Next Article in Journal
Comparative Analysis of Vaginal and Abdominal Uterine Manipulation in Laparoscopic Hysterectomy: The Boztosun Technique
Previous Article in Journal
Comparison of Cytopathology Yield of Fine-Needle Aspiration Biopsy Using 25G Versus 27G Needles for Melanocytic Uveal Tumors
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Enhancing Outcomes in Knee and Hip Arthroplasty: A Multifaceted Approach

by
Nicholas David Clement
Edinburgh Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
J. Clin. Med. 2025, 14(11), 3651; https://doi.org/10.3390/jcm14113651
Submission received: 13 May 2025 / Accepted: 20 May 2025 / Published: 23 May 2025
(This article belongs to the Section Orthopedics)
The prevalence of osteoarthritis continues to rise [1,2]. Arthroplasty is a cost-effective treatment for end-stage disease with excellent functional outcomes [3,4,5]. It is unsurprising that total hip arthroplasty was recognized as the most significant operation of the 20th century [6]. However, optimizing patient outcomes and their satisfaction after arthroplasty is complex [7,8,9]. Recent studies highlight the interplay between patient-specific factors [10], surgical techniques [11], prehabilitation strategies [12], and perioperative management in enhancing recovery [13] and long-term success [14,15].
One key area of advancement is prehabilitation and supported postoperative recovery [16,17]. Patane et al. [18] demonstrated the potential of tele-home prehabilitation, particularly neuromuscular electrostimulation, to enhance walking autonomy and quality of life in patients with hip and knee arthroplasty. Similarly, Terradas-Monllor et al. [19] found that preoperative multimodal physiotherapy reduces pain catastrophizing and improves post-surgical outcomes, emphasizing the importance of both psychological and physical preparation.
Weight management remains crucial in arthroplasty outcomes [20,21]. Maman et al. [22] reported that bariatric surgery before total knee arthroplasty (TKA) reduced perioperative complications, but raised concerns regarding higher revision rates. While weight reduction benefits overall health [23], further research is needed to refine strategies for obese patients undergoing TKA [24].
Objective functional assessments are gaining recognition for their predictive value [25]. Yücel et al. [26] validated the use of the 30-Second Sit-to-Stand and Timed Up-and-Go tests in forecasting function following TKA, reinforcing the role of multidisciplinary evaluations. Additionally, Matteo et al. [27] used machine learning to predict hospital length of stay in arthroplasty patients, illustrating the promise of artificial intelligence in surgical planning and resource optimization [28].
Surgical precision and alignment remain fundamental in arthroplasty success [29,30,31]. Studies by Diconi et al. [32] and Arai et al. [33] highlight the biomechanical importance of optimal implant positioning and the advantages of robotic-assisted surgery [34]. Yang et al. [35] demonstrated that functional alignment [36] outperformed modified kinematic alignment [37] in achieving knee balance and patient-reported outcomes when using robotic-assisted surgery, which is supported by data from a systematic review [38]. As technology advances, robotic assistance and refined alignment techniques may enhance implant longevity and functional restoration [34,38,39].
Postoperative pain management remains a challenge, with opioid use under scrutiny due to the risk of dependence and poor outcomes [40,41]. Niculae et al. [42] showed that transdermal fentanyl patches provided effective pain relief with fewer side effects. Gomez et al. [43] highlighted the superiority of nerve blocks over local infiltration anesthesia in reducing opioid dependence. The multimodal approach to analgesia continues to evolve, aiming for optimal pain control with minimal adverse effects [44].
Surgical decision-making between unicompartmental knee arthroplasty (UKA) and TKA is evolving [45,46]. While UKA potentially offers advantages such as shorter hospital stays and reduced costs, concerns over higher revision rates persist [47,48,49]. Bayram et al. [50] suggest that modern selection criteria for UKA patients, along with improved prosthetic designs, may enhance outcomes, necessitating further validation through high-performance patient-reported outcome measures such as the metabolic equivalent of task score [51] and the Forgotten Joint score [52].
