Pharmacological Management of Transthyretin Amyloid Cardiomyopathy: Where We Are and Where We Are Going
Abstract
:1. Introduction
2. Heart Failure Therapy in ATTR-CM
3. Disease-Modifying Therapies in ATTR-CM
- (1)
- TTR stabilisation
- (A)
- Tafamidis
- (B)
- Acoramidis
- (2)
- Reduction in TTR Synthesis
- (A)
- Antisense oligonucleotide inhibitors
- -
- Inotersen
- -
- Eplontersen
- (B)
- Short interfering RNAs
- -
- Patisiran
- -
- Vutrisiran
- (C)
- Gene editing
- (3)
- Amyloid deposits removal
- -
- ALXN2220 (NI006)
- -
- Other mAbs
4. Summary and Conclusions
Drug Name | Pharmacological Class | Reference Clinical Trial | Population Characteristics | Effect on ATTR-CM | Side Effects |
---|---|---|---|---|---|
Tafamidis | TTR Stabilizer | ATTRACT [37] trial | 441 patients with ATTRwt-CM or ATTRv-CM, NYHA class I-III. | Reduced hierarchical endpoint of mortality and cardiovascular-related hospitalizations. Slower decline in functional capacity and quality of life. | Mild gastrointestinal side effects (constipation, nausea, diarrhea). |
Acoramidis | TTR Stabilizer | ATTRIBUTE [55] trial | 632 patients with ATTRwt-CM or ATTRv-CM, NYHA class I-III. | Reduced combined risk of all-cause mortality and cardiovascular-related hospitalizations. Slower decline in functional capacity and quality of life. | Mild gastrointestinal side effects (constipation, nausea, diarrhea). Mild musculoskeletal symptoms. |
Patisiran | siRNA | APOLLO-B [70] trial | 360 patients with ATTRwt-CM or ATTRv-CM, NYHA class I-III. | Slower decline in functional capacity and quality of life. | Infusion-related reaction, vitamin A deficit. |
Vutrisiran | siRNA | HELIOS-B [72] trial | 655 patients with ATTRwt-CM or ATTRv-CM, NYHA class I-III. Approximately 40% under tafamidis treatment | Reduced composite outcome of death and recurrent cardiovascular events. Slower decline in functional capacity and quality of life. | Infusion-related reaction, mild musculoskeletal symptoms. |
Eplontersen | ASO | CARDIOTTRansform trial (ongoing) | Approximately 1400 patients with ATTRwt-CM or ATTRv-CM, NYHA class I-III. | Sustained reduction in TTR levels. Improved measures of cardiac structure (data from phase I trial [65]) | Infusion-related reaction, mild gastrointestinal symptoms (data from phase I trial [65]). |
NTLA-2001 | Gene Editing Therapy (CRISPR-Cas9 system) | MAGNITUDE trial (ongoing) | Approximately 765 patients with ATTRwt-CM or ATTRv-CM | Sustained reduction in TTR levels (data from phase I trial [76,77]). | Infusion-related reaction, mild gastrointestinal symptoms (data from phase I trial [76,77]). |
NI006 | Anti-ATTR monoclonal IgG1 antibody | DEPLETE-TTR trial (ongoing) | Approximately 1005 patients with ATTRwt-CM or ATTRv-CM, NYHA class II-IV | Potential amyloid fibril clearance with tracer uptake reduction in bone scintigraphy (data from phase I trial [78,79]). | Infusion-related reaction, mild musculoskeletal symptoms (data from phase I trial [78,79]). |
Funding
Acknowledgments
Conflicts of Interest
List of Abbreviations
6MWT | 6 min walking test |
ASO | antisense oligonucleotides |
ATTR-CM | Transthyretin amyloid cardiomyopathy |
AL | light chain amyloidosis |
CRISPR-CAS9 | clustered regularly interspaced short palindromic repeats CAS9 |
HFpEF | heart failure with preserved ejection fraction |
