Endoscopic Ultrasound-Guided Pancreatic Cystic Fluid Biochemical and Genetic Analysis for the Differentiation Between Mucinous and Non-Mucinous Pancreatic Cystic Lesions
Abstract
:1. Introduction
2. Diagnostic Utility of CA19.9
3. Diagnostic Utility of CEA
4. Diagnostic Utility of Intracystic Glucose Measurement
Reference | Year | Study Design | No. of Patients | Type of Glucose Testing | Glucose Cut-Off for M-PCLs (mg/dL) | CEA Cut-Off for M-PCLs (mg/dL) | Glucose Sensitivity (%) | Glucose Specificity (%) | CEA Sensitivity (%) | CEA Specificity (%) |
---|---|---|---|---|---|---|---|---|---|---|
Zamir et al. [41] | 2022 | Prospective, single-center | 101 | Laboratory and glucometer | <87 | >192 | 90.9 | 83.3 | 46.1 | 100.0 |
Zikos et al. [30] | 2015 | Retrospective, single-center | 65 | Laboratory and glucometer | <50 | >192 | 95.0 | 57.0 | 77.0 | 83.0 |
Carr et al. [42] | 2018 | Prospective, single-center | 153 | Glucometer | <50 | >192 | 92.0 | 87.0 | 58.0 | 96.0 |
Faias et al. [51] | 2019 | Retrospective, single-center | 82 | Glucometer | <50 | >192 | 89.0 | 86.0 | 72.0 | 96.0 |
Ribaldone et al. [31] | 2020 | Prospective, single-center | 56 | Laboratory | <50 | >192 | 93.6 | 96.0 | 54.8 | 100.0 |
Bruni et al. [40] | 2024 | Prospective, multicenter | 50 | Laboratory and glucometer | ≤50 | ≥192 | 93.2 | 76.5 | 55.6 | 87.5 |
Simons-Linares et al. [34] | 2020 | Retrospective, single-center | 113 | Laboratory | ≤41 | ≥192 | 92 | 92 | 51 | 88 |
Rossi et al. [45] | 2020 | Prospective, single-center | 48 | Laboratory | ≤30 | ≥192 | 91.3 | 100.0 | 37.5 | 100.0 |
Yadav et al. [52] | 2014 | Retrospective, single-center | 17 | Laboratory | <21 | >184 | 100.0 | 83.3 | 36.45 | 100.0 |
5. DNA-Based Biomarkers
6. Challenges and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CA 19-9 | Carbohydrate Antigen 19-9 |
CEA | Carcinoembryonic Antigen |
CT | Computed Tomography |
EUS | Endoscopic Ultrasound |
EUS-FNA | Endoscopic Ultrasound-Guided Fine Needle Aspiration |
HGD | High-Grade Dysplasia |
IPMN | Intraductal Papillary Mucinous Neoplasm |
LD | Linear Dichroism |
MCN | Mucinous Cystic Neoplasm |
MDPI | Multidisciplinary Digital Publishing Institute |
M-PCL | Mucinous Pancreatic Cystic Lesion |
MRI | Magnetic Resonance Imaging |
nCLE | Needle-based confocal laser endomicroscopy |
NM-PCL | Non-Mucinous Pancreatic Cystic Lesion |
NGS | Next-Generation Sequencing |
PDAC | Pancreatic Ductal Adenocarcinoma |
PCL | Pancreatic Cystic Lesion |
SCN | Serous Cystadenoma |
TLA | Three Letter Acronym |
References
- Del Chiaro, M.; Besselink, M.G.; Scholten, L.; Bruno, M.J.; Cahen, D.L.; Gress, T.M.; van Hooft, J.E.; Lerch, M.M.; Mayerle, J.; Hackert, T.; et al. European evidence-based guidelines on pancreatic cystic neoplasms. Gut 2018, 67, 789–804. [Google Scholar] [CrossRef]