Finally, patient perspectives must remain central to arthroplasty advancements [53,54,55]. Longo et al. [56] demonstrated the psychological burden of waiting for knee arthroplasty, emphasizing the need for comprehensive preoperative education and support. Addressing patient fears and expectations can significantly impact their satisfaction and recovery [57].
The field of hip and knee arthroplasty continues to evolve through technological innovations [58,59], refined surgical techniques [30], and patient-centered care models [60]. As research advances, a multifaceted approach integrating biomechanical precision [61], personalized risk assessment [62], enhanced rehabilitation [63], and optimal pain management [64] will be key to achieving superior outcomes for patients undergoing arthroplasty surgery.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Farrow, L.; McLoughlin, J.; Gaba, S.; Ashcroft, G.P. Future demand for primary hip and knee arthroplasty in Scotland. Musculoskelet. Care 2022, 21, 355–361. [Google Scholar] [CrossRef] [PubMed]
  2. Steinmetz, J.D.; Culbreth, G.T.; Haile, L.M.; Rafferty, Q.; Lo, J.; Fukutaki, K.G.; Cruz, J.A.; Smith, A.E.; Vollset, S.E.; Brooks, P.M.; et al. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e508–e522. [Google Scholar] [CrossRef] [PubMed]
  3. Jenkins, P.J.; Clement, N.D.; Hamilton, D.F.; Gaston, P.; Patton, J.T.; Howie, C.R. Predicting the cost-effectiveness of total hip and knee replacement: A health economic analysis. J. Bone Jt. Surg.-Ser. B 2013, 95-B, 115–121. [Google Scholar] [CrossRef]
  4. Hamilton, D.F.; Lane, J.V.; Gaston, P.; Patton, J.T.; MacDonald, D.J.; Simpson, A.H.R.W.; Howie, C.R. Assessing treatment outcomes using a single question: The Net Promoter Score. Bone Jt. J. 2014, 96-B, 622–628. [Google Scholar] [CrossRef]
  5. Yeroushalmi, D.; Feng, J.; Nherera, L.; Trueman, P.; Schwarzkopf, R. Early Economic Analysis of Robotic-Assisted Unicondylar Knee Arthroplasty May Be Cost Effective in Patients with End-Stage Osteoarthritis. J. Knee Surg. 2022, 35, 39–46. [Google Scholar] [CrossRef]
  6. Learmonth, I.D.; Young, C.; Rorabeck, C. The operation of the century: Total hip replacement. Lancet 2007, 370, 1508–1519. [Google Scholar] [CrossRef]
  7. Graham, B.; Green, A.; James, M.; Katz, J.; Swiontkowski, M. Measuring patient satisfaction in orthopaedic surgery. J. Bone Jt. Surg.-Am. Vol. 2015, 97, 80–84. [Google Scholar] [CrossRef]
  8. Orr, M.N.; Klika, A.K.; Gagnier, J.J.; Bhandari, M.; Piuzzi, N.S. A Call for a Standardized Approach to Reporting Patient-Reported Outcome Measures: Clinical Relevance Ratio. J. Bone Jt. Surg. 2021, 103, E91. [Google Scholar] [CrossRef]
  9. Goodman, S.M.; Mehta, B.Y.; Kahlenberg, C.A.; Krell, E.C.; Nguyen, J.; Finik, J.; Figgie, M.P.; Parks, M.L.; Padgett, D.E.; Antao, V.C.; et al. Assessment of a Satisfaction Measure for Use After Primary Total Joint Arthroplasty. J. Arthroplast. 2020, 35, 1792–1799.e4. [Google Scholar] [CrossRef]