KCCQ | Kansas City Cardiomyopathy Questionnaire |
mAb | monoclonal antibody |
NYHA | New York Heart Association |
siRNA | short interfering ribonucleic acid |
References
- Wechalekar, A.D.; Gillmore, J.D.; Hawkins, P.N. Systemic Amyloidosis. Lancet 2016, 387, 2641–2654. [Google Scholar] [CrossRef]
- Benson, M.D.; Buxbaum, J.N.; Eisenberg, D.S.; Merlini, G.; Saraiva, M.J.M.; Sekijima, Y.; Sipe, J.D.; Westermark, P. Amyloid nomenclature 2018: Recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid 2018, 25, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Fontana, M.; Ćorović, A.; Scully, P.; Moon, J.C. Myocardial Amyloidosis: The Exemplar Interstitial Disease. JACC Cardiovasc. Imaging 2019, 12 Pt 2, 2345–2356. [Google Scholar] [CrossRef] [PubMed]
- Merlini, G.; Dispenzieri, A.; Sanchorawala, V.; Schönland, S.O.; Palladini, G.; Hawkins, P.N.; Gertz, M.A. Systemic immunoglobulin light chain amyloidosis. Nat. Rev. Dis. Primers 2018, 4, 38. [Google Scholar] [CrossRef] [PubMed]
- Falk, R.H.; Alexander, K.M.; Liao, R.; Dorbala, S. Light Chain Cardiac Amyloidosis: A Review of Diagnosis and Therapy. J. Am. Coll. Cardiol. 2016, 68, 1323–1341. [Google Scholar] [CrossRef] [PubMed]
- Papingiotis, G.; Basmpana, L.; Farmakis, D. Cardiac amyloidosis: Epidemiology, diagnosis and therapy. Eur. J. Cardiol. Pract. 2021, 19, 19–21. [Google Scholar]
- Ruberg, F.L.; Grogan, M.; Hanna, M.; Kelly, J.W.; Maurer, M.S. Transthyretin Amyloid Cardiomyopathy: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 2872–2891. [Google Scholar] [CrossRef] [PubMed]
- Zanotti, G.; Berni, R. Plasma retinol-binding protein: Structure and interactions with retinol, retinoids, and transthyretin. Vitam. Horm. 2004, 69, 271–295. [Google Scholar] [CrossRef] [PubMed]
- Porcari, A.; Fontana, M.; Gillmore, J.D. Transthyretin cardiac amyloidosis. Cardiovasc. Res. 2023, 118, 3517–3535. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Griffin, J.M.; Rosenblum, H.; Maurer, M.S. Pathophysiology and Therapeutic Approaches to Cardiac Amyloidosis. Circ. Res. 2021, 128, 1554–1575. [Google Scholar] [CrossRef]
- De Michieli, L.; Cipriani, A.; Iliceto, S.; Dispenzieri, A.; Jaffe, A.S. Cardiac Troponin in Patients with Light Chain and Transthyretin Cardiac Amyloidosis: JACC: CardioOncology State-of-the-Art Review. Cardio Oncol. 2024, 6, 1–15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- González-López, E.; Gagliardi, C.; Dominguez, F.; Quarta, C.C.; de Haro-Del Moral, F.J.; Milandri, A.; Salas, C.; Cinelli, M.; Cobo-Marcos, M.; Lorenzini, M.; et al. Clinical characteristics of wild-type transthyretin cardiac amyloidosis: Disproving myths. Eur. Heart J. 2017, 38, 1895–1904. [Google Scholar] [CrossRef] [PubMed]
- González-López, E.; Gallego-Delgado, M.; Guzzo-Merello, G.; de Haro-Del Moral, F.J.; Cobo-Marcos, M.; Robles, C.; Bornstein, B.; Salas, C.; Lara-Pezzi, E.; Alonso-Pulpon, L.; et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur. Heart J. 2015, 36, 2585–2594. [Google Scholar] [CrossRef] [PubMed]
