Predictive Value of Left Ventricular Systolic Dysfunction or Wall Motion Abnormalities for Non-Ischemic Myocardial Injury: A Multicenter Cardiovascular Resonance Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cardiovascular Magnetic Resonance Imaging
2.2. Statistical Analysis
3. Results
4. Discussion
Limitation of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | area under the curve |
BSA | body surface area |
CAD | coronary artery disease |
CMR | cardiac magnetic resonance |
ECG | electrocardiogram |
EF | ejection fraction |
IQR | interquartile range |
LGE | late gadolinium enhancement |
LV | left ventricle |
LVEF | left ventricular ejection fraction |
LVEDV | left ventricular end-diastolic volume |
NPV | negative predictive value |
TTE | transthoracic echocardiography |
PPV | positive predictive value |
ROC | receiver operating characteristic |
RWMA | regional wall motion abnormalities |
RV | right ventricle |
RVEDV | right ventricular end-diastolic volume |
RVEF | right ventricular ejection fraction |
SD | standard deviation |
SSFP | steady-state free precession |
WMSI | wall motion score index |
References
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed]
- Yeboah, J.; Rodriguez, C.J.; Stacey, B.; Lima, J.A.; Liu, S.; Carr, J.J.; Hundley, W.G.; Herrington, D.M. Prognosis of individuals with asymptomatic left ventricular systolic dysfunction in the multi-ethnic study of atherosclerosis (MESA). Circulation 2012, 126, 2713–2719. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, L.R.; Jessup, M. Stage B heart failure: Management of asymptomatic left ventricular systolic dysfunction. Circulation 2006, 113, 2851–2860. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Soliman-Aboumarie, H.; Breithardt, O.-A.; Gargani, L.; Trambaiolo, P.; Neskovic, A.N. How-to: Focus Cardiac Ultrasound in acute settings. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 150–153. [Google Scholar] [CrossRef]
- Foley, T.A.; Mankad, S.V.; Anavekar, N.S.; Bonnichsen, C.R.; Miller, M.F.; Morris, T.D.; Araoz, P.A. Measuring left ventricular ejection fraction-techniques and potential pitfalls. Eur. Cardiol. 2012, 8, 108–114. [Google Scholar] [CrossRef]
- Vöhringer, M.; Mahrholdt, H.; Yilmaz, A.; Sechtem, U. Significance of late gadolinium enhancement in Cardiovascular Magnetic Resonance Imaging (CMR). Herz 2007, 32, 129–137. [Google Scholar] [CrossRef]
- Jenista, E.R.; Wendell, D.C.; Azevedo, C.F.; Klem, I.; Judd, R.M.; Kim, R.J.; Kim, H.W. Revisiting how we perform late gadolinium enhancement CMR: Insights gleaned over 25 years of clinical practice. J. Cardiovasc. Magn. Reson. 2023, 25, 18. [Google Scholar] [CrossRef]
- Drazner, M.H.; Bozkurt, B.; Cooper, L.T.; Aggarwal, N.R.; Basso, C.; Bhave, N.M.; Caforio, A.L.; Ferreira, V.M.; Heidecker, B.; Kontorovich, A.R. 2024 ACC Expert Consensus Decision Pathway on Strategies and Criteria for the Diagnosis and Management of Myocarditis: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2025, 4, 391–431. [Google Scholar] [CrossRef]
- World Health Organization (WHO) Consultation. Definition and Diagnosis of Diabetes and Intermediate Hyperglycaemia. Available online: https://www.who.int/publications/i/item/definition-and-diagnosis-of-diabetes-mellitus-and-intermediate-hyperglycaemia (accessed on 23 January 2025).
- Use of Glycated Haemoglobin (HbA1c) in Diagnosis of Diabetes Mellitus. 2011. Available online: https://www.who.int/publications/i/item/use-of-glycated-haemoglobin-(-hba1c)-in-diagnosis-of-diabetes-mellitus (accessed on 25 January 2025).