- Ohtsuka, T.; Castillo, C.F.-D.; Furukawa, T.; Hijioka, S.; Jang, J.-Y.; Lennon, A.M.; Miyasaka, Y.; Ohno, E.; Salvia, R.; Wolfgang, C.L.; et al. International evidence-based Kyoto guidelines for the management of intraductal papillary mucinous neoplasm of the pancreas. Pancreatology 2024, 24, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Elta, G.H.; Enestvedt, B.K.; Sauer, B.G.; Lennon, A.M. ACG Clinical Guideline: Diagnosis and Management of Pancreatic Cysts. Am. J. Gastroenterol. 2018, 113, 464–479. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Ohno, E.; Balduzzi, A.; Hijioka, S.; De Pastena, M.; Marchegiani, G.; Kato, H.; Takenaka, M.; Haba, S.; Salvia, R. Association of high-risk stigmata and worrisome features with advanced neoplasia in intraductal papillary mucinous neoplasms (IPMN): A systematic review. Pancreatology 2024, 24, 48–61. [Google Scholar] [CrossRef]
- Mao, K.Z.; Ma, C.; Song, B. Radiomics advances in the evaluation of pancreatic cystic neoplasms. Heliyon 2024, 10, e25535. [Google Scholar] [CrossRef] [PubMed]
- Gardner, T.B.; Park, W.G.; Allen, P.J. Diagnosis and Management of Pancreatic Cysts. Gastroenterology 2024, 167, 454–468. [Google Scholar] [CrossRef] [PubMed]
- Lisotti, A.; Napoleon, B.; Facciorusso, A.; Cominardi, A.; Crinò, S.F.; Brighi, N.; Gincul, R.; Kitano, M.; Yamashita, Y.; Marchegiani, G.; et al. Contrast-enhanced EUS for the characterization of mural nodules within pancreatic cystic neoplasms: Systematic review and meta-analysis. Gastrointest. Endosc. 2021, 94, 881–889.e5. [Google Scholar] [CrossRef]
- Assifi, M.M.; Nguyen, P.D.; Agrawal, N.; Dedania, N.; Kennedy, E.P.; Sauter, P.K.; Prestipino, A.; Winter, J.M.; Yeo, C.J.; Lavu, H. Non-neoplastic Epithelial Cysts of the Pancreas: A Rare, Benign Entity. J. Gastrointest. Surg. 2014, 18, 523–531. [Google Scholar] [CrossRef]
- Bellocchi, M.C.C.; Manfrin, E.; Brillo, A.; Bernardoni, L.; Lisotti, A.; Fusaroli, P.; Parisi, A.; Sina, S.; Facciorusso, A.; Gabbrielli, A.; et al. Rare pancreatic/peripancreatic cystic lesions can be accurately characterized by EUS with through-the-needle biopsy—A unique pictorial essay with clinical and histopathological correlations. Diagnostics 2024, 13, 3663. [Google Scholar] [CrossRef]
- Gu, A.; Li, J.; Qiu, S.; Hao, S.; Yue, Z.-Y.; Zhai, S.; Li, M.-Y.; Liu, Y. Pancreatic cancer environment: From patient-derived models to single-cell omics. Mol. Omics 2024, 20, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Gonda, T.A.; Cahen, D.L.; Farrell, J.J. Pancreatic Cysts. N. Engl. J. Med. 2024, 391, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Jalal, M.; Gbadegesin, S.A.; Ibrahim, S.; Tehami, N. Recent advances in detecting premalignant pancreatic cysts. J. Cancer Metastasis Treat. 2023, 9, 11. [Google Scholar] [CrossRef]
- Singh, R.R.; Gopakumar, H.; Sharma, N.R. Diagnosis and Management of Pancreatic Cysts: A Comprehensive Review of the Literature. Diagnostics 2023, 13, 550. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.S. Updates in diagnosis and management of pancreatic cysts. World J. Gastroenterol. 2021, 27, 5700–5714. [Google Scholar] [CrossRef]
- Hawes, R.H.; Clancy, J.; Hasan, M.K. Endoscopic Ultrasound-Guided Fine Needle Aspiration in Cystic Pancreatic Lesions. Clin. Endosc. 2012, 45, 128. [Google Scholar] [CrossRef]