  10. Lützner, C.; Beyer, F.; David, L.; Lützner, J. Fulfilment of patients’ mandatory expectations are crucial for satisfaction: A study amongst 352 patients after total knee arthroplasty (TKA). Knee Surg. Sport. Traumatol. Arthrosc. 2023, 31, 3755–3764. [Google Scholar] [CrossRef]
  11. Karasavvidis, T.; Pagan Moldenhauer, C.A.; Haddad, F.S.; Hirschmann, M.T.; Pagnano, M.W.; Vigdorchik, J.M. Current Concepts in Alignment in Total Knee Arthroplasty. J. Arthroplast. 2023, 38, S29–S37. [Google Scholar] [CrossRef] [PubMed]
  12. Nguyen, C.; Boutron, I.; Roren, A.; Anract, P.; Beaudreuil, J.; Biau, D.; Boisgard, S.; Daste, C.; Durand-Zaleski, I.; Eschalier, B.; et al. Effect of Prehabilitation Before Total Knee Replacement for Knee Osteoarthritis on Functional Outcomes: A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e221462. [Google Scholar] [CrossRef] [PubMed]
  13. Wainwright, T.W.; Gill, M.; McDonald, D.A.; Middleton, R.G.; Reed, M.; Sahota, O.; Yates, P.; Ljungqvist, O. Consensus statement for perioperative care in total hip replacement and total knee replacement surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations. Acta Orthop. 2020, 91, 3–19. [Google Scholar] [CrossRef]
  14. Evans, J.T.; Walker, R.W.; Evans, J.P.; Blom, A.W.; Sayers, A.; Whitehouse, M.R. How long does a knee replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet 2019, 393, 655–663. [Google Scholar] [CrossRef]
  15. Evans, J.T.; Evans, J.P.; Walker, R.W.; Blom, A.W.; Whitehouse, M.R.; Sayers, A. How long does a hip replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet 2019, 393, 647–654. [Google Scholar] [CrossRef]
  16. De Klerk, T.C.; Dounavi, D.M.; Hamilton, D.F.; Clement, N.D.; Kaliarntas, K.T. Effects of home-based prehabilitation on pre- and postoperative outcomes following total hip and knee arthroplasty: A systematic review and meta-analysis. Bone Jt. Open 2023, 4, 315–328. [Google Scholar] [CrossRef]
  17. Zhang, Q.; Chen, Y.; Li, Y.; Liu, R.; Rai, S.; Li, J.; Hong, P. Enhanced recovery after surgery in patients after hip and knee arthroplasty: A systematic review and meta-analysis. Postgrad. Med. J. 2024, 100, 159–173. [Google Scholar] [CrossRef]
  18. Patanè, P.; Carnevale Pellino, V.; Febbi, M.; Cavallo, C.; Gervasoni, F.; Gatti, A.; Caldarella, E.; de Caro, F.; Vandoni, M.; Manzoni, F.; et al. Effects of a Tele-Prehabilitation Program with Indirect Electrostimulation Compared to Home-Based Exercise in Patients Eligible for Lower Limb Arthroplasty: A Randomized Controlled Trial. J. Clin. Med. 2025, 14, 1356. [Google Scholar] [CrossRef]
  19. Terradas-Monllor, M.; Beltran-Alacreu, H.; Ochandorena-Acha, M.; Garcia-Oltra, E.; Aliaga-Orduña, F.; Hernández-Hermoso, J. Preoperative Home-Based Multimodal Physiotherapy in Patients Scheduled for a Knee Arthroplasty Who Catastrophize About Their Pain: A Randomized Controlled Trial. J. Clin. Med. 2025, 14, 268. [Google Scholar] [CrossRef]
  20. Burn, E.; Edwards, C.J.; Murray, D.W.; Silman, A.; Cooper, C.; Arden, N.K.; Prieto-Alhambra, D.; Pinedo-Villanueva, R. The impact of BMI and smoking on risk of revision following knee and hip replacement surgery: Evidence from routinely collected data. Osteoarthr. Cartil. 2019, 27, 1294–1300. [Google Scholar] [CrossRef]
