Impact of the COVID-19 Pandemic on Lung Function and Treatment Decisions in Children with Asthma: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants’ Selection
- Pediatric patients with asthma who are less than 18 years old whose parents/legal guardians agreed to participate in the study;
- Children with asthma who received treatment steps according to the GINA guideline;
- Children with asthma who were assessed according to the GINA guideline to identify the level of asthma control;
- Pediatric patients with asthma who had pulmonary function test values and FeNO values measured before and after infection with the SARS-CoV-2 virus;
- Pediatric patients with asthma who did not contract the virus and had before and after measurements of pulmonary function test values and FeNO values to assess the evolution of asthma over time.
- Exclusion criteria were as follows:
- Children with asthma who present other chronic pathologies that may intervene with the results of the present study;
- Pediatric patients with asthma who, prior to infection with SARS-CoV-2, did not measure pulmonary function test parameters or FeNO;
- Pediatric patients with asthma who did not contract the virus and did not have before and after measurements of pulmonary function test values and FeNO values to assess the evolution of asthma over time.
2.2. Study Variables
2.3. Statistical Analysis
3. Results
3.1. Baseline Lung Function and FeNO Measurements
3.2. Follow-Up Parameters Measurements in Non-Infected (Study Group 1) and Infected (Study Group 2) Children with Asthma
Asthma Exacerbations and Their Association with Treatment Changes
3.3. Comparison Between Non-Infected and Infected Children with Asthma
3.4. Baseline and Follow-Up of FeNO and Lung Function Parameters Evolution (Variation Expressed as the Difference Between BEFORE and AFTER Values)—Groups Distribution
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dharmage, S.C.; Perret, J.L.; Custovic, A. Epidemiology of Asthma in Children and Adults. Frontr. Pediatr. 2019, 7, 246. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.E.; Tang, M.; Zhao, C.; Hurst, J.; Wu, A.; Goldstein, B.A. Well-Child Care Attendance and Risk of Asthma Exacerbations. Pediatrics 2020, 146, e20201023. [Google Scholar] [CrossRef] [PubMed]
- Denlinger, L.C.; Heymann, P.; Lutter, R.; Gern, J.E. Exacerbation-Prone Asthma. J. Allergy Clin. Immunol. Pract. 2020, 8, 474–482. [Google Scholar] [CrossRef] [PubMed]
- McGovern, C.M.; Redmond, M.; Arcoleo, K.; Stukus, D.R. A missed primary care appointment correlates with a subsequent emergency department visit among children with asthma. J. Asthma 2017, 54, 977–982. [Google Scholar] [CrossRef]
- Garpvall, K.; Hauerslev, M.; Marckmann, M.; Hermansen, M.N.; Hansen, K.S.; Chawes, B.L. Allergic Comorbidity Is a Risk Factor for Not Attending Scheduled Outpatient Visits in Children with Asthma. Children 2021, 8, 1193. [Google Scholar] [CrossRef]
- Akinbami, L.J.; Simon, A.E.; Rossen, L.M. Changing Trends in Asthma Prevalence Among Children. Pediatrics 2016, 137, 1–7. [Google Scholar] [CrossRef]
- Chou, C.C.; Morphew, T.; Ehwerhemuepha, L.; Galant, S.P. COVID-19 infection may trigger poor asthma control in children. J. Allergy Clin. Immunol. Pract. 2022, 10, 1913–1915. [Google Scholar] [CrossRef]
- Sarikloglou, E.; Fouzas, S.; Paraskakis, E. Prediction of Asthma Exacerbations in Children. J. Pers. Med. 2023, 14, 20. [Google Scholar] [CrossRef]
- Crook, J.; Weinman, J.; Gupta, A. Changes in rates of prescriptions for inhaled corticosteroids during the COVID-19 pandemic. Lancet Respir. Med. 2022, 10, 6–7. [Google Scholar] [CrossRef]
- Ferraro, V.A.; Zanconato, S.; Carraro, S. Impact of COVID-19 in Children with Chronic Lung Diseases. Int. J. Environ. Res. Public Health 2022, 19, 11483. [Google Scholar] [CrossRef]
- Osama, H.; Alghamdi, S.; AbdElrahman, M.; Abdelrahim, M.E.A. Evaluating adherence and inhaler monitoring among adolescent asthmatic patients: A systematic review and meta-analysis of interventions. Egypt J. Bronchol. 2024, 18, 85. [Google Scholar] [CrossRef]
- Licari, A.; Brambilla, I.; De Filippo, M.; Poddighe, D.; Castagnoli, R.; Marseglia, G.L. The role of upper airway pathology as a co-morbidity in severe asthma. Expert Rev. Respir. Med. 2017, 11, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Serhal, S.; Saini, B.; Bosnic-Anticevich, S.; Krass, I.; Wilson, F.; Armour, C. Medication adherence in a community population with uncontrolled asthma. Pharmacy 2020, 8, 183. [Google Scholar] [CrossRef]