- Rift, C.V.; Scheie, D.; Toxværd, A.; Kovacevic, B.; Klausen, P.; Vilmann, P.; Hansen, C.P.; Lund, E.L.; Hasselby, J.P. Diagnostic accuracy of EUS-guided through-the-needle-biopsies and simultaneously obtained fine needle aspiration for cytology from pancreatic cysts: A systematic review and meta-analysis. Pathol. Res. Pract. 2021, 220, 153368. [Google Scholar] [CrossRef]
- Vege, S.S.; Ziring, B.; Jain, R.; Moayyedi, P.; Adams, M.A.; Dorn, S.D.; Dudley-Brown, S.L.; Flamm, S.L.; Gellad, Z.F.; Gruss, C.B.; et al. American gastroenterological association institute guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology 2015, 148, 819–822. [Google Scholar] [CrossRef]
- Koprowski, H.; Herlyn, M.; Steplewski, Z.; Sears, H.F. Specific antigen in serum of patients with colon carcinoma. Science 1981, 212, 53–55. [Google Scholar] [CrossRef]
- Lee, T.; Teng, T.Z.J.; Shelat, V.G. Carbohydrate antigen 19-9—Tumor marker: Past, present, and future. World J. Gastrointest. Surg. 2020, 12, 468. [Google Scholar] [CrossRef]
- Levink, I.J.M.; Jaarsma, S.C.; Koopmann, B.D.M.; van Riet, P.A.; Overbeek, K.A.; Meziani, J.; Sprij, M.L.J.A.; Casadei, R.; Ingaldi, C.; Polkowski, M.; et al. The additive value of CA19.9 monitoring in a pancreatic cyst surveillance program. United Eur. Gastroenterol. J. 2023, 11, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Aljebreen, A.M.; Romagnuolo, J.; Perini, R.; Sutherland, F. Utility of endoscopic ultrasound, cytology and fluid carcinoembryonic antigen and CA 19-9 levels in pancreatic cystic lesions. World J. Gastroenterol. WJG 2007, 13, 3962–3966. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Fernández-del Castillo, C.; Adsay, V.; Chari, S.; Falconi, M.; Jang, J.-Y.; Kimura, W.; Levy, P.; Pitman, M.B.; Schmidt, C.M.; et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology 2012, 12, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Goonetilleke, K.S.; Siriwardena, A.K. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol. 2007, 33, 266–270. [Google Scholar] [CrossRef]
- Park, J.; Yun, H.S.; Lee, K.H.; Lee, K.T.; Lee, J.K.; Lee, S.-Y. Discovery and Validation of Biomarkers That Distinguish Mucinous and Nonmucinous Pancreatic Cysts. Cancer Res. 2015, 75, 3227–3235. [Google Scholar] [CrossRef]
- Perri, G.; Vege, S.S.; Marchegiani, G. Monitoring Ca19-9 during pancreatic cyst surveillance: Better safe than sorry? United Eur. Gastroenterol. J. 2023, 11, 599–600. [Google Scholar] [CrossRef]
- Stigliano, S.; Zaccari, P.; Severi, C. Pancreatic intra-cystic CA 19-9 dosage in the management of pancreatic cysts: Useful or confounding? Dig. Liver Dis. 2021, 53, 131–133. [Google Scholar] [CrossRef]
- Litvak, A.; Cercek, A.; Segal, N.; Reidy-Lagunes, D.; Stadler, Z.K.; Yaeger, R.D.; Kemeny, N.E.; Weiser, M.R.; Pessin, M.S.; Saltz, L. False-positive elevations of carcinoembryonic antigen in patients with a history of resected colorectal cancer. J. Natl. Compr. Cancer Netw. 2014, 12, 907–913. [Google Scholar] [CrossRef]
- Delgado, J.A.; Ballesteros, M.A.; Parera, M.M.; Bauça, J.M. Pancreatic Cancer Insights: Optimization of the Diagnostic Capacity of Tumor Biomarkers. Lab. Med. 2021, 52, 550–557. [Google Scholar] [CrossRef]