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar]
- Ferreira, V.M.; Schulz-Menger, J.; Holmvang, G.; Kramer, C.M.; Carbone, I.; Sechtem, U.; Kindermann, I.; Gutberlet, M.; Cooper, L.T.; Liu, P.; et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J. Am. Coll. Cardiol. 2018, 72, 3158–3176. [Google Scholar] [CrossRef] [PubMed]
- Kramer, C.M.; Barkhausen, J.; Bucciarelli-Ducci, C.; Flamm, S.D.; Kim, R.J.; Nagel, E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J. Cardiovasc. Magn. Reson. 2020, 22, 17. [Google Scholar] [CrossRef]
- Haberka, M.; Rajewska-Tabor, J.; Wojtowicz, D.; Jankowska, A.; Miszalski-Jamka, K.; Janus, M.; Dorniak, K.; Kulawiak-Gałąska, D.; Stasiow, B.; Rozmiarek, S.; et al. A distinct septal pattern of late gadolinium enhancement specific for COVID-induced myocarditis: A multicenter cardiovascular magnetic resonance study. Pol. Heart J. (Kardiol. Pol.) 2023, 81, 463–471. [Google Scholar] [CrossRef]
- Du Bois, D.; Du Bois, E.F. Clinical calorimetry: Tenth paper a formula to estimate the approximate surface area if height and weight be known. Arch. Intern. Med. 1916, XVII, 863–871. [Google Scholar] [CrossRef]
- Maceira, A.M.; Prasad, S.K.; Khan, M.; Pennell, D.J. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2006, 8, 417–426. [Google Scholar] [CrossRef]
- Cerqueira, M.D.; Weissman, N.J.; Dilsizian, V.; Jacobs, A.K.; Kaul, S.; Laskey, W.K.; Pennell, D.J.; Rumberger, J.A.; Ryan, T. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A Statement for Healthcare Professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002, 105, 539–542. [Google Scholar] [PubMed]
- Schiller, N.B.; Shah, P.M.; Crawford, M.; DeMaria, A.; Devereux, R.; Feigenbaum, H.; Gutgesell, H.; Reichek, N.; Sahn, D.; Schnittger, I.; et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J. Am. Soc. Echocardiogr. 1989, 2, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Medina, R.; Panidis, I.P.; Morganroth, J.; Kotler, M.N.; Mintz, G.S. The value of echocardiographic regional wall motion abnormalities in detecting coronary artery disease in patients with or without a dilated left ventricle. Am. Heart J. 1985, 109, 799–803. [Google Scholar] [CrossRef]
- Krivokapich, J.; Child, J.S.; O Walter, D.; Garfinkel, A. Prognostic value of dobutamine stress echocardiography in predicting cardiac events in patients with known or suspected coronary artery disease. J. Am. Coll. Cardiol. 1999, 33, 708–716. [Google Scholar] [CrossRef]
- Bernhard, B.; Joss, P.; Greisser, N.; Stark, A.W.; Schütze, J.; Shiri, I.; Safarkhanlo, Y.; Fischer, K.; Guensch, D.P.; Bastiaansen, J.A.M.; et al. Prognostic value of visual and quantitative CMR regional myocardial function in patients with suspected myocarditis. Int. J. Cardiovasc. Imaging 2024, 4, 907–920. [Google Scholar] [CrossRef]
