The Role of Gene Alterations in the Pathogenesis of Polycystic Ovary Syndrome
Abstract
:1. Family Studies and Candidate Gene Evaluation
- Steroid metabolism;
- Insulin action;
- Gonadotropins;
- Obesity and fuel metabolism.
2. Genome-Wide Association Studies
2.1. Genetic Alterations That Are Linked to Hyperandrogenism
- The increased expression of the FSHB gene, a gene that is involved in the production of the B chain of FSH [17];
2.2. Genetic Alterations That Are Linked to Chronic Anovulation and/or Polycystic Ovaries
- (a)
- Influencing follicle recruitment and development
- YAP1 (yes-associated-protein 1);
- ERBB4 (epidermal growth factor receptor 4);
- AMH.
- (b)
- Increasing LH production and/or increasing LH/FSH ratio
- FSHB;
- LHR;
- FSHR.
2.3. Genetic Factors That Are Linked to Hyperinsulinemia and Insulin Resistance
- THADA;
- INSR (insulin receptor);
- HMGA2 (high-mobility group AT-hook 2).
3. Possible Interpretations of Genetic Alterations Found by GWASs
4. New Candidate Gene Studies and the Role of Rare Genes in the Pathogenesis of PCOS
5. Integrated Models Including Genetic and Clinical Factors
6. Environmental and Epigenetic Mechanisms That May Be Important in Pathogenesis of PCOS
7. Conclusions—Searching for a Unifying Hypothesis on Etiologic Mechanisms Determining PCOS
Funding
Conflicts of Interest
References
- Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Carmina, E.; Azziz, R. Diagnosis, Phenotype and Prevalence of Polycystic Ovary Syndrome. Fertil Steril. 2006, 86 (Suppl. S1), 87–89. [Google Scholar] [CrossRef]
- Azziz, R.; Carmina, E.; Chen, Z.; Dunaif, A.; Laven, J.S.; Legro, R.S.; Lizneva, D.; Natterson-Horowtiz, B.; Teede, H.J.; Yildiz, B.O. Polycystic ovary syndrome. Nat. Rev. Dis. Primers 2016, 2, 16057. [Google Scholar] [CrossRef]
- Azziz, R.; Kashar-Miller, M.D. Family history as a risk factor for the polycystic ovary syndrome. J. Pediatr. Endocrinol. Metab. 2000, 13 (Suppl. 5), 1303–1306. [Google Scholar]
- Urbanek, M.; Legro, R.S.; Driscoll, D.; Strauss, J.F., III; Dunaif, A.; Spielman, R.S. Searching for the polycystic ovary syndrome genes. J. Pediatr. Endocrinol. Metab. 2000, 13 (Suppl. 5), 1311–1313. [Google Scholar]
- Vink, J.M.; Sadrzadeh, S.; Lambalk, C.B.; Boomsma, D.I. Heritability of polycystic Ovary syndrome in a dutch twin-family study. J. Clin. Endocrinol. Metab. 2006, 91, 2100–2104. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, M.O. Looking for polycystic ovary syndrome genes: Rational and best strategy. Semin. Reprod. Med. 2008, 26, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Gilling-Smith, C.; Story, H.; Rogers, V.; Franks, S. Evidence for a primary abnormality of thecal cell steroidogenesis in the polycystic ovary syndrome. Clin. Endocrinol. 1997, 47, 93–99. [Google Scholar] [CrossRef]
- Goodarzi, M.A. The genetic basis of Polycystic Ovary Syndrome. In Androgen Excess Disorders in Women; Azziz, R., Nestler, J.E., Dewailly, D., Eds.; Humana Press Inc.: Totowa, NJ, USA, 2006; pp. 223–233. [Google Scholar]
- Dunaif, A.; Xia, J.; Book, C.-B.; Schenker, E.; Tang, Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J. Clin. Investig. 1995, 96, 801–810. [Google Scholar] [CrossRef]
