Diagnostic Significance in Estimating Tumor Burden Using Extracellular Salivary Biomarkers in Gastric Cancer Patients
Abstract
:1. Background
2. Methods
2.1. Patients and Study Design
2.2. Collection and Storage of Samples
2.3. Salivary exRNA Extraction
2.4. RT-PCR of mRNA
2.5. RT-PCR of miRNA
2.6. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
KNCSP | Korean National Cancer Screening Program |
ExRNA | extracellular RNA |
AUC | area under curve |
ROC | receiver operating characteristic |
RT-qPCR | real-time polymerase chain reaction |
References
- International Agency for Research on Cancer. Cancer Fact Sheet Stomach. Globocan. 2020. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/7-Stomach-fact-sheet.pdf/ (accessed on 1 May 2024).
- Ahn, H.S.; Lee, H.; Yoo, M.; Jeong, S.; Park, D.; Kim, H.; Kim, W.H.; Lee, K.U.; Yang, H. Changes in clinicopathological features and survival after gastrectomy for gastric cancer over a 20-year period. Br. J. Surg. 2011, 98, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Park, N.J.; Zhou, H.; Elashoff, D.; Henson, B.S.; Kastratovic, D.A.; Abemayor, E.; Wong, D.T. Salivary microRNA: Discovery, characterization, and clinical utility for oral cancer detection. Clin. Cancer Res. 2009, 15, 5473–5477. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Wang, J.; Meijer, J.; Ieong, S.; Xie, Y.; Yu, T.; Zhou, H.; Henry, S.; Vissink, A.; Pijpe, J.; et al. Salivary proteomic and genomic biomarkers for primary Sjogren’s syndrome. Arthritis Rheum. 2007, 56, 3588–3600. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Farrell, J.J.; Zhou, H.; Elashoff, D.; Akin, D.; Park, N.-H.; Chia, D.; Wong, D.T. Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer. Gastroenterology 2010, 138, 949–957.e7. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, H.; Karlan, S.; Zhou, H.; Gross, J.; Elashoff, D.; Akin, D.; Yan, X.; Chia, D.; Karlan, B.; et al. Discovery and preclinical validation of salivary transcriptomic and proteomic biomarkers for the non-invasive detection of breast cancer. PLoS ONE 2010, 5, e15573. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Zhang, L.; Zhou, H.; Lee, J.M.; Garon, E.B.; Wong, D.T. Proteomic analysis of human saliva from lung cancer patients using two-dimensional difference gel electrophoresis and mass spectrometry. Mol. Cell. Proteom. 2012, 11, M111.012112. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yoshizawa, J.M.; Kim, K.-M.; Kanjanapangka, J.; Grogan, T.R.; Wang, X.; E Elashoff, D.; Ishikawa, S.; Chia, D.; Liao, W.; et al. Discovery and Validation of Salivary Extracellular RNA Biomarkers for Noninvasive Detection of Gastric Cancer. Clin. Chem. 2018, 64, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Edge, S.; Greene, F.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. (Eds.) AJCC Cancer Staging Manual, 8th ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Navazesh, M. Methods for collecting saliva. Ann. N. Y. Acad. Sci. 1993, 694, 72–77. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, X.; St John, M.A.; Wong, D.T. RNA profiling of cell-free saliva using microarray technology. J. Dent. Res. 2004, 83, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, D.; Pinto, E.; De Stefano, A.; Farnetani, M.; Garosi, L.; Roviello, F. Clinical utility of CEA, CA 19-9, and CA 72-4 in the follow-up of patients with resectable gastric cancer. Am. J. Surg. 2001, 181, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, T.; Yashiro, M. Biomarkers of gastric cancer: Current topics and future perspective. World J. Gastroenterol. 2018, 24, 2818–2832. [Google Scholar] [CrossRef] [PubMed]
- Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 2017, 14, 531–548. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Zhou, H.; Zhang, L.; Lee, J.W.; Zhou, Q.; Hu, S.; Wolinsky, L.E.; Farrell, J.; Eibl, G.; Wong, D.T. Systemic disease-induced salivary biomarker profiles in mouse models of melanoma and non-small cell lung cancer. PLoS ONE 2009, 4, e5875. [Google Scholar] [CrossRef] [PubMed]
- Gurung, S.; Perocheau, D.; Touramanidou, L.; Baruteau, J. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun. Signal. 2021, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, R.M. Exosomes biological significance: A concise review. Blood Cells Mol. Dis. 2006, 36, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.S.; Wong, D.T. Breast cancer exosome-like microvesicles and salivary gland cells interplay alters salivary gland cell-derived exosome-like microvesicles in vitro. PLoS ONE 2012, 7, e33037. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.; Kim, Y.; Chia, D.; Spielmann, N.; Eibl, G.; Elashoff, D.; Wei, F.; Lin, Y.-L.; Moro, A.; Grogan, T.; et al. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J. Biol. Chem. 2013, 288, 26888–26897. [Google Scholar] [CrossRef] [PubMed]
- Tsujiura, M.; Ichikawa, D.; Komatsu, S.; Shiozaki, A.; Takeshita, H.; Kosuga, T.; Konishi, H.; Morimura, R.; Deguchi, K.; Fujiwara, H.; et al. Circulating microRNAs in plasma of patients with gastric cancers. Br. J. Cancer 2010, 102, 1174–1179. [Google Scholar] [CrossRef] [PubMed]
- Konishi, H.; Ichikawa, D.; Komatsu, S.; Shiozaki, A.; Tsujiura, M.; Takeshita, H.; Morimura, R.; Nagata, H.; Arita, T.; Kawaguchi, T.; et al. Detection of gastric cancer-associated microRNAs on microRNA microarray comparing pre- and post-operative plasma. Br. J. Cancer 2012, 106, 740–747. [Google Scholar] [CrossRef] [PubMed]
Characteristic | No. of Patients (%) |
---|---|
Age, years | |
<60 | 27 (54%) |
≥60 | 23 (46%) |
Sex | |
Female | 17 (34%) |
Male | 33 (66%) |
H. pylori infection | |
No | 13 (26%) |
Yes | 20 (40%) |
Unknown | 17 (34%) |
Histologic type | |
Differentiated | 22 (44%) |
Undifferentiated | 28 (56%) |
Lauren type | |
Intestinal | 24 (48%) |
Diffuse | 20 (40%) |
Mixed/indeterminate | 6 (12%) |
Size | |
<6 cm | 29 (58%) |
≥6 cm | 21 (42%) |
Pathologic stage | |
I | 8 (16%) |
II | 16 (32%) |
III | 23 (46%) |