- Barbhaiya, C.R.; Kumar, S.; Baldinger, S.H.; Michaud, G.F.; Stevenson, W.G.; Falk, R.; John, R.M. Electrophysiologic assessment of conduction abnormalities and atrial arrhythmias associated with amyloid cardiomyopathy. Heart Rhythm. 2016, 13, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Martini, N.; Sinigiani, G.; De Michieli, L.; Mussinelli, R.; Perazzolo Marra, M.; Iliceto, S.; Zorzi, A.; Perlini, S.; Corrado, D.; Cipriani, A. Electrocardiographic features and rhythm disorders in cardiac amyloidosis. Trends Cardiovasc. Med. 2024, 34, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.S.; Hanna, M.; Grogan, M.; Dispenzieri, A.; Witteles, R.; Drachman, B.; Judge, D.P.; Lenihan, D.J.; Gottlieb, S.S.; Shah, S.J.; et al. Genotype and Phenotype of Transthyretin Cardiac Amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey). J. Am. Coll. Cardiol. 2016, 68, 161–172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benson, M.D.; Kincaid, J.C. The molecular biology and clinical features of amyloid neuropathy. Muscle Nerve 2007, 36, 411–423. [Google Scholar] [CrossRef]
- Jaiswal, V.; Agrawal, V.; Khulbe, Y.; Hanif, M.; Huang, H.; Hameed, M.; Shrestha, A.B.; Perone, F.; Parikh, C.; Gomez, S.I.; et al. Cardiac amyloidosis and aortic stenosis: A state-of-the-art review. Eur. Heart J. Open 2023, 3, oead106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Napolitano, A.; De Michieli, L.; Sinigiani, G.; Berno, T.; Cipriani, A.; Spiezia, L. Thromboembolic and Bleeding Events in Transthyretin Amyloidosis and Coagulation System Abnormalities: A Review. J. Clin. Med. 2023, 12, 6640. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aimo, A.; Merlo, M.; Porcari, A.; Georgiopoulos, G.; Pagura, L.; Vergaro, G.; Sinagra, G.; Emdin, M.; Rapezzi, C. Redefining the epidemiology of cardiac amyloidosis. A systematic review and meta-analysis of screening studies. Eur. J. Heart Fail. 2022, 24, 2342–2351. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kittleson, M.; Maurer, M.S.; Ambardekar, A.V. Cardiac Amyloidosis: Evolving Diagnosis and Management: A Scientific Statement from the American Heart Association. Circulation 2020, 142, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, A.; Patel, R.K.; Razvi, Y.; Porcari, A.; Sinagra, G.; Venneri, L.; Bandera, F.; Masi, A.; Williams, G.E.; O’Beara, S.; et al. Impact of Earlier Diagnosis in Cardiac ATTR Amyloidosis Over the Course of 20 Years. Circulation 2022, 146, 1657–1670. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ioannau, A.; Massa, P.; Patel, R.K. Conventional heart failure therapy in cardiac ATTR amyloidosis. Eur. Heart J. 2023, 44, 2893–2907. [Google Scholar] [CrossRef]
- Barge-Caballero, G.; Barge-Caballero, E.; López-Pérez, M.; Bilbao-Quesada, R.; González-Babarro, E.; Gómez-Otero, I.; López-López, A.; Gutiérrez-Feijoo, M.; Varela-Román, A.; González-Juanatey, C.; et al. Beta-Blocker Exposure and Survival in Patients With Transthyretin Amyloid Cardiomyopathy. Mayo Clin. Proc. 2022, 97, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Shing Kwok, C.; Moody, W.E. Effect of beta-blockade on mortality in patients with cardiac amyloidosis: A systematic review and meta-analysis. ESC Heart Fail. 2024, 16, 3901–3910. [Google Scholar] [CrossRef]
- Lang, F.M.; Teruya, S.; Weinsaft, A.; Cuomo, M.; Santos, A.M.; Nalbandian, A.; Bampatsias, D.; Maurer, M.S. Sodium-glucose cotransporter 2 inhibitors for transthyretin amyloid cardiomyopathy: Analyses of short-term efficacy and safety. Eur. J. Heart Fail. 2024, 26, 938–947. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Porcari, A.S.; Cappelli, F.; Fontana, M. SGLT2 Inhibitor Therapy in Patients with Transthyretin Amyloid Cardiomyopathy. J. Am. Coll. Cardiol. 2024, 83, 2411–2422. [Google Scholar] [CrossRef]