- Doimo, S.; Ricci, F.; Aung, N.; Cooper, J.; Boubertakh, R.; Sanghvi, M.M.; Sinagra, G.; Petersen, S.E. Tissue-tracking in the assessment of late gadolinium enhancement in myocarditis and myocardial infarction. Magn. Reson. Imaging 2020, 73, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Ruivo, C.; Vilela, E.M.; Ladeiras-Lopes, R.; Faria, R.; Ferreira, N.; Ribeiro, V.G. Myocardial deformation measures by cardiac magnetic resonance tissue tracking in myocarditis: Relationship with systolic function and myocardial damage. Rev. Port. Cardiol. (Engl. Ed.) 2019, 11, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Manalo, R.; Bourget, L.; Garg, A.; Swaminathan, S. Does myocardial strain remain abnormal long after normalization of ejection fraction in patients with acute myocarditis? Echocardiography 2019, 3, 609–612. [Google Scholar] [CrossRef]
- Benameur, N.; Caiani, E.G.; Alessandrini, M.; Arous, Y.; Ben Abdallah, N.; Saadaoui, F.; Kraiem, T. Left ventricular MRI wall motion assessment by monogenic signal amplitude image computation. Magn. Reson. Imaging 2018, 54, 109–118. [Google Scholar] [CrossRef]
- Benameur, N.; Caiani, E.G.; Arous, Y.; ben Abdallah, N.; Kraiem, T. Interpretation of cardiac wall motion from cine-MRI combined with parametric imaging based on the Hilbert transform. Magn. Reson. Mater. Phys. Biol. Med. 2017, 4, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Papanastasiou, C.A.; Kampaktsis, P.N.; Bazmpani, M.A.; Zegkos, T.; Efthimiadis, G.; Tsapas, A.; Ziakas, A.; Karamitsos, T.D. Diagnostic Accuracy of CMR with Late Gadolinium Enhancement for Ischemic Cardiomyopathy: A Systematic Review and Meta-Analysis. JACC Cardiovasc. Imaging 2023, 3, 399–401. [Google Scholar] [CrossRef]
- Garcia, M.J.; Kwong, R.Y.; Scherrer-Crosbie, M.; Taub, C.C.; Blankstein, R.; Lima, J.; Bonow, R.O.; Eshtehardi, P.; Bois, J.P. State of the Art: Imaging for Myocardial Viability: A Scientific Statement From the American Heart Association. Circ. Cardiovasc. Imaging 2020, 7, e000053. [Google Scholar] [CrossRef]
- Shan, K.; Constantine, G.; Sivananthan, M.; Flamm, S.D. Role of cardiac magnetic resonance imaging in the assessment of myocardial viability. Circulation 2004, 11, 1328–1334. [Google Scholar] [CrossRef]
- Károlyi, M.; Polacin, M.; Kolossváry, M.; Sokolska, J.M.; Matziris, I.; Weber, L.; Alkadhi, H.; Manka, R. Comparative analysis of late gadolinium enhancement assessment techniques for monitoring fibrotic changes in myocarditis follow-up. Eur. Radiol. 2024, 11, 7264–7274. [Google Scholar] [CrossRef]
- Mileva, N.; Paolisso, P.; Gallinoro, E.; Fabbricatore, D.; Munhoz, D.; Bergamaschi, L.; Belmonte, M.; Panayotov, P.; Pizzi, C.; Barbato, E.; et al. Diagnostic and prognostic role of cardiac magnetic resonance in MINOCA. JACC Cardiovasc. Imaging 2023, 16, 376–389. [Google Scholar] [CrossRef]
- Meier, C.; Eisenblätter, M.; Gielen, S. Myocardial Late Gadolinium Enhancement (LGE) in Cardiac Magnetic Resonance Imaging (CMR)—An Important Risk Marker for Cardiac Disease. J. Cardiovasc. Dev. Dis. 2024, 2, 40. [Google Scholar] [CrossRef] [PubMed]