  21. Wall, C.J.; Vertullo, C.J.; Kondalsamy-Chennakesavan, S.; Lorimer, M.F.; De Steiger, R.N. A Prospective, Longitudinal Study of the Influence of Obesity on Total Knee Arthroplasty Revision Rate: Results from the Australian Orthopaedic Association National Joint Replacement Registry. J. Bone Jt. Surg. 2022, 104, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
  22. Maman, D.; Eynhoren, G.; Ben-Zvi, L.; Steinfeld, Y.; Yonai, Y.; Berkovich, Y. Impact of Bariatric Surgery on Postoperative Outcomes, Complications, and Revision Rates in Total Knee Arthroplasty: A Big Data Analysis. J. Clin. Med. 2025, 14, 1187. [Google Scholar] [CrossRef] [PubMed]
  23. Duong, V.; Oo, W.M.; Ding, C.; Culvenor, A.G.; Hunter, D.J. Evaluation and Treatment of Knee Pain: A Review. JAMA 2023, 330, 1568–1580. [Google Scholar] [CrossRef]
  24. Elcock, K.L.; Carter, T.H.; Yapp, L.Z.; MacDonald, D.J.; Howie, C.R.; Stoddart, A.; Berg, G.; Clement, N.D.; Scott, C.E.H. Total knee arthroplasty in patients with severe obesity provides value for money despite increased complications. Bone Jt. J. 2022, 104, 452–463. [Google Scholar] [CrossRef]
  25. Rivera, R.J.; Karasavvidis, T.; Pagan, C.; Haffner, R.; Ast, M.P.; Vigdorchik, J.M.; Debbi, E.M. Functional assessment in patients undergoing total hip arthroplasty. Bone Jt. J. 2024, 106-B, 764–774. [Google Scholar] [CrossRef]
  26. Yücel, M.O.; Sağlam, S.; Dalaslan, R.E.; Arıcan, M.; Karaduman, Z.O.; Akar, B.; Çelik, M.; Sav, İ. Significance of Preoperative Multidisciplinary Assessment with 30-Second Sit-to-Stand Timed Up-and-Go Tests in Predicting Postoperative Outcomes, J. Clin. Med. 2025, 14, 1085. [Google Scholar]
  27. Di Matteo, V.; Tommasini, T.; Morandini, P.; Savevski, V.; Grappiolo, G.; Loppini, M. Machine Learning Prediction Model to Predict Length of Stay of Patients Undergoing Hip or Knee Arthroplasties: Results from a High-Volume Single-Center Multivariate Analysis. J. Clin. Med. 2024, 13, 5180. [Google Scholar] [CrossRef]
  28. Clement, N.D.; Clement, R.; Clement, A. Predicting Functional Outcomes of Total Hip Arthroplasty Using Machine Learning: A Systematic Review. J. Clin. Med. 2024, 13, 603. [Google Scholar] [CrossRef]
  29. Zhang, J.; Ng, N.; Scott, C.E.H.; Blyth, M.J.G.; Haddad, F.S.; Macpherson, G.J.; Patton, J.T.; Clement, N.D. Robotic arm-assisted versus manual unicompartmental knee arthroplasty: A systematic review and meta-analysis of the MAKO robotic system. Bone Jt. J. 2022, 104-B, 541–548. [Google Scholar] [CrossRef]
  30. Vermue, H.; Batailler, C.; Monk, P.; Haddad, F.; Luyckx, T.; Lustig, S. The evolution of robotic systems for total knee arthroplasty, each system must be assessed for its own value: A systematic review of clinical evidence and meta-analysis. Arch. Orthop. Trauma Surg. 2022, 143, 3369–3381. [Google Scholar] [CrossRef]
  31. Deckey, D.G.; Rosenow, C.S.; Verhey, J.T.; Brinkman, J.C.; Mayfield, C.K.; Clarke, H.D.; Bingham, J.S. Robotic-assisted total knee arthroplasty improves accuracy and precision compared to conventional techniques. Bone Jt. J. 2021, 103-B, 74–80. [Google Scholar] [CrossRef] [PubMed]