- Zikos, T.; Pham, K.; Bowen, R.; Chen, A.M.; Banerjee, S.; Friedland, S.; Dua, M.M.; A Norton, J.; A Poultsides, G.; Visser, B.C.; et al. Cyst fluid glucose is rapidly feasible and accurate in diagnosing mucinous pancreatic cysts. Am. J. Gastroenterol. 2015, 110, 909–914. [Google Scholar] [CrossRef]
- Ribaldone, D.G.; Bruno, M.; Gaia, S.; Cantamessa, A.; Bragoni, A.; Caropreso, P.; Sacco, M.; Fagoonee, S.; Saracco, G.M.; De Angelis, C. Differential diagnosis of pancreatic cysts: A prospective study on the role of intra-cystic glucose concentration. Dig. Liver Dis. 2020, 52, 1026–1032. [Google Scholar] [CrossRef] [PubMed]
- Kankanala, V.L.; Mukkamalla, S.K.R. Carcinoembryonic Antigen; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Kwan, M.C.; Pitman, M.B.; Castillo, C.F.-D.; Zhang, M.L. Revisiting the performance of cyst fluid carcinoembryonic antigen as a diagnostic marker for pancreatic mucinous cysts: A comprehensive 20-year institutional review. Gut 2024, 73, 629–638. [Google Scholar] [CrossRef]
- Smith, Z.L.; Satyavada, S.; Simons-Linares, R.; Mok, S.R.; Moreno, B.M.; Aparicio, J.R.; Chahal, P. Intracystic Glucose and Carcinoembryonic Antigen in Differentiating Histologically Confirmed Pancreatic Mucinous Neoplastic Cysts. Am. J. Gastroenterol. 2022, 117, 478–485. [Google Scholar] [CrossRef]
- Cizginer, S.; Turner, B.; Bilge, A.R.; Karaca, C.; Pitman, M.B.; Brugge, W.R. Cyst fluid carcinoembryonic antigen is an accurate diagnostic marker of pancreatic mucinous cysts. Pancreas 2011, 40, 1024–1028. [Google Scholar] [CrossRef]
- Brugge, W.R.; Lewandrowski, K.; Lee-Lewandrowski, E.; Centeno, B.A.; Szydlo, T.; Regan, S.; del Castillo, C.F.; Warshaw, A.L. Diagnosis of Pancreatic Cystic Neoplasms: A Report of the Cooperative Pancreatic Cyst Study. Gastroenterology 2004, 126, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.R.; Mondal, S.; Akhtar, M.J.; Singh, R.K.; Prakash, P.; Sinha, S.R., Sr. Evaluating Carcinoembryonic Antigen and Glucose Levels in Pancreatic Cyst Fluid for Mucinous Versus Non-mucinous Differentiation. Cureus 2024, 16, e62686. [Google Scholar] [CrossRef] [PubMed]
- Gyimesi, G.; Keczer, B.; Rein, P.; Horváth, M.; Szűcs, Á.; Marjai, T.; Szijártó, A.; Hritz, I. Diagnostic performance of intracystic carcinoembryonic antigen (CEA) versus glucose in differentiation of mucinous and non-mucinous pancreatic cysts. Pathol. Oncol. Res. 2024, 30, 1611881. [Google Scholar] [CrossRef]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef]
- Bruni, A.; Eusebi, L.H.; Lisotti, A.; Ricci, C.; Maida, M.; Fusaroli, P.; Barbara, G.; Sadik, R.; Pagano, N.; Hedenström, P.; et al. Intracystic Glucose Measurement for On-Site Differentiation Between Mucinous and Non-Mucinous Pancreatic Cystic Lesions. Cancers 2024, 16, 4198. [Google Scholar] [CrossRef]
- Zamir, E.; Zelnik Yovel, D.; Scapa, E.; Shnell, M.; Bar, N.; Bar Yishay, I.; Ziv-Baran, T.; Younis, F.; Phillips, A.; Lubezky, N.; et al. Pancreatic cyst fluid glucose: A rapid on-site diagnostic test for mucinous cysts. Ther. Adv. Gastroenterol. 2022, 15, 17562848221133580. [Google Scholar] [CrossRef]