- Urbanek, M.; Legro, R.S.; Driscoll, D.A.; Azziz, R.; Ehrmann, D.A.; Norman, R.J.; Strauss, J.F.; Spielman, R.S.; Dunaif, A. Thirty-seven candidate genes for polycystic ovary syndrome: Strongest evidence for linkage is with follistatin. Proc. Natl. Acad. Sci. USA 1999, 96, 8573–8578. [Google Scholar] [CrossRef]
- Chen, Z.-J.; Zhao, H.; He, L.; Shi, Y.; Qin, Y.; Shi, Y.; Li, Z.; You, L.; Zhao, J.; Liu, J.; et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat. Genet. 2011, 43, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhao, H.; Shi, Y.; Cao, Y.; Yang, D.; Li, Z.; Zhang, B.; Liang, X.; Li, T.; Chen, J. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012, 44, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.G.; Urbanek, M.; Ehrmann, D.A.; Armstrong, L.L.; Lee, J.Y.; Sisk, R.; Karaderi, T.; Barber, T.M.; McCarthy, M.I.; Franks, S.; et al. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat. Commun. 2015, 6, 7502. [Google Scholar] [CrossRef]
- Day, F.R.; Hinds, D.A.; Tung, J.Y.; Stolk, L.; Styrkarsdottir, U.; Saxena, R.; Bjonnes, A.; Broer, L.; Dunger, D.B.; Halldórsson, B.V.; et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat. Commun. 2015, 6, 8464. [Google Scholar] [CrossRef]
- Zhang, Y.; Ho, K.; Keaton, J.M.; Hartzel, D.N.; Day, F.; Justice, A.E.; Josyula, N.S.; Pendergrass, S.A.; Actkins, K.; Davis, L.K.; et al. A genome-wide association study of polycystic ovary syndrome identified from electronic health records. Am. J. Obstet. Gynecol. 2020, 223, 559-e1–559-e21. [Google Scholar] [CrossRef]
- Moolhuijsen, L.M.; Zhu, J.; Mullin, B.H.; Pujol-Gualdo, N.; Actkins, K.V.; Mack, J.A.; Rao, H.; Trivedi, B.; Kentistou, K.A.; Zhao, J.; et al. Genomic and proteomic evidence for hormonal and metabolic foundations of polycystic ovary syndrome. MedRxiv 2024. [Google Scholar] [CrossRef]
- Urbanek, M.; Sam, S.; Legro, R.S.; Dunaif, A. Identification of a Polycystic Ovary Syndrome Susceptibility Variant in Fibrillin-3 and Association with a Metabolic Phenotype. J. Clin. Endocrinol. Metab. 2007, 92, 4191–4198. [Google Scholar] [CrossRef]
- McAllister, J.M.; Modi, B.; Miller, B.A.; Biegler, J.; Bruggeman, R.; Legro, R.S.; Strauss, J.F. Overexpression of a DENND1A isoform produces a polycystic ovary syndrome theca phenotype. Proc. Natl. Acad. Sci. USA 2014, 111, E1519–E1527. [Google Scholar] [CrossRef]
- McAllister, J.M.; Han, A.X.; Modi, B.P.; E Teves, M.; Mavodza, G.R.; Anderson, Z.L.; Shen, T.; Christenson, L.K.; Archer, K.J.; Strauss, J.F. miRNA Profiling Reveals miRNA-130b-3p Mediates DENND1A Variant 2 Expression and Androgen Biosynthesis. Endocrinology 2019, 160, 1964–1981. [Google Scholar] [CrossRef]
- Waterbury, J.S.; Teves, M.E.; Gaynor, A.; Han, A.X.; Mavodza, G.; Newell, J.; Strauss, J.F.; McAllister, J.M. The PCOS GWAS Candidate Gene ZNF217 Influences Theca Cell Expression of DENND1A.V2, CYP17A1, and Androgen Production. J. Endocr. Soc. 2022, 6, bvac078. [Google Scholar] [CrossRef]
- Harris, R.A.; McAllister, J.M.; Strauss, J.F. Single-Cell RNA-Seq Identifies Pathways and Genes Contributing to the Hyperandrogenemia Associated with Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2023, 24, 10611. [Google Scholar] [CrossRef]