- McMurray, J.J.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Velazquez, E.J.; Morrow, D.A.; DeVore, A.D.; Duffy, C.I.; Ambrosy, A.P.; McCague, K.; Rocha, R.; Braunwald, E.; PIONEER-HF Investigators. Angiotensin-Neprilysin Inhibition in Acute Decompensated Heart Failure. N. Engl. J. Med. 2019, 380, 539–548, Erratum in N. Engl. J. Med. 2019, 380, 1090. https://doi.org/10.1056/NEJMx190009. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, P.W.; Pieske, B.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; Butler, J.; Lam, C.S.P.; Ponikowski, P.; Voors, A.A.; Jia, G.; et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2020, 382, 1883–1893. [Google Scholar] [CrossRef] [PubMed]
- Bazoukis, G.; Saplaouras, A.; Efthymiou, P.; Yiannikourides, A.; Liu, T.; Sfairopoulos, D.; Korantzopoulos, P.; Varrias, D.; Letsas, K.P.; Thomopoulos, C.; et al. Atrial fibrillation in the setting of cardiac amyloidosis—A review of the literature. J. Cardiol. 2024, 84, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, S.; Oliveros, E.; Parekh, H.; Farmakis, D. Epidemiology, Mechanisms, and Management of Atrial Fibrillation in Cardiac Amyloidosis. Curr. Probl. Cardiol. 2023, 48, 101571. [Google Scholar] [CrossRef] [PubMed]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESCGuidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef] [PubMed]
- Tomasoni, D.; Bonfioli, G.B.; Aimo, A.; Adamo, M.; Canepa, M.; Inciardi, R.M.; Lombardi, C.M.; Nardi, M.; Pagnesi, M.; Riccardi, M.; et al. Treating amyloid transthyretin cardiomyopathy: Lessons learned from clinical trials. Front. Cardiovasc. Med. 2023, 10, 1154594. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garcia-Pavia, P.; Bengel, F.; Brito, D.; Damy, T.; Duca, F.; Dorbala, S.; Nativi-Nicolau, J.; Obici, L.; Rapezzi, C.; Sekijima, Y.; et al. Expert consensus on the monitoring of transthyretin amyloid cardiomyopathy. Eur. J. Heart Fail. 2021, 23, 895–905. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESCGuidelines for the management of cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.S.; Schwartz, J.H.; Gundapaneni, B.; Elliott, P.M.; Merlini, G.; Waddington-Cruz, M.; Kristen, A.V.; Grogan, M.; Witteles, R.; Damy, T.; et al. Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. N. Engl. J. Med. 2018, 379, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.W. Tafamidis for autonomic neuropathy in hereditary transthyretin (ATTR) amyloidosis: A review. Clin. Auton. Res. 2019, 29 (Suppl. 1), 19–24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gertz, M.A.; Scheinberg, M.; Waddington-Cruz, M.; Heitner, S.B.; Karam, C.; Drachman, B.; Khella, S.; Whelan, C.; Obici, L. Inotersen for the treatment of adults with polyneuropathy caused by hereditary transthyretin-mediated amyloidosis. Expert. Rev. Clin. Pharmacol. 2019, 12, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.S.; Grogan, D.R.; Judge, D.P.; Mundayat, R.; Packman, J.; Lombardo, I.; Quyyumi, A.A.; Aarts, J.; Falk, R.H. Tafamidis in transthyretin amyloid cardiomyopathy: Effects on transthyretin stabilization and clinical outcomes. Circ. Heart Fail. 2015, 8, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Green, C.P.; Porter, C.B.; Bresnahan, D.R.; Spertus, J.A. Development and evaluation of the Kansas City Cardiomyopathy Questionnaire: A new health status measure for heart failure. J. Am. Coll. Cardiol. 