  32. Diconi, A.F.; Roman, M.D.; Cristian, A.N.; Boicean, A.G.; Mohor, C.I.; Ion, N.C.I.; Bocea, B.A.; Teodoru, C.A.; Oprinca, G.C.; Fleaca, S.R. The Effects of Biomechanical Loading on the Tibial Insert After Primary Total Knee Arthroplasty: A Systematic Review. J. Clin. Med. 2025, 14, 1043. [Google Scholar] [CrossRef] [PubMed]
  33. Arai, N.; Toyooka, S.; Masuda, H.; Kawano, H.; Nakagawa, T. Kinematic Alignment Achieves a More Balanced Total Knee Arthroplasty Than Mechanical Alignment among CPAK Type I Patients: A Simulation Study. J. Clin. Med. 2024, 13, 3596. [Google Scholar] [CrossRef]
  34. Kleeblad, L.J.; Borus, T.A.; Coon, T.M.; Dounchis, J.; Nguyen, J.T.; Pearle, A.D. Midterm Survivorship and Patient Satisfaction of Robotic-Arm-Assisted Medial Unicompartmental Knee Arthroplasty: A Multicenter Study. J. Arthroplast. 2018, 33, 1719–1726. [Google Scholar] [CrossRef]
  35. Yang, H.Y.; Seon, J.K.; Yim, J.H.; Lee, D.H.; Song, E.K. Functional Alignment Achieved a More Balanced Knee After Robotic Arm-Assisted Total Knee Arthroplasty than Modified Kinematic Alignment. J. Clin. Med. 2025, 14, 820. [Google Scholar] [CrossRef]
  36. Oussedik, S.; Abdel, M.P.; Victor, J.; Pagnano, M.W.; Haddad, F.S. Alignment in total knee arthroplasty. Bone Jt. J. 2020, 102-B, 276–279. [Google Scholar] [CrossRef]
  37. Almaawi, A.M.; Hutt, J.R.B.; Masse, V.; Lavigne, M.; Vendittoli, P.A. The Impact of Mechanical and Restricted Kinematic Alignment on Knee Anatomy in Total Knee Arthroplasty. J. Arthroplast. 2017, 32, 2133–2140. [Google Scholar] [CrossRef]
  38. Van Essen, J.; Stevens, J.; Dowsey, M.M.; Choong, P.F.; Babazadeh, S. Kinematic alignment results in clinically similar outcomes to mechanical alignment: Systematic review and meta-analysis. Knee 2023, 40, 24–41. [Google Scholar] [CrossRef]
  39. Bullock, E.K.C.; Brown, M.J.; Clark, G.; Plant, J.G.A.; Blakeney, W.G. Robotics in Total Hip Arthroplasty: Current Concepts. J. Clin. Med. 2022, 11, 6674. [Google Scholar] [CrossRef]
  40. Lavand’homme, P.M.; Kehlet, H.; Rawal, N.; Joshi, G.P. Pain management after total knee arthroplasty: PROcedure SPEcific Postoperative Pain ManagemenT recommendations. Eur. J. Anaesthesiol. 2022, 39, 743–757. [Google Scholar] [CrossRef] [PubMed]
  41. Politzer, C.S.; Kildow, B.J.; Goltz, D.E.; Green, C.L.; Bolognesi, M.P.; Seyler, T.M. Trends in Opioid Utilization Before and After Total Knee Arthroplasty. J. Arthroplast. 2018, 33, S147–S153.e1. [Google Scholar] [CrossRef] [PubMed]
  42. Niculae, A.; Checherita, I.A.; Peride, I.; Tiglis, M.; Ene, R.; Neagu, T.P.; Ene, D. Transdermal Fentanyl Patch Effectiveness in Postoperative PainManagement in Orthopedic Patients: Literature Review. J. Clin. Med. 2024, 13, 7646. [Google Scholar] [CrossRef] [PubMed]
  43. Gomez Gomez, S.; Segura Mata, J.C.; Alcalá Nalváiz, J.T.; García-Álvarez García, F.; Marín Zaldívar, C.; Fernández de Gamarra Goiricelaya, A. An Analysis of the Use of Anesthetic Blocks versus Local Anesthesia Infiltration in Primary Total Knee Arthroplasty Surgery. J. Clin. Med. 2024, 13, 5706. [Google Scholar] [CrossRef] [PubMed]