IV | 3 (6%) |
Lymphatic invasion | |
No | 19 (38%) |
Yes | 31 (62%) |
Internal Validation | Tumor Marker */Biomarker | Stage I/II | Stage III/IV | p-Value | ||
---|---|---|---|---|---|---|
No. of Patients | No. of Patients | |||||
N/A | CEA * | 24 | 15.1 ± 13.2 | 26 | 1.5 ± 0.2 | 0.132 |
CA19-9 * | 24 | 18.3 ± 6.2 | 26 | 9.1 ± 1.4 | 0.954 | |
CA72-4 * | 24 | 5.0 ± 1.8 | 26 | 3.1 ± 0.7 | 0.466 | |
GAPDH | SPINK7 | 22 | −4.8 ± 2.1 | 22 | −4.9 ± 2.0 | 0.933 |
SEMA4B | 16 | 0.0 ± 1.7 | 11 | 0.3 ± 1.4 | 0.548 | |
PPL | 22 | −6.2 ± 2.4 | 20 | −7.9 ± 2.4 | 0.025 | |
ACTB | SPINK7 | 21 | 5.4 ± 2.0 | 25 | 5.8 ± 2.3 | 0.457 |
SEMA4B | 16 | 10.5 ± 0.9 | 12 | 11.9 ± 1.6 | 0.012 | |
PPL | 21 | 4.1 ± 1.7 | 23 | 3.2 ± 1.7 | 0.075 | |
U6 | miR140-5p | 23 | −0.3 ± 1.2 | 23 | 0.1 ± 1.3 | 0.269 |
miR301a | 18 | 6.3 ± 1.5 | 21 | 5.9 ± 1.5 | 0.497 | |
miR197 | miR140-5p | 24 | −1.3 ± 0.8 | 24 | −0.8 ± 0.7 | 0.036 |
miR301a | 18 | 5.2 ± 1.0 | 21 | 5.0 ± 1.1 | 0.531 |
Variable | N | Event * (%) (n = 26) | Univariable Model | Multivariable Model a (AUC = 89.2%) | Multivariable Model b-1 (AUC = 75.4%) | Multivariable Model b-2 (AUC = 82.5%) | Multivariable Model b-3 (AUC = 75.5%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |||
Age, years | ||||||||||||
<60 | 27 | 15 (55.6) | 1 | 1 | 1 | 1 | 1 | |||||
≥60 | 23 | 11 (47.8) | 0.73 (0.24, 2.24) | 0.586 | 1.07 (0.15, 7.64) | 0.946 | 0.73 (0.2, 2.64) | 0.630 | 0.72 (0.14, 3.85) | 0.702 | 0.85 (0.24, 2.99) | 0.794 |
Sex | ||||||||||||
Female | 17 | 12 (70.6) | 1 | 1 | 1 | 1 | 1 | |||||
Male | 33 | 14 (42.4) | 0.31 (0.09, 1.07) | 0.064 | 0.2 (0.03, 1.6) | 0.129 | 0.3 (0.07, 1.25) | 0.098 | 0.22 (0.04, 1.39) | 0.107 | 0.27 (0.07, 1.01) | 0.052 |
Biomarkers (per 1 unit) | ||||||||||||
PPL/GAPDH | 47 | 24 (51.1%) | 0.74 (0.57, 0.96) | 0.025 | 0.83 (0.54, 1.26) | 0.378 | 0.74 (0.56, 0.96) | 0.026 | ||||
SEMA4B/b-actin | 37 | 20 (54.1%) | 2.75 (1.31, 5.78) | 0.008 | 2.54 (0.93, 6.94) | 0.070 | 3.13 (1.29, 7.59) | 0.012 | ||||
miR140/miR197 | 49 | 25 (51.0%) | 2.47 (1.08, 5.64) | 0.032 | 3.62 (0.81, 16.24) | 0.093 | 2.52 (1.06, 5.98) | 0.036 |
Variable | Total (n = 50) | Event * (%) (n = 26) | Univariable Model | Multivariable Model c (AUC = 70.5%) | Multivariable Model d−1 (AUC = 67.2%) | Multivariable Model d−2 (AUC = 66.2%) | Multivariable Model d−3 (AUC = 67.4%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |||
Age, years | ||||||||||||
<60 | 27 | 15 (55.6) | 1 | 1 | 1 | 1 | 1 | |||||
≥60 | 23 | 11 (47.8) | 0.73 (0.24, 2.24) | 0.586 | 0.96 (0.28, 3.27) | 0.946 | 0.91 (0.28, 3.00) | 0.878 | 0.83 (0.26, 2.73) | 0.765 | 0.78 (0.24, 2.50) | 0.672 |
Sex | ||||||||||||
Female | 17 | 12 (70.6) | 1 | 1 | 1 | 1 | 1 | |||||
Male | 33 | 14 (42.4) | 0.31 (0.09, 1.07) | 0.064 | 0.41 (0.11, 1.55) | 0.190 | 0.37 (0.10, 1.35) | 0.132 | 0.33 (0.09, 1.17) | 0.085 | 0.32 (0.09, 1.14) | 0.080 |
Tumor markers | ||||||||||||
CEA (ng/mL) | 50 | 26 (52.0%) | 0.65 (0.34, 1.25) | 0.200 | 0.72 (0.35, 1.47) | 0.364 | 0.74 (0.37, 1.48) | 0.397 | ||||
CA19-9 (U/mL) | 50 | 26 (52.0%) | 0.97 (0.93, 1.02) | 0.200 | 0.98 (0.94, 1.02) | 0.224 | 0.97 (0.93, 1.02) | 0.257 | ||||
CA72-4 (U/mL) | 50 | 26 (52.0%) | 0.95 (0.85, 1.06) | 0.366 | 0.96 (0.87, 1.06) | 0.433 | 0.96 (0.85, 1.07) | 0.431 |
Internal Validation | No. of Patients | Biomarker | Pre-Operative (Day 0) | Post-Operative (Day 5) | Day 5–Day 0 | p-Value |
---|---|---|---|---|---|---|
GAPDH | 44 | SPINK7 | −4.8 ± 2.0 | −5.2 ± 2.5 | −0.3 ± 2.6 | 0.398 |
27 | SEMA4B | 0.1 ± 1.6 | 0.2 ± 1.8 | 0.1 ± 2.4 | 0.843 | |
42 | PPL | −7.0 ± 2.5 | −6.3 ± 2.6 | 0.8 ± 3.1 | 0.113 | |
ACTB | 46 | SPINK7 | 5.6 ± 2.2 | 5.4 ± 2.7 | −0.2 ± 3.4 | 0.640 |
28 | SEMA4B | 11.1 ± 1.4 | 11.2 ± 1.3 | 0.1 ± 1.6 | 0.650 | |
44 | PPL | 3.7 ± 1.7 | 3.9 ± 2.0 | 0.3 ± 1.9 | 0.331 | |
U6 | 46 | miR140-5p | −0.1 ± 1.3 | 0.1 ± 1.7 | 0.2 ± 1.8 | 0.453 |
39 | miR301a | 6.1 ± 1.5 | 6.3 ± 1.7 | 0.3 ± 1.8 | 0.399 | |
miR197 | 48 | miR140-5p | −1.0 ± 0.8 | −0.6 ± 0.9 | 0.4 ± 0.9 | 0.002 |
39 | miR301a | 5.1 ± 1.0 | 5.8 ± 1.2 | 0.7 ± 1.5 | 0.006 |
Internal Validation | No. of Patients | Biomarkers | Pre-Operative (Day 0, D0) | Post-Operative (Day 5, D5) | Day 5–Day 0 | p-Value |
---|---|---|---|---|---|---|
GAPDH | 22 | SPINK7 | −4.9 ± 2.0 | −4.7 ± 2.6 | 0.2 ± 2.7 | 0.712 |
11 | SEMA4B | 0.3 ± 1.4 | 0.2 ± 1.6 | −0.2 ± 2.0 | 0.780 | |
20 | PPL | −7.9 ± 2.4 | −6.1 ± 2.5 | 1.8 ± 3.2 | 0.019 | |
ACTB | 25 | SPINK7 | 5.8 ± 2.3 | 6.0 ± 2.9 | 0.2 ± 3.7 | 0.788 |
12 | SEMA4B | 11.9 ± 1.6 | 11.5 ± 1.2 | −0.4 ± 2.0 | 0.518 | |
23 | PPL | 3.2 ± 1.7 | 3.9 ± 1.9 | 0.7 ± 2.0 | 0.104 | |
U6 | 23 | miR140-5p | 0.1 ± 1.3 | 0.1 ± 1.9 | −0.1 ± 2.0 | 0.888 |
21 | miR301a | 5.9 ± 1.5 | 6.1 ± 1.6 | 0.1 ± 1.7 | 0.740 | |
miR197 | 24 | miR140-5p | −0.8 ± 0.7 | −0.4 ± 1.0 | 0.4 ± 0.9 | 0.042 |
21 | miR301a | 5.0 ± 1.1 | 5.8 ± 1.3 | 0.8 ± 1.6 | 0.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.E.; Seo, J.B.; Noh, J.; Kim, S.; Kim, Y.; An, J.Y. Diagnostic Significance in Estimating Tumor Burden Using Extracellular Salivary Biomarkers in Gastric Cancer Patients. J. Clin. Med. 2025, 14, 3596. https://doi.org/10.3390/jcm14103596
Oh SE, Seo JB, Noh J, Kim S, Kim Y, An JY. Diagnostic Significance in Estimating Tumor Burden Using Extracellular Salivary Biomarkers in Gastric Cancer Patients. Journal of Clinical Medicine. 2025; 14(10):3596. https://doi.org/10.3390/jcm14103596
Chicago/Turabian StyleOh, Sung Eun, Jong Bae Seo, Jeongeun Noh, Sung Kim, Yong Kim, and Ji Yeong An. 2025. "Diagnostic Significance in Estimating Tumor Burden Using Extracellular Salivary Biomarkers in Gastric Cancer Patients" Journal of Clinical Medicine 14, no. 10: 3596. https://doi.org/10.3390/jcm14103596
APA StyleOh, S. E., Seo, J. B., Noh, J., Kim, S., Kim, Y., & An, J. Y. (2025). Diagnostic Significance in Estimating Tumor Burden Using Extracellular Salivary Biomarkers in Gastric Cancer Patients. Journal of Clinical Medicine, 14(10), 3596. https://doi.org/10.3390/jcm14103596