2000, 35, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Rapezzi, C.; Elliott, P.; Damy, T.; Nativi-Nicolau, J.; Berk, J.L.; Velazquez, E.J.; Boman, K.; Gundapaneni, B.; Patterson, T.A.; Schwartz, J.H.; et al. Efficacy of Tafamidis in Patients with Hereditary and Wild-Type Transthyretin Amyloid Cardiomyopathy: Further Analyses From ATTR-ACT. JACC Heart Fail. 2021, 9, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Drachman, B.M.; Gottlieb, S.S.; Hoffman, J.E.; Hummel, S.L.; Lenihan, D.J.; Ebede, B.; Gundapaneni, B.; Li, B.; Sultan, M.B.; et al. Long-Term Survival with Tafamidis in Patients with Transthyretin Amyloid Cardiomyopathy. Circ. Heart Fail. 2022, 15, e008193. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gillmore, J.D.; Maurer, M.S.; Falk, R.H.; Merlini, G.; Damy, T.; Dispenzieri, A.; Wechalekar, A.D.; Berk, J.L.; Quarta, C.C.; Grogan, M.; et al. Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation 2016, 133, 2404–2412. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Gundapaneni, B.; Sultan, M.B.; Ines, M.; Garcia-Pavia, P. Improved long-term survival with tafamidis treatment in patients with transthyretin amyloid cardiomyopathy and severe heart failure symptoms. Eur. J. Heart Fail. 2023, 25, 2060–2064. [Google Scholar] [CrossRef] [PubMed]
- Ghoonem, A.; Bhatti, A.W. Real-World Efficacy of Tafamidis in Patients with Transthyretin Amyloidosis and Heart Failure. Curr. Probl. Cardiol. 2023, 48, 101667. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pavia, P.; Kristen, A.V.; Drachman, B.; Carlsson, M.; Amass, L.; Angeli, F.S.; Maurer, M.S.; THAOS investigators. Survival in a Real-World Cohort of Patients with Transthyretin Amyloid Cardiomyopathy Treated with Tafamidis: An Analysis from the Transthyretin Amyloidosis Outcomes Survey (THAOS). J. Card. Fail. 2025, 31, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Debonnaire, P.; Dujardin, K.; Verheyen, N.; Pouleur, A.C.; Droogmans, S.; Claeys, M.; Bohyn, A.; Bogaerts, K.; El Haddad, M.; Christiaen, E.; et al. Tafamidis in octogenarians with wild-type transthyretin cardiac amyloidosis: An international cohort study. Eur. Heart J. 2025, 46, 1057–1070. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Müller, M.L.; Latinova, E.; Brand, A.; Mattig, I.; Spethmann, S.; Messroghli, D.; Hahn, K.; Landmesser, U.; Heidecker, B. Outcomes in Cardiac Transthyretin Amyloidosis and Association With New York Heart Association Class: Real-World Data. J. Am. Heart Assoc. 2024, 13, e033478. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gillmore, J.D.; Damy, T.; Fontana, M.; Hutchinson, M.; Lachmann, H.J.; Martinez-Naharro, A.; Quarta, C.C.; Rezk, T.; Whelan, C.J.; Gonzalez-Lopez, E.; et al. A new staging system for cardiac transthyretin amyloidosis. Eur. Heart J. 2018, 39, 2799–2806. [Google Scholar] [CrossRef] [PubMed]