- Carr, R.A.; Yip-Schneider, M.T.; Simpson, R.E.; Dolejs, S.; Schneider, J.G.; Wu, H.; Ceppa, E.P.; Park, W.; Schmidt, C.M. Pancreatic cyst fluid glucose: Rapid, inexpensive, and accurate diagnosis of mucinous pancreatic cysts. Surgery 2018, 163, 600–605. [Google Scholar] [CrossRef]
- Ribeiro, T.; Lopes, S.; Moutinho-Ribeiro, P.; Macedo, G.; Vilas-Boas, F. Performance of Intracystic Glucose Measurement for the Characterization of Pancreatic Cystic Lesions. J. Gastrointest. Liver Dis. 2023, 33, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Mohan, B.P.; Madhu, D.M.; Khan, S.R.M.; Kassab, L.L.M.; Ponnada, S.; Chandan, S.; Facciorusso, A.; Crino, S.F.; Barresi, L.; McDonough, S.B.; et al. Intracystic Glucose Levels in Differentiating Mucinous from Nonmucinous Pancreatic Cysts: A Systematic Review and Meta-analysis. J. Clin. Gastroenterol. 2022, 56, E131–E136. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.; Capurso, G.; Petrone, M.; Locatelli, M.; Crippa, S.; Doglioni, C.; Mariani, A.; Testoni, S.; Archibugi, L.; Arcidiacono, P. Glucose levels in eus-aspirated cyst fluid have a high accuracy for the diagnosis of mucinous pancreatic cystic lesions. Endoscopy 2020, 52, OP154. [Google Scholar] [CrossRef]
- Rossi, G.; Petrone, M.C.; Tacelli, M.; Zaccari, P.; Crippa, S.; Belfiori, G.; Aleotti, F.; Locatelli, M.; Piemonti, L.; Doglioni, C.; et al. Glucose and lactate levels are lower in EUS-aspirated cyst fluid of mucinous vs. non-mucinous pancreatic cystic lesions. Dig. Liver Dis. 2024, 56, 836–840. [Google Scholar] [CrossRef]
- Gorris, M.; Dijk, F.; Farina, A.; Halfwerk, J.B.; Hooijer, G.K.; Lekkerkerker, S.J.; Voermans, R.P.; Wielenga, M.C.; Besselink, M.G.; van Hooft, J.E. Validation of combined carcinoembryonic antigen and glucose testing in pancreatic cyst fluid to differentiate mucinous from non-mucinous cysts. Surg. Endosc. 2023, 37, 3739–3746. [Google Scholar] [CrossRef]
- Lopes, C.V. Cyst fluid glucose: An alternative to carcinoembryonic antigen for pancreatic mucinous cysts. World J. Gastroenterol. 2019, 25, 2271. [Google Scholar] [CrossRef]
- Williet, N.; Caillol, F.; Karsenti, D.; Abou-Ali, E.; Camus, M.; Belle, A.; Chaput, U.; Levy, J.; Ratone, J.-P.; Tournier, Q.; et al. The level of glucose in pancreatic cyst fluid is more accurate than carcinoembryonic antigen to identify mucinous tumors: A French multicenter study. Endosc. Ultrasound 2023, 12, 377–381. [Google Scholar] [CrossRef]
- McCarty, T.R.; Garg, R.; Rustagi, T. Pancreatic cyst fluid glucose in differentiating mucinous from nonmucinous pancreatic cysts: A systematic review and meta-analysis. Gastrointest. Endosc. 2021, 94, 698–712.e6. [Google Scholar] [CrossRef]
- Faias, S.; Cravo, M.; Chaves, P.; Pereira, L. Comparative analysis of glucose and carcinoembryonic antigen in the diagnosis of pancreatic mucinous cysts: A systematic review and meta-analysis. Gastrointest. Endosc. 2021, 94, 235–247. [Google Scholar] [CrossRef]
- Yadav, D.; Chahal, P.; Vargo, J.; Sanaka, M.; Jang, S.; Zuccaro, G. Clinical Utility of Intracystic Glucose Levels in Differentiating Mucinous From Non-mucinous Pancreatic Cysts. Am. J. Gastroenterol. 2014, 109, S70. [Google Scholar] [CrossRef]
- Nikiforova, M.N.; Wald, A.I.; Spagnolo, D.M.; Melan, M.A.; Grupillo, M.; Lai, Y.-T.; Brand, R.E.; O’broin-Lennon, A.M.; McGrath, K.; Park, W.G.; et al. A Combined DNA/RNA-based Next-Generation Sequencing Platform to Improve the Classification of Pancreatic Cysts and Early Detection of Pancreatic Cancer Arising From Pancreatic Cysts. Ann. Surg. 2023, 278, E789–E797. [Google Scholar] [CrossRef] [PubMed]
- Singhi, A.D.; Nikiforova, M.N.; Fasanella, K.E.; McGrath, K.M.; Pai, R.K.; Ohori, N.P.; Bartholow, T.L.; Brand, R.E.; Chennat, J.S.; Lu, X.; et al. Preoperative GNAS and KRAS testing in the diagnosis of pancreatic mucinous cysts. Clin. Cancer Res. 2014, 20, 4381–4389. [Google Scholar] [CrossRef]
- Singhi, A.D.; McGrath, K.; E Brand, R.; Khalid, A.; Zeh, H.J.; Chennat, J.S.; E Fasanella, K.; I Papachristou, G.; Slivka, A.; Bartlett, D.L.; et al. Preoperative next-generation sequencing of pancreatic cyst fluid is highly accurate in cyst classification and detection of advanced neoplasia. Gut 2018, 67, 2131–2141. [Google Scholar] [CrossRef]
- Springer, S.; Masica, D.L.; Dal Molin, M.; Douville, C.; Thoburn, C.J.; Afsari, B.; Li, L.; Cohen, J.D.; Thompson, E.; Allen, P.J.; et al. A multimodality test to guide the management of patients with a pancreatic cyst. Sci. Transl. Med. 2019, 11, eaav4772. [Google Scholar] [CrossRef]
- Springer, S.; Wang, Y.; Dal Molin, M.; Masica, D.L.; Jiao, Y.; Kinde, I.; Blackford, A.; Raman, S.P.; Wolfgang, C.L.; Tomita, T.; et al. A Combination of Molecular Markers and Clinical Features Improve the Classification of Pancreatic Cysts. Gastroenterology 2015, 149, 1501–1510. [Google Scholar] [CrossRef]
- Kadayifci, A.; Al-Haddad, M.; Atar, M.; Dewitt, J.M.; Forcione, D.G.; Sherman, S.; Casey, B.W.; Castillo, C.F.-D.; Schmidt, C.M.; Pitman, M.B.; et al. The value of KRAS mutation testing with CEA for the diagnosis of pancreatic mucinous cysts. Endosc. Int. Open 2016, 4, E391–E396. [Google Scholar] [CrossRef]
- Sakhdari, A.; Moghaddam, P.A.; Ok, C.Y.; Walter, O.; Tomaszewicz, K.; Caporelli, M.-L.; Meng, X.; LaFemina, J.; Whalen, G.; Belkin, E.; et al. Somatic molecular analysis augments cytologic evaluation of pancreatic cyst fluids as a diagnostic tool. Oncotarget 2019, 10, 4026–4037. [Google Scholar] [CrossRef] [PubMed]
- Amato, E.; Molin, M.D.; Mafficini, A.; Yu, J.; Malleo, G.; Rusev, B.; Fassan, M.; Antonello, D.; Sadakari, Y.; Castelli, P.; et al. Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J. Pathol. 2014, 233, 217–227. [Google Scholar] [CrossRef]
- Pflüger, M.J.; Jamouss, K.T.; Afghani, E.; Lim, S.J.; Franco, S.R.; Mayo, H.; Spann, M.; Wang, H.; Singhi, A.; Lennon, A.M.; et al. Predictive ability of pancreatic cyst fluid biomarkers: A systematic review and meta-analysis. Pancreatology 2023, 23, 868–877. [Google Scholar] [CrossRef]
- Hata, T.; Mizuma, M.; Motoi, F.; Omori, Y.; Ishida, M.; Nakagawa, K.; Hayashi, H.; Morikawa, T.; Kamei, T.; Furukawa, T.; et al. GNAS mutation detection in circulating cell-free DNA is a specific predictor for intraductal papillary mucinous neoplasms of the pancreas, especially for intestinal subtype. Sci. Rep. 2020, 10, 17761. [Google Scholar] [CrossRef]
- Haeberle, L.; Schramm, M.; Goering, W.; Frohn, L.; Driescher, C.; Hartwig, W.; Preissinger-Heinzel, H.-K.; Beyna, T.; Neuhaus, H.; Fuchs, K.; et al. Molecular analysis of cyst fluids improves the diagnostic accuracy of pre-operative assessment of pancreatic cystic lesions. Sci. Rep. 2021, 11, 2901. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, D.; Kazdal, D.; Allgäuer, M.; Trunk, M.; Vornhusen, S.; Nahm, A.-M.; Doll, M.; Weingärtner, S.; Endris, V.; Penzel, R.; et al. KRAS/GNAS-testing by highly sensitive deep targeted next generation sequencing improves the endoscopic ultrasound-guided workup of suspected mucinous neoplasms of the pancreas. Genes Chromosomes Cancer 2021, 60, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Paniccia, A.; Polanco, P.M.; Boone, B.A.; Wald, A.I.; McGrath, K.; Brand, R.E.; Khalid, A.; Kubiliun, N.; O’Broin-Lennon, A.M.; Park, W.G.; et al. Prospective, Multi-Institutional, Real-Time Next-Generation Sequencing of Pancreatic Cyst Fluid Reveals Diverse Genomic Alterations That Improve the Clinical Management of Pancreatic Cysts. Gastroenterology 2023, 164, 117–133.e7. [Google Scholar] [CrossRef]
- Tzvi Ciner, A.; Jiang, Y.; Hausner, P. BRAF-Driven Pancreatic Cancer: Prevalence, Molecular Features, and Therapeutic Opportunities. Mol. Cancer Res. 2023, 21, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Avery, T.Y.; Köhler, N.; Zeiser, R.; Brummer, T.; Ruess, D.A. Onco-immunomodulatory properties of pharmacological interference with RAS-RAF-MEK-ERK pathway hyperactivation. Front. Oncol. 2022, 12, 931774. [Google Scholar] [CrossRef]
- Ren, R.; Krishna, S.G.; Chen, W.; Frankel, W.L.; Shen, R.; Zhao, W.; Avenarius, M.R.; Garee, J.; Caruthers, S.; Jones, D. Activation of the RAS pathway through uncommon BRAF mutations in mucinous pancreatic cysts without KRAS mutation. Mod. Pathol. 2021, 34, 438–444. [Google Scholar] [CrossRef]
- Witkiewicz, A.K.; McMillan, E.A.; Balaji, U.; Baek, G.; Lin, W.-C.; Mansour, J.; Mollaee, M.; Wagner, K.-U.; Koduru, P.; Yopp, A.; et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 2015, 6, 6744. [Google Scholar] [CrossRef]
- Goggins, M. The role of biomarkers in the early detection of pancreatic cancer. Fam. Cancer 2024, 23, 309. [Google Scholar] [CrossRef]
- Sadakari, Y.; Kanda, M.; Maitani, K.; Borges, M.; I Canto, M.; Goggins, M. Mutant KRAS and GNAS DNA Concentrations in Secretin-Stimulated Pancreatic Fluid Collected from the Pancreatic Duct and the Duodenal Lumen. Clin. Transl. Gastroenterol. 2014, 5, e62. [Google Scholar] [CrossRef]
- Rift, C.V.; Melchior, L.C.; Kovacevic, B.; Klausen, P.; Toxværd, A.; Grossjohann, H.; Karstensen, J.G.; Brink, L.; Hassan, H.; Kalaitzakis, E.; et al. Targeted next-generation sequencing of EUS-guided through-the-needle-biopsy sampling from pancreatic cystic lesions. Gastrointest. Endosc. 2023, 97, 50–58.e4. [Google Scholar] [CrossRef] [PubMed]
- Pflüger, M.J.; Fujikura, K.; Braxton, A.M.; Lee, J.W.; Zucha, D.M.; Pedro, B.A.; Goodman, D.; Lu, J.; Jiang, L.; Wang, X.; et al. Multiregion Genomic Analysis of Human Pancreatic Mucinous Cystic Neoplasms. Mod. Pathol. 2025, 38, 100759. [Google Scholar] [CrossRef]
- Napoleon, B.; Krishna, S.G.; Marco, B.; Carr-Locke, D.; Chang, K.J.; Ginès, À.; Gress, F.G.; Larghi, A.; Oppong, K.W.; Palazzo, L.; et al. Confocal endomicroscopy for evaluation of pancreatic cystic lesions: A systematic review and international Delphi consensus report. Endosc. Int. Open 2020, 8, E1566. [Google Scholar] [CrossRef] [PubMed]
- Napoleon, B.; Palazzo, M.; Lemaistre, A.-I.; Caillol, F.; Palazzo, L.; Aubert, A.; Buscail, L.; Maire, F.; Morellon, B.M.; Pujol, B.; et al. Needle-based confocal laser endomicroscopy of pancreatic cystic lesions: A prospective multicenter validation study in patients with definite diagnosis. Endoscopy 2018, 51, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Krishna, S.G.; Hart, P.A.; DeWitt, J.M.; DiMaio, C.J.; Kongkam, P.; Napoleon, B.; Othman, M.O.; Tan, D.M.Y.; Strobel, S.G.; Stanich, P.P.; et al. EUS-guided confocal laser endomicroscopy: Prediction of dysplasia in intraductal papillary mucinous neoplasms (with video). Gastrointest. Endosc. 2020, 91, 551–563.e5. [Google Scholar] [CrossRef]
- Krishna, S.G.; Swanson, B.; Conwell, D.L.; Muscarella, P. In vivo and ex vivo needle-based confocal endomicroscopy of intraductal papillary mucinous neoplasm of the pancreas. Gastrointest. Endosc. 2015, 82, 571–572. [Google Scholar] [CrossRef]
- Durkin, C.; Krishna, S.G. Advanced diagnostics for pancreatic cysts: Confocal endomicroscopy and molecular analysis. World J. Gastroenterol. 2019, 25, 2734. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruni, A.; Tuccillo, L.; Dell’Anna, G.; Mandarino, F.V.; Lisotti, A.; Maida, M.; Ricci, C.; Fuccio, L.; Eusebi, L.H.; Marasco, G.; et al. Endoscopic Ultrasound-Guided Pancreatic Cystic Fluid Biochemical and Genetic Analysis for the Differentiation Between Mucinous and Non-Mucinous Pancreatic Cystic Lesions. J. Clin. Med. 2025, 14, 3825. https://doi.org/10.3390/jcm14113825
Bruni A, Tuccillo L, Dell’Anna G, Mandarino FV, Lisotti A, Maida M, Ricci C, Fuccio L, Eusebi LH, Marasco G, et al. Endoscopic Ultrasound-Guided Pancreatic Cystic Fluid Biochemical and Genetic Analysis for the Differentiation Between Mucinous and Non-Mucinous Pancreatic Cystic Lesions. Journal of Clinical Medicine. 2025; 14(11):3825. https://doi.org/10.3390/jcm14113825
Chicago/Turabian StyleBruni, Angelo, Luigi Tuccillo, Giuseppe Dell’Anna, Francesco Vito Mandarino, Andrea Lisotti, Marcello Maida, Claudio Ricci, Lorenzo Fuccio, Leonardo Henry Eusebi, Giovanni Marasco, and et al. 2025. "Endoscopic Ultrasound-Guided Pancreatic Cystic Fluid Biochemical and Genetic Analysis for the Differentiation Between Mucinous and Non-Mucinous Pancreatic Cystic Lesions" Journal of Clinical Medicine 14, no. 11: 3825. https://doi.org/10.3390/jcm14113825
APA StyleBruni, A., Tuccillo, L., Dell’Anna, G., Mandarino, F. V., Lisotti, A., Maida, M., Ricci, C., Fuccio, L., Eusebi, L. H., Marasco, G., & Barbara, G. (2025). Endoscopic Ultrasound-Guided Pancreatic Cystic Fluid Biochemical and Genetic Analysis for the Differentiation Between Mucinous and Non-Mucinous Pancreatic Cystic Lesions. Journal of Clinical Medicine, 14(11), 3825. https://doi.org/10.3390/jcm14113825