- Mahrholdt, H.; Wagner, A.; Judd, R.M.; Sechtem, U.; Kim, R.J. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J. 2005, 15, 1461–1474. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, A.N.; Gunton, J.; Nucifora, G.; McGavigan, A.D.; Selvanayagam, J.B. Impact of Late Gadolinium Enhancement on mortality, sudden death and major adverse cardiovascular events in ischemic and nonischemic cardiomyopathy: A systematic review and meta-analysis. Int. J. Cardiol. 2018, 254, 230–237. [Google Scholar] [CrossRef]
- Canton, L.; Suma, N.; Amicone, S.; Impellizzeri, A.; Bodega, F.; Marinelli, V.; Ciarlantini, M.; Casuso, M.; Bavuso, L.; Belà, R.; et al. Clinical impact of multimodality assessment of myocardial viability. Echocardiography 2024, 7, e15854. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, S.; Adenaw, N.; Katwal, A.B.; Lipinski, M.J.; Kramer, C.M.; Salerno, M. Late gadolinium enhancement on cardiac magnetic resonance predicts adverse cardiovascular outcomes in nonischemic cardiomyopathy: A systematic review and meta-analysis. Circ. Cardiovasc. Imaging 2014, 2, 250–258. [Google Scholar] [CrossRef]
- Georgiopoulos, G.; Figliozzi, S.; Sanguineti, F.; Aquaro, G.D.; di Bella, G.; Stamatelopoulos, K.; Chiribiri, A.; Garot, J.; Masci, P.G.; Ismail, T.F. Prognostic Impact of Late Gadolinium Enhancement by Cardiovascular Magnetic Resonance in Myocarditis: A Systematic Review and Meta-Analysis. Circ. Cardiovasc. Imaging 2021, 1, e011492. [Google Scholar] [CrossRef]
- Golukhova, E.Z.; Bulaeva, N.I.; Alexandrova, S.A.; Mrikaev, D.V.; Gromova, O.I.; Ruzina, E.V.; Berdibekov, B.S. The extent of late gadolinium enhancement predicts mortality, sudden death and major adverse cardiovascular events in patients with nonischaemic cardiomyopathy: A systematic review and meta-analysis. Clin. Radiol. 2023, 4, e342–e349. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, L.; Zhu, Z.; He, Y.; Li, X. Global burden of myocarditis in youth and middle age (1990–2019): A systematic analysis of the disease burden and thirty-year forecast. Curr. Probl. Cardiol. 2024, 9, 102735. [Google Scholar] [CrossRef]
- Friedrich, M.G.; Marcotte, F. Cardiac magnetic resonance assessment of myocarditis. Circ. Cardiovasc. Imaging 2013, 6, 833–839. [Google Scholar] [CrossRef]
- Joudar, I.; Aichouni, N.; Nasri, S.; Kamaoui, I.; Skiker, I. Diagnostic criteria for myocarditis on cardiac magnetic resonance imaging: An educational review. Ann. Med. Surg. 2023, 85, 3960. [Google Scholar] [CrossRef]
Patients with Suspected Myocarditis n = 773 | |
---|---|
Age, years | 44 ± 14 |
Female, n (%) | 366 (47) |
Hypertension, n (%) | 210 (27) |
Diabetes, n (%) | 50 (6) |
Hypercholesterolemia, n (%) | 110 (14) |
Coronary artery disease, n (%) | 36 (5) |
Body mass index, kg/m2 | 26.8 ± 4.8 |
Obesity, n (%) | 174 (22) |
CMR findings | |
LVEDV, mL | 159 ± 49 |
LVEF, % | 58 ± 10 |
LVEF < 50%, n (%) | 95 (12) |
LV mass, g | 120 ± 35 |
Regional wall motion abnormalities, n (%) | 138 (18) |
RVEDV, mL | 143 ± 40 |
RVEF, % | 55 ± 8 |
Patients with Confirmed Non-Ischemic Injury in CMR n = 456 | |
---|---|
Age, years | 43 ± 14.5 |
Female, n (%) | 177 (39) |
Hypertension, n (%) | 124 (27) |
Diabetes, n (%) | 38 (8) |
Hypercholesterolemia, n (%) | 53 (12) |