  44. Perrot, S.; Cohen, M.; Barke, A.; Korwisi, B.; Rief, W.; Treede, R.D. The IASP classification of chronic pain for ICD-11: Chronic secondary musculoskeletal pain. Pain 2019, 160, 77–82. [Google Scholar] [CrossRef]
  45. Liddle, A.D.; Pandit, H.; Judge, A.; Murray, D.W. Optimal usage of unicompartmental knee arthroplasty: A study of 41,986 cases from the national joint registry for England and Wales. Bone Jt. J. 2015, 97-B, 1506–1511. [Google Scholar] [CrossRef]
  46. Murray, D.W.; Parkinson, R.W. Usage of unicompartmental knee arthroplasty. Bone Jt. J. 2018, 100-B, 432–435. [Google Scholar] [CrossRef]
  47. Evans, J.T.; Whitehouse, M.R. Partial versus total knee replacement for knee osteoarthritis. Lancet 2019, 394, 712–713. [Google Scholar] [CrossRef]
  48. Liddle, A.D.; Judge, A.; Pandit, H.; Murray, D.W. Adverse outcomes after total and unicompartmental knee replacement in 101330 matched patients: A study of data from the National Joint Registry for England and Wales. Lancet 2014, 384, 1437–1445. [Google Scholar] [CrossRef]
  49. Mohammad, H.R.; Liddle, A.D.; Judge, A.; Murray, D.W. A Matched Comparison of Long-Term Outcomes of Total and Unicompartmental Knee Replacements in Different Ages Based on National Databases: Analysis of Data From the National Joint Registry for England, Wales, Northern Ireland, and the Isle of Man. J. Arthroplast. 2022, 37, 243–251. [Google Scholar] [CrossRef]
  50. Bayram, J.M.; Clement, N.D.; Hall, A.J.; Walmsley, P.; Clarke, J.V. Are Current Patient-Reported Outcome Measures Fit for Purpose to Evaluate Unicompartmental Knee Arthroplasty? J. Clin. Med. 2025, 14, 203. [Google Scholar] [CrossRef]
  51. Edwards, T.C.; Guest, B.; Garner, A.; Logishetty, K.; Liddle, A.D.; Cobb, J.P. The metabolic equivalent of task score. Bone Jt. Res. 2022, 11, 317–326. [Google Scholar] [CrossRef]
  52. Hamilton, D.F.; Giesinger, J.M.; MacDonald, D.J.; Simpson, A.H.R.W.; Howie, C.R.; Giesinger, K. Responsiveness and ceiling effects of the Forgotten Joint Score-12 following total hip arthroplasty. Bone Jt. Res. 2016, 5, 87–91. [Google Scholar] [CrossRef] [PubMed]
  53. Okafor, L.; Chen, A.F. Patient satisfaction and total hip arthroplasty: A review. Arthroplasty 2019, 1, 6. [Google Scholar] [CrossRef]
  54. Aggarwal, A.; Naylor, J.M.; Adie, S.; Liu, V.K.; Harris, I.A. Preoperative Factors and Patient-Reported Outcomes After Total Hip Arthroplasty: Multivariable Prediction Modeling. J. Arthroplast. 2022, 37, 714–720.e4. [Google Scholar] [CrossRef]
  55. Mancuso, C.A.; Ranawat, A.S.; Meftah, M.; Koob, T.W.; Ranawat, C.S. Properties of the Patient Administered Questionnaires. New Scales Measuring Physical and Psychological Symptoms of Hip and Knee Disorders. J. Arthroplast. 2012, 27, 575–582. [Google Scholar] [CrossRef]
  56. Longo, U.G.; Corradini, A.; Marchetti, A.; Di Sarno, C.; D’Angelo, C.; Arias, C.; De Marinis, M.G.; de Sire, A.; Denaro, V. I Am Afraid I Will Not Be Able to Walk, That Is What Worries Me—The Experience of Patients with Knee Osteoarthritis before Total Knee Arthroplasty: A Qualitative Study. J. Clin. Med. 2024, 13, 2878. [Google Scholar] [CrossRef]