- Zawdaki, J.K.; Dunaif, A. Diagnostic criteria for polycystic ovary syndrome: Toward a rationale approach. In Polycystic Ovary Syndrome; Dunaif, A., Givens, J.R., Haseltine, F., Merriam, G.R., Eds.; Blackwell Scientific Publications: Boston, MA, USA, 1992; pp. 377–384. [Google Scholar]
- Goodman, N.F.; Cobin, R.H.; Futterweit, W.; Glueck, J.S.; Legro, R.S.; Carmina, E.; American Association of Clinical Endocrinologists (AACE); American College of Endocrinology (ACE); Androgen Excess and PCOS Society. Guide to the best practices in the evaluation and treatment of Polycystic Ovary Syndrome-part 2. Endocr. Pract. 2015, 21, 1415–1426. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Zhou, H.; He, R.; Lu, W. Dietary Modification for Reproductive Health in Women With Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2021, 12, 735954. [Google Scholar] [CrossRef]
- Carmina, E.; Longo, R.A. Semaglutide Treatment of Excessive Body Weight in Obese PCOS Patients Unresponsive to Lifestyle Programs. J. Clin. Med. 2023, 12, 5921. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Qu, H.; Yang, L.; Shou, L. Effects of GLP1RAs on pregnancy rate and menstrual cyclicity in women with polycystic ovary syndrome: A meta-analysis and systematic review. BMC Endocr. Disord. 2023, 23, 245. [Google Scholar] [CrossRef]
- Carmina, E.; Lobo, R.A. Comparing Lean and Obese PCOS in Different PCOS Phenotypes: Evidence That the Body Weight Is More Important than the Rotterdam Phenotype in Influencing the Metabolic Status. Diagnostics 2022, 12, 2313. [Google Scholar] [CrossRef]
- Carmina, E. Need to Introduce the Finding of Obesity or Normal Body Weight in the Current Diagnostic Criteria and in the Classification of PCOS. Diagnostics 2022, 12, 2555. [Google Scholar] [CrossRef] [PubMed]
- Carmina, E.; Legro, R.S.; Stamets, K.; Lowell, J.; Lobo, R.A. Difference in body weight between American and Italian women with Polycystic Ovary Syndrome: Influence of the diet. Hum. Reprod. 2003, 11, 2289–2293. [Google Scholar] [CrossRef]
- Dapas, M.; Dunaif, A. Deconstructing a Syndrome: Genomic Insights Into PCOS Causal Mechanisms and Classification. Endocr. Rev. 2022, 43, 927–965. [Google Scholar] [CrossRef]
- Guastella, E.; Longo, R.A.; Carmina, E. Clinical and endocrine characteristics of the main PCOS phenotypes. Fertil. Steril. 2010, 94, 2197–2201. [Google Scholar] [CrossRef]
- Ruth, K.S.; Day, F.; Tyrrell, J.; Thompson, D.J.; Wood, A.R.; Mahajan, A.; Beaumont, R.N.; Wittemans, L.; Martin, S.; Busch, A.S.; et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat. Med. 2020, 26, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Abbott, D.H.; Hutcherson, B.A.; Dumesic, D.A. Anti-Müllerian Hormone: A Molecular Key to Unlocking Polycystic Ovary Syndrome? Semin. Reprod. Med. 2024, 42, 41–48. [Google Scholar] [CrossRef]
- Cotellessa, L.; Giacobini, P. Role of anti-Mullerian hormone in the central regulation of fertility. Semin. Reprod. Med. 2024, 42, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Mimouni, N.E.H.; Giacobini, P. Polycystic ovary syndrome (PCOS): Progress towards a better understanding and treatment of the syndrome. C. R. Biol. 2024, 347, 19–25. [Google Scholar] [CrossRef]