- Choi, Y.J.; Park, J.Y.; Lee, H.S.; Suh, J.; Song, J.Y.; Byun, M.K.; Cho, J.H.; Kim, H.J.; Lee, J.H.; Park, J.W.; et al. Effect of asthma and asthma medication on the prognosis of patients with COVID-19. Eur. Respir. J. 2021, 57, 2002226. [Google Scholar] [CrossRef]
- Fy, O.K.R. Why Asthma Still Kills. Ulster Med. J. 2017, 86, 44. [Google Scholar]
- Nwaru, B.I.; Ekstrom, M.; Hasvold, P.; Wiklund, F.; Telg, G.; Janson, C. Overuse of short-acting beta(2)-agonists in asthma is associated with increased risk of exacerbation and mortality: A nationwide cohort study of the global SABINA programme. Eur. Respir. J. 2020, 55, 1901872. [Google Scholar] [CrossRef]
- Morgan, A.; Maslova, E.; Kallis, C.; Sinha, I.; Roberts, G.; Tran, T.N.; van der Valk, R.J.P.; Quint, J.K. Short-acting β2-agonists and exacerbations in children with asthma in England: SABINA Junior. ERJ Open Res. 2023, 9, 00571–02022. [Google Scholar] [CrossRef]
- Global Strategy for Asthma Management and Prevention GINA. 2024. Available online: https://ginasthma.org/wp-content/uploads/2024/05/GINA-2024-Strategy-Report-24_05_22_WMS.pdf (accessed on 26 January 2025).
- Boechat, J.L.; Wandalsen, G.F.; Kuschnir, F.C.; Delgado, L. COVID-19 and pediatric asthma: Clinical and management challenges. Int. J. Environ. Res. Public Health 2021, 18, 1093. [Google Scholar] [CrossRef]
- Di Riso, D.; Spaggiari, S.; Cambrisi, E.; Ferraro, V.; Carraro, S.; Zanconato, S. Psychosocial impact of Covid-19 outbreak on Italian asthmatic children and their mothers in a post lockdown scenario. Sci. Rep. 2021, 11, 9152. [Google Scholar] [CrossRef]
- Hasan, S.; Capstick, T.; Zaidi, S.; Know, C.; Merchant, H. Use of corticosteroids in asthma and COPD patients with or without COVID-19. Respir. Med. 2020, 170, 106045. [Google Scholar] [CrossRef]
- Global Initiative for Asthma. COVID-19: GINA Answers to Frequently Asked Questions on Asthma Management. Available online: https://ginasthma.org/covid-19/ (accessed on 26 January 2025).
- Halpin, D.; Singh, D.; Hadfield, R. Inhaled corticosteroids and COVID-19: A systematic review and clinical perspective. Eur. Respir. J. 2020, 55, 2001009. [Google Scholar] [CrossRef]
- Cekic, S.; Karali, Z.; Cicek, F.; Canitez, Y.; Sapan, N. The Impact of the COVID-19 Pandemic in Adolescents with Asthma. J. Korean Med. Sci. 2021, 36, e339. [Google Scholar] [CrossRef]
- Nucera, E.; Rizzi, A.; Agrosì, C.; Lohmeyer, F.M.; Inchingolo, R. Lung Function Tests, Quality of Life and Telemedicine: Three Windows on the Multifaceted World of Asthma in Adolescents. Children 2022, 9, 476. [Google Scholar] [CrossRef]
- Dinglasan, J.L.; Tang, L.Y.; Chong, M.C.; Al Raimi, A.M. Asthma prevalence and the relationship between level of knowledge and quality of life among asthmatic schoolchildren in Malaysia. Saudi Med. J. 2022, 43, 113–116. [Google Scholar] [CrossRef]
- Sleath, B.; Gratie, D.; Carpenter, D.; Davis, S.A.; Lee, C.; Loughlin, C.E.; Garcia, N.; Reuland, D.S.; Tudor, G. Reported Problems and Adherence in Using Asthma Medications Among Adolescents and Their Caregivers. Ann. Pharmacother. 2018, 52, 855–861. [Google Scholar] [CrossRef]
- Batmaz, S.B.; Birinci, G.; Aslan, E.A. Quality of Life of Children with Allergic Disease: The effect of Depression and Anxiety of Children and Their Mothers. J. Asthma 2022, 59, 1776–1786. [Google Scholar] [CrossRef]
- Amaral, S.C.D.O.; Pimenta, F.; Marôco, J.; Sant’Anna, C.C. Stress reduction intervention with mothers of children/adolescents with asthma: A randomized controlled study in Brazil. Health Care Women Int. 2020, 41, 266–283. [Google Scholar] [CrossRef]
- Dut, R.; Soyer, O.; Sahiner, U.M.; Esenboga, S.; Cetinkaya, P.G.; Akgul, S.; Derman, O.; Sekerel, B.E.; Kanbur, N. Psychological burden of asthma in adolescents and their parents. J. Asthma 2022, 59, 1116–1121. [Google Scholar] [CrossRef]
- WHO Adherence to Long-Term Therapies: Evidence for Action, 2003—PAHO/WHO|Pan American Health Organization. Available online: https://www.paho.org/en/documents/who-adherence-long-term-therapies-evidence-action-2003v (accessed on 26 January 2025).