  57. Scott, C.E.H.; Howie, C.R.; MacDonald, D.; Biant, L.C. Predicting dissatisfaction following total knee replacement: A prospective study of 1217 patients. J. Bone Jt. Surg.-Ser. B 2010, 92, 1253–1258. [Google Scholar] [CrossRef]
  58. Ng, N.; Gaston, P.; Simpson, P.M.; Macpherson, G.J.; Patton, J.T.; Clement, N.D. Robotic arm-assisted versus manual total hip arthroplasty a systematic review and meta-analysis. Bone Jt. J. 2021, 103-B, 1009–1020. [Google Scholar] [CrossRef]
  59. Batailler, C.; Shatrov, J.; Sappey-Marinier, E.; Servien, E.; Parratte, S.; Lustig, S. Artificial intelligence in knee arthroplasty: Current concept of the available clinical applications. Arthroplasty 2022, 4, 17. [Google Scholar] [CrossRef]
  60. Lemos, J.L.; Welch, J.M.; Amanatullah, D.F.; Shapiro, L.M.; Harris, A.H.S.; Kamal, R.N. Time-dependent, patient-centered perceptions of quality measures for total joint arthroplasty: A cross-sectional, choice modeling study. BMC Musculoskelet. Disord. 2025, 26, 41. [Google Scholar] [CrossRef]
  61. Begum, F.A.; Kayani, B.; Morgan, S.D.J.; Ahmed, S.S.; Singh, S.; Haddad, F.S. Robotic technology: Current concepts, operative techniques and emerging uses in unicompartmental knee arthroplasty. EFORT Open Rev. 2020, 5, 312–318. [Google Scholar] [CrossRef] [PubMed]
  62. Fontana, M.A.; Lyman, S.; Sarker, G.K.; Padgett, D.E.; MacLean, C.H. Can machine learning algorithms predict which patients will achieve minimally clinically important differences from total joint arthroplasty? Clin. Orthop. Relat. Res. 2019, 477, 1267–1279. [Google Scholar] [CrossRef] [PubMed]
  63. Rausch Osthoff, A.K.; Niedermann, K.; Braun, J.; Adams, J.; Brodin, N.; Dagfinrud, H.; Duruoz, T.; Esbensen, B.A.; Günther, K.P.; Hurkmans, E.; et al. 2018 EULAR recommendations for physical activity in people with inflammatory arthritis and osteoarthritis. Ann. Rheum. Dis. 2018, 77, 1251–1260. [Google Scholar] [CrossRef]
  64. Zhang, B.; Rao, S.; Mekkawy, K.L.; Rahman, R.; Sarfraz, A.; Hollifield, L.; Runge, N.; Oni, J.K. Risk factors for pain after total hip arthroplasty: A systematic review. Arthroplasty 2023, 5, 19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Clement, N.D. Enhancing Outcomes in Knee and Hip Arthroplasty: A Multifaceted Approach. J. Clin. Med. 2025, 14, 3651. https://doi.org/10.3390/jcm14113651

AMA Style

Clement ND. Enhancing Outcomes in Knee and Hip Arthroplasty: A Multifaceted Approach. Journal of Clinical Medicine. 2025; 14(11):3651. https://doi.org/10.3390/jcm14113651

Chicago/Turabian Style

Clement, Nicholas David. 2025. "Enhancing Outcomes in Knee and Hip Arthroplasty: A Multifaceted Approach" Journal of Clinical Medicine 14, no. 11: 3651. https://doi.org/10.3390/jcm14113651

APA Style

Clement, N. D. (2025). Enhancing Outcomes in Knee and Hip Arthroplasty: A Multifaceted Approach. Journal of Clinical Medicine, 14(11), 3651. https://doi.org/10.3390/jcm14113651

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop