required to determine safety and feasibility. | Safe, effective, FDA approved, reported to be effective in SCI, traumatic brain injury, stroke, etc. |
Leemhuis et al. [15]; Shah et al. [178]; Yang et al. [179]; Li et al. [180] | Pharmacological intervention | Improving the regeneration microenvironment by reducing glial scars, neuronal death, and the overall neuroinflammation process. | Acting mainly on a single mechanism and one target is not sufficient to treat the disease; side effects such as fatigue, which can impair alertness, concentration, and memory, ultimately affect rehabilitation success rates. | Cost-effective, acting mainly on inflammatory processes and alterations in the vascular system due to the trauma. |
Inanici et al. [142]; Rath et al. [147]; Tharu et al. [154]; Kumru et al. [18] | scTS | Demonstrated potential in facilitating functional recovery and motor, sensory and recovery of various autonomic functions, including respiratory function. | Some overlap exists between the mechanisms of action of scTS as it is delivered with physical training, bulky equipment, and not suitable for home use; long-term effects still need to be explored. | Non-invasive, could stimulate the same neural networks as scES and produce comparable outcomes. scTS electrodes can be repositioned along the spinal cord to target multiple organ systems. |
DiMarco [66]; Tamplin et al. [67]; Verges et al. [73]; Zhang et al. [75]; Van Houtte et al. [77] | RMT | Facilitating neuroplastic changes and enhancing motor control of breathing. | Time-consuming, monotonous, and lacking immediate perceived benefits; respiratory performance tends to decline once training is discontinued. | Strengthens and improves the endurance of respiratory muscles, thereby enhancing pulmonary function and reducing respiratory complications. |
Leemhuis et al. [15]; Nagoshi et al. [181]; Dasari et al. [182]; Zhu et al. [183] | Stem cell therapy | Inducing neuroplasticity in respiratory pathways and improving ventilatory function. | Still being developed, efficacy has been questioned due to the contradictory results reported, concerns about the expense of developing adult stem cells, showed poor results, large clinical trials investigating the therapeutic efficacy of stem cell therapy in humans are lacking. | Evidence of nerve generation but not functional recovery, seems to cause no harm and appears to be safe, showing no adverse reactions or side effects, has gained broad interest. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatima, F.; Tharu, N.S.; Castillo, C.; Ng, A.; Gerasimenko, Y.; Ovechkin, A. Mechanism-Based Neuromodulation in Augmenting Respiratory Motor Function in Individuals with Spinal Cord Injury. J. Clin. Med. 2025, 14, 3827. https://doi.org/10.3390/jcm14113827
Fatima F, Tharu NS, Castillo C, Ng A, Gerasimenko Y, Ovechkin A. Mechanism-Based Neuromodulation in Augmenting Respiratory Motor Function in Individuals with Spinal Cord Injury. Journal of Clinical Medicine. 2025; 14(11):3827. https://doi.org/10.3390/jcm14113827
Chicago/Turabian StyleFatima, Farwah, Niraj Singh Tharu, Camilo Castillo, Alex Ng, Yury Gerasimenko, and Alexander Ovechkin. 2025. "Mechanism-Based Neuromodulation in Augmenting Respiratory Motor Function in Individuals with Spinal Cord Injury" Journal of Clinical Medicine 14, no. 11: 3827. https://doi.org/10.3390/jcm14113827
APA StyleFatima, F., Tharu, N. S., Castillo, C., Ng, A., Gerasimenko, Y., & Ovechkin, A. (2025). Mechanism-Based Neuromodulation in Augmenting Respiratory Motor Function in Individuals with Spinal Cord Injury. Journal of Clinical Medicine, 14(11), 3827. https://doi.org/10.3390/jcm14113827