- Dapas, M.; Sisk, R.; Legro, R.S.; Urbanek, M.; Dunaif, A.; Hayes, M.G. Family-Based Quantitative Trait Meta-Analysis Implicates Rare Noncoding Variants in DENND1A in Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2019, 104, 3835–3850. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.; Bhattacharjee, P. Clinical-exome sequencing unveils the genetic landscape of polycystic ovarian syndrome (PCOS) focusing on lean and obese phenotypes: Implications for cost-effective diagnosis and personalized treatment. Sci. Rep. 2024, 14, 24468. [Google Scholar] [CrossRef]
- Van der Ham, K.; Moolhuijsen, L.M.E.; Brewer, K.; Sisk, R.; Dunaif, A.; Laven, J.S.E.; Louwers, Y.V.; Visser, J.A. Clustering Identifies Subtypes With Different Phenotypic Characteristics in Women With Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2024, 109, 3096–3107. [Google Scholar] [CrossRef]
- Burns, K.; Mullin, B.H.; Moolhuijsen, L.M.E.; Laisk, T.; Tyrmi, J.S.; Cui, J.; Actkins, K.V.; Louwers, Y.V.; Davis, L.K.; Dudbridge, F.; et al. Body mass index stratified meta-analysis of genome-wide association studies of polycystic ovary syndrome in women of European ancestry. BMC Genom. 2024, 25, 208. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, W.-J.; Xing, L.-W.; Zhang, X.-J.; Wang, J.; Xia, X.-Y.; Zhao, R.; Zhao, R. Investigating the role of mitochondrial DNA D-loop variants, haplotypes, and copy number in polycystic ovary syndrome: Implications for clinical phenotypes in the Chinese population. Front. Endocrinol. 2023, 14, 1206995. [Google Scholar] [CrossRef]
- Gnanadass, A.S.; Prabhu, Y.D.; Gopalakrishnan, V.A. Association of metabolic and inflammatory markers with polycystic ovarian syndrome (PCOS): An update. Arch. Gynecol. Obstet. 2021, 303, 631–643. [Google Scholar] [CrossRef]
- Wang, J.; Yin, T.; Liu, S. Dysregulation of immune response in PCOS organ system. Front. Immunol. 2023, 14, 1169232. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.M.; Li, Y.M.; Huang, Y. Circulating cytokines levels and the risk of polycystic ovary syndrome: A Mendelian randomization analysis. Medicine 2025, 104, e41359. [Google Scholar] [CrossRef] [PubMed]
- Stener-Victorin, E.; Deng, Q. Epigenetic inheritance of PCOS by developmental programming and germline transmission. Trends Endocrinol. Metab. 2025, 36, 472–481. [Google Scholar] [CrossRef] [PubMed]
Gene Alterations | European Ancestry Populations | Chinese Han Population |
---|---|---|
DENDD1A | x | x |
THADA | x | x |
YAP1 | x | x |
FSHB | x | |
ERBB4 | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmina, E. The Role of Gene Alterations in the Pathogenesis of Polycystic Ovary Syndrome. J. Clin. Med. 2025, 14, 3347. https://doi.org/10.3390/jcm14103347
Carmina E. The Role of Gene Alterations in the Pathogenesis of Polycystic Ovary Syndrome. Journal of Clinical Medicine. 2025; 14(10):3347. https://doi.org/10.3390/jcm14103347
Chicago/Turabian StyleCarmina, Enrico. 2025. "The Role of Gene Alterations in the Pathogenesis of Polycystic Ovary Syndrome" Journal of Clinical Medicine 14, no. 10: 3347. https://doi.org/10.3390/jcm14103347
APA StyleCarmina, E. (2025). The Role of Gene Alterations in the Pathogenesis of Polycystic Ovary Syndrome. Journal of Clinical Medicine, 14(10), 3347. https://doi.org/10.3390/jcm14103347