Coronary artery disease, n (%) | 29 (6) |
Body mass index, kg/m2 | 26.9 ± 4.8 |
Obesity, n (%) | 100 (22) |
CMR findings | |
LVEDV, mL | 165 ± 55 |
LVEF, % | 57 ± 11 |
LVEF < 50%, n (%) | 84 (18) |
LV mass, g | 127 ± 37 |
Regional wall motion abnormalities, n (%) | 126 (28) |
Number of myocardial segments with LGE | 3 (25–75) |
Number of patients with LGE in 1–3 myocardial segments, n (%) | 258 (57) |
Total amount of LGE in % of the LV mass | 5.9 (2.9–10.3) |
Total amount of LGE, g | 9.9 (4.9–17.3) |
RVEDV, mL | 146 ± 41 |
RVEF, % | 55 ± 9 |
Patients with LVEF ≥ 50% n = 372 | Patients with LVEF < 50% n = 84 | p | |
---|---|---|---|
Age, years | 42 ± 14 | 46 ± 16 | 0.03 |
Female, n (%) | 151 (41) | 26 (31) | 0.1 |
Hypertension, n (%) | 92 (24) | 32 (38) | 0.08 |
Diabetes, n (%) | 24 (6) | 14 (16) | 0.0001 |
Hypercholesterolemia, n (%) | 40 (11) | 13 (15) | 0.26 |
Coronary artery disease, n (%) | 22 (6) | 7 (8) | 0.47 |
Body mass index, kg/m2 | 27 ± 5 | 28 ± 5 | 0.03 |
Obesity, n (%) | 76 (20) | 24 (28) | 0.1 |
CMR findings | |||
LVEDV, mL | 152 ± 38 | 223 ± 80 | <0.0001 |
LVEF, % | 60 ± 6 | 39 ± 9 | <0.0001 |
LV mass, g | 121 ± 31 | 158 ± 49 | <0.0001 |
WMSI | 1.03 ± 0.07 | 1.59 ± 0.48 | <0.0001 |
Number of myocardial segments with LGE | 4 ± 3 | 6 ± 4 | <0.0001 |
Total amount of LGE in % of the LV mass | 7 ± 6 | 12 ± 10 | <0.0001 |
RVEDV, mL | 143 ± 39 | 158 ± 48 | 0.004 |
RVEF, % | 56 ± 8 | 49 ± 11 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolska, J.M.; Rajewska-Tabor, J.; Koziński, M.; Kulawiak-Gałąska, D.; Jankowska, A.; Pyda, M.; Miszalski-Jamka, K.; Haberka, M. Predictive Value of Left Ventricular Systolic Dysfunction or Wall Motion Abnormalities for Non-Ischemic Myocardial Injury: A Multicenter Cardiovascular Resonance Study. J. Clin. Med. 2025, 14, 3691. https://doi.org/10.3390/jcm14113691
Sokolska JM, Rajewska-Tabor J, Koziński M, Kulawiak-Gałąska D, Jankowska A, Pyda M, Miszalski-Jamka K, Haberka M. Predictive Value of Left Ventricular Systolic Dysfunction or Wall Motion Abnormalities for Non-Ischemic Myocardial Injury: A Multicenter Cardiovascular Resonance Study. Journal of Clinical Medicine. 2025; 14(11):3691. https://doi.org/10.3390/jcm14113691
Chicago/Turabian StyleSokolska, Justyna M., Justyna Rajewska-Tabor, Marek Koziński, Dorota Kulawiak-Gałąska, Anna Jankowska, Małgorzata Pyda, Karol Miszalski-Jamka, and Maciej Haberka. 2025. "Predictive Value of Left Ventricular Systolic Dysfunction or Wall Motion Abnormalities for Non-Ischemic Myocardial Injury: A Multicenter Cardiovascular Resonance Study" Journal of Clinical Medicine 14, no. 11: 3691. https://doi.org/10.3390/jcm14113691
APA StyleSokolska, J. M., Rajewska-Tabor, J., Koziński, M., Kulawiak-Gałąska, D., Jankowska, A., Pyda, M., Miszalski-Jamka, K., & Haberka, M. (2025). Predictive Value of Left Ventricular Systolic Dysfunction or Wall Motion Abnormalities for Non-Ischemic Myocardial Injury: A Multicenter Cardiovascular Resonance Study. Journal of Clinical Medicine, 14(11), 3691. https://doi.org/10.3390/jcm14113691