- Masri, A.; Bhattacharya, P.; Medoff, B.; Ejaz, A.U.; Elman, M.R.; Chandrashekar, P.; Ives, L.; Santos, A.M.; Teruya, S.L.; Zhao, Y.; et al. A Multicenter Study of Contemporary Long-Term Tafamidis Outcomes in Transthyretin Amyloid Cardiomyopathy. JACC CardioOncol. 2025, 7, 282–293. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ioannou, A.; Cappelli, F.; Emdin, M.; Nitsche, C.; Longhi, S.; Masri, A.; Cipriani, A.; Zampieri, M.; Colio, F.; Poledniczek, M.; et al. Stratifying Disease Progression in Patients with Cardiac ATTR Amyloidosis. J. Am. Coll. Cardiol. 2024, 83, 1276–1291. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ioannou, A.; Razvi, Y.; Porcari, A.; Rauf, M.U.; Martinez-Naharro, A.; Venneri, L.; Kazi, S.; Pasyar, A.; Luxhøj, C.M.; Petrie, A.; et al. Kidney Outcomes in Transthyretin Amyloid Cardiomyopathy. JAMA Cardiol. 2025, 10, 50–58. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gillmore, J.D.; Judge, D.P.; Cappelli, F.; Fontana, M.; Garcia-Pavia, P.; Gibbs, S.; Grogan, M.; Hanna, M.; Hoffman, J.; Masri, A.; et al. Efficacy and Safety of Acoramidis in Transthyretin Amyloid Cardiomyopathy. N. Engl. J. Med. 2024, 390, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Penchala, S.C.; Connelly, S.; Wang, Y.; Park, M.S.; Zhao, L.; Baranczak, A.; Rappley, I.; Vogel, H.; Liedtke, M.; Witteles, R.M.; et al. AG10 inhibits amyloidogenesis and cellular toxicity of the familial amyloid cardiomyopathy-associated V122I transthyretin. Proc. Natl. Acad. Sci. USA 2013, 110, 9992–9997. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miller, M.; Pal, A.; Albusairi, W.; Joo, H.; Pappas, B.; Haque Tuhin, M.T.; Liang, D.; Jampala, R.; Liu, F.; Khan, J.; et al. Enthalpy-Driven Stabilization of Transthyretin by AG10 Mimics a Naturally Occurring Genetic Variant That Protects from Transthyretin Amyloidosis. J. Med. Chem. 2018, 61, 7862–7876. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wong, P.W.; Ji, A.X.; Fox, J.; Berk, J.L.; Sinha, U. Differential ex vivo stabilization of transthyretin by AG10 and tafamidis in samples from patients with moderately or severely destabilizing mutations. Circulation 2019, 140, A13964. [Google Scholar]
- Fontana, M.; Berk, J.L.; Drachman, B.; Garcia-Pavia, P.; Hanna, M.; Lairez, O.; Witteles, R. Changing Treatment Landscape in Transthyretin Cardiac Amyloidosis. Circ. Heart Fail. 2025, e012112. [Google Scholar] [CrossRef] [PubMed]
- Judge, D.P.; Gillmore, J.D.; Alexander, K.M.; Ambardekar, A.V.; Cappelli, F.; Fontana, M.; García-Pavía, P.; Grodin, J.L.; Grogan, M.; Hanna, M.; et al. Long-Term Efficacy and Safety of Acoramidis in ATTR-CM: Initial Report from the Open-Label Extension of the ATTRibute-CM Trial. Circulation 2025, 151, 601–611. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Razvi, Y.; Judge, D.P.; Martinez-Naharro, A.; Ioannou, A.; Venneri, L.; Patel, R.; Gillmore, J.D.; Kellman, P.; Edwards, L.; Taubel, J.; et al. Effect of Acoramidis on Myocardial Structure and Function in Transthyretin Amyloid Cardiomyopathy: Insights from the ATTRibute-CM Cardiac Magnetic Resonance (CMR) Substudy. Circ. Heart Fail. 2024, 17, e012135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keam, S.J. Inotersen: First Global Approval. Drugs 2018, 78, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Benson, M.D.; Waddington-Cruz, M.; Berk, J.L.; Polydefkis, M.; Dyck, P.J.; Wang, A.K.; Planté-Bordeneuve, V.; Barroso, F.A.; Merlini, G.; Obici, L.; et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, N.R.; Rissing, S.M.; Smith, J.; Jung, J.; Benson, M.D. Inotersen therapy of transthyretin amyloid cardiomyopathy. Amyloid 2020, 27, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Coelho, T.; Marques, W., Jr.; Dasgupta, N.R.; Chao, C.C.; Parman, Y.; França, M.C., Jr.; Guo, Y.C.; Wixner, J.; Ro, L.S.; Calandra, C.R.; et al. Eplontersen for Hereditary Transthyretin Amyloidosis with Polyneuropathy. JAMA 2023, 330, 1448–1458. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Friedrich, M.; Aigner, A. Therapeutic siRNA: State-of-the-Art and Future Perspectives. BioDrugs 2022, 36, 549–557. [Google Scholar] [CrossRef]
- Hoy, S.M. Patisiran: First Global Approval. Drugs 2018, 78, 1625–1631. [Google Scholar] [CrossRef]
- Keam, S.J. Vutrisiran: First Approval. Drugs 2022, 82, 1419–1425. [Google Scholar] [CrossRef]
- Aimo, A.; Castiglione, V.; Rapezzi, C.; Franzini, M.; Panichella, G.; Vergaro, G.; Gillmore, J.; Fontana, M.; Passino, C.; Emdin, M. RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nat. Rev. Cardiol. 2022, 19, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.S.; Kale, P.; Fontana, M. Patisiran Treatment in Patients with Transthyretin Cardiac Amyloidosis. N. Engl. J. Med. 2023, 389, 1553–1565. [Google Scholar] [CrossRef]
- Adams, D.; Tournev, I.L.; Taylor, M.S.; Coelho, T.; Planté-Bordeneuve, V.; Berk, J.L.; González-Duarte, A.; Gillmore, J.D.; Low, S.C.; Sekijima, Y.; et al. Efficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: A randomized clinical trial. Amyloid 2023, 30, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fontana, M.; Berk, J.L.; Gillmore, J.D.; Witteles, R.M.; Grogan, M.; Drachman, B.; Damy, T.; Garcia-Pavia, P.; Taubel, J.; Solomon, S.D.; et al. Vutrisiran in Patients with Transthyretin Amyloidosis with Cardiomyopathy. N. Engl. J. Med. 2025, 392, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.S.; Witteles, R.M.; Garcia-Pavia, P.; Sheikh, F.H.; Morbach, C.; Rodriguez Duque, D.; Aldinc, E.; Eraly, S.A.; Gillmore, J.D. Impact of Heart Failure Severity on Vutrisiran Efficacy in Transthyretin Amyloidosis with Cardiomyopathy. J. Am. Coll. Cardiol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, C.; Zampieri, M.; Perfetto, F.; Zocchi, C.; Maurizi, N.; Tassetti, L.; Ungar, A.; Gabriele, M.; Nardi, G.; Del Monaco, G.; et al. Early Diagnosis and Outcome in Patients with Wild-Type Transthyretin Cardiac Amyloidosis. Mayo Clin. Proc. 2021, 96, 2185–2191. [Google Scholar] [CrossRef] [PubMed]
- Rozenbaum, M.H.; Large, S.; Bhambri, R.; Stewart, M.; Young, R.; Doornewaard, A.V.; Dasgupta, N.; Masri, A.; Nativi-Nicolau, J. Estimating the health benefits of timely diagnosis and treatment of transthyretin amyloid cardiomyopathy. J. Comp. Eff. Res. 2021, 10, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Gillmore, J.D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M.L.; Seitzer, J.; O’Connell, D.; Walsh, K.R.; Wood, K.; et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N. Engl. J. Med. 2021, 385, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Fontana, M.; Solomon, S.D.; Kachadourian, J.; Walsh, L.; Rocha, R.; Lebwohl, D.; Smith, D.; Täubel, J.; Gane, E.J.; Pilebro, B.; et al. CRISPR-Cas9 Gene Editing with Nexiguran Ziclumeran for ATTR Cardiomyopathy. N. Engl. J. Med. 2024, 391, 2231–2241. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pavia, P.; Aus dem Siepen, F.; Donal, E. Phase 1 Trial of Antibody NI006 for Depletion of Cardiac Transthyretin Amyloid. N. Engl. J. Med. 2023, 389, 239–250. [Google Scholar] [CrossRef]
- Michalon, A.; Hagenbuch, A.; Huy, C.; Varela, E.; Combaluzier, B.; Damy, T.; Suhr, O.B.; Saraiva, M.J.; Hock, C.; Nitsch, R.M.; et al. A human antibody selective for transthyretin amyloid removes cardiac amyloid through phagocytic immune cells. Nat. Commun. 2021, 12, 3142. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suhr, O.B.; Grogan, M.; Silva, A.M.D.; Karam, C.; Garcia-Pavia, P.; Drachman, B.; Zago, W.; Tripuraneni, R.; Kinney, G.G. PRX004 in variant amyloid transthyretin (ATTRv) amyloidosis: Results of a phase 1, open-label, dose-escalation study. Amyloid 2025, 32, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Fontana, M.; Gilbertson, J.; Verona, G.; Riefolo, M.; Slamova, I.; Leone, O.; Rowczenio, D.; Botcher, N.; Ioannou, A.; Patel, R.K.; et al. Antibody-Associated Reversal of ATTR Amyloidosis-Related Cardiomyopathy. N. Engl. J. Med. 2023, 388, 2199–2201. [Google Scholar] [CrossRef] [PubMed]
- Rapezzi, C.; Arbustini, E.; Caforio, A.L.; Charron, P.; Gimeno-Blanes, J.; Heliö, T.; Linhart, A.; Mogensen, J.; Pinto, Y.; Ristic, A.; et al. Diagnostic work-up in cardiomyopathies: Bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 1448–1458. [Google Scholar] [CrossRef] [PubMed]
- Hjalte, F.; Norlin, J.M.; Alverbäck-Labberton, L.; Johansson, K.; Wikström, G.; Eldhagen, P. Health care resource use, diagnostic delay and disease burden in transthyretin amyloid cardiomyopathy in Sweden. Ann. Med. 2023, 55, 2292686. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Formiga, F.; García-Pavía, P.; Martín Sánchez, F.J.; Navarro-Ruiz, A.; Rubio-Terrés, C.; Peral, C.; Tarilonte, P.; López-Ibáñez de Aldecoa, A.; Rubio-Rodríguez, D. Health and economic impact of the correct diagnosis of transthyretin cardiac amyloidosis in Spain. Expert. Rev. Pharmacoecon Outcomes Res. 2021, 21, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Michieli, L.; Lupi, A.; Sinigiani, G.; Tietto, A.; Salvalaggio, A.; Branca, A.; Da Pozzo, S.; Rizzo, S.; Cecchin, D.; Perazzolo Marra, M.; et al. Pharmacological Management of Transthyretin Amyloid Cardiomyopathy: Where We Are and Where We Are Going. J. Clin. Med. 2025, 14, 3481. https://doi.org/10.3390/jcm14103481
De Michieli L, Lupi A, Sinigiani G, Tietto A, Salvalaggio A, Branca A, Da Pozzo S, Rizzo S, Cecchin D, Perazzolo Marra M, et al. Pharmacological Management of Transthyretin Amyloid Cardiomyopathy: Where We Are and Where We Are Going. Journal of Clinical Medicine. 2025; 14(10):3481. https://doi.org/10.3390/jcm14103481
Chicago/Turabian StyleDe Michieli, Laura, Alessandro Lupi, Giulio Sinigiani, Angela Tietto, Alessandro Salvalaggio, Antonio Branca, Stefano Da Pozzo, Stefania Rizzo, Diego Cecchin, Martina Perazzolo Marra, and et al. 2025. "Pharmacological Management of Transthyretin Amyloid Cardiomyopathy: Where We Are and Where We Are Going" Journal of Clinical Medicine 14, no. 10: 3481. https://doi.org/10.3390/jcm14103481
APA StyleDe Michieli, L., Lupi, A., Sinigiani, G., Tietto, A., Salvalaggio, A., Branca, A., Da Pozzo, S., Rizzo, S., Cecchin, D., Perazzolo Marra, M., Berno, T., Corrado, D., Briani, C., & Cipriani, A. (2025). Pharmacological Management of Transthyretin Amyloid Cardiomyopathy: Where We Are and Where We Are Going. Journal of Clinical Medicine, 14(10), 3481. https://doi.org/10.3390/jcm14103481