- Duvnjak, J.P.; Ursic, A.; Matana, A.; Mikic, I.M. Parents’ Beliefs about Medicines and Their Influence on Inhaled Corticosteroid Adherence in Children with Asthma. Children 2024, 11, 167. [Google Scholar] [CrossRef]
- Brough, H.A.; Kalayci, O.; Sediva, A.; Untersmayr, E.; Munblit, D.; Rodriguez Del Rio, P.; Vazquez-Ortiz, M.; Arasi, S.; Alvaro-Lozano, M.; Tsabouri, S.; et al. Managing childhood allergies and immunodeficiencies during respiratory virus epidemics—The 2020 COVID-19 pandemic: A statement from the EAACI-section on pediatrics. Pediatr. Allergy Immunol. 2020, 31, 442–448. [Google Scholar] [CrossRef]
- Castro-Rodriguez, J.A.; Forno, E. Asthma and COVID-19 in children: A systematic review and call for data. Pediatr. Pulmonol. 2020, 55, 2412–2418. [Google Scholar] [CrossRef] [PubMed]
- Yamaya, M.; Nishimura, H.; Deng, X.; Sugawara, M.; Watanabe, O.; Nomura, K.; Shimotai, Y.; Momma, H.; Ichinose, M.; Kawase, T. Inhibitory effects of glycopyrronium, formoterol, and budesonide on coronavirus HCoV-229E replication and cytokine production by primary cultures of human nasal and tracheal epithelial cells. Respir. Investig. 2020, 58, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, S.; Kawase, M.; Nao, N.; Shirato, K.; Ujike, M.; Kamitani, W.; Shimojima, M.; Fukushi, S. The Inhaled Steroid Ciclesonide Blocks SARS-CoV-2 RNA Replication by Targeting the Viral Replication-Transcription Complex in Cultured Cells. J. Virol. 2020, 95, e01648-20. [Google Scholar] [CrossRef] [PubMed]
- Ohbayashi, H.; Asano, T.; Kudo, S.; Ariga, M. Comparison of User Satisfaction and Preference with Inhalant Devices Between a Pressurized Metered-Dose Inhaler and Ellipta in Stable Asthma Patients: A Randomized, Crossover Study. Pulm. Ther. 2021, 7, 171–187. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Waked, M.; Gogtay, J.; Gaur, V. Comparing the efficacy and safety of formoterol/budesonide pMDI versus its mono-components and other LABA/ICS in patients with asthma. Respir. Med. 2020, 170, 106055. [Google Scholar] [CrossRef]
- Russell, B.S.; Hutchison, M.; Tambling, R.; Tomkunas, A.J.; Horton, A.L. Initial Challenges of Caregiving During COVID-19: Caregiver Burden, Mental Health, and the Parent–Child Relationship. Child Psychiatry Hum. Dev. 2020, 51, 671–682. [Google Scholar] [CrossRef]
- Ferraro, V.A.; Zamunaro, A.; Spaggiari, S.; Di Riso, D.; Zanconato, S.; Carraro, S. Pediatric asthma control during the COVID-19 pandemic. Immun. Inflamm. Dis. 2021, 9, 561–568. [Google Scholar] [CrossRef]
- Dhruve, H.; d’Ancona, G.; Holmes, S.; Dhariwal, J.; Nanzer, A.M.; Jackson, D.J. Prescribing Patterns and Treatment Adherence in Patients with Asthma During the COVID-19 Pandemic. J. Allergy. Clin. Immunol. Pract. 2022, 10, 100–107.e2. [Google Scholar] [CrossRef]
- Nicolau, D.V.; Bafadhel, M. Inhaled corticosteroids in virus pandemics: A treatment for COVID-19? Lancet Respir. Med. 2020, 8, 846–847. [Google Scholar] [CrossRef]
- Searing, D.A.; Dutmer, C.M.; Fleischer, D.M.; Shaker, M.S.; Oppenheimer, J.; Grayson, M.H.; Stukus, D.; Hartog, N.; Hsieh, E.W.Y.; Rider, N.L.; et al. A Phased Approach to Resuming Suspended Allergy/Immunology Clinical Services. J. Allergy Clin. Immunol. Pract. 2020, 8, 2125–2134. [Google Scholar] [CrossRef]
- Abrams, E.M.; Szefler, S. Ongoing asthma management in children during the COVID-19 pandemic: To step down or not to step down? Lancet Respir. Med. 2021, 9, 820–822. [Google Scholar] [CrossRef] [PubMed]
- De Keyser, H.H.; Ramsey, R.; Federico, M.J. They just don’t take their medicines: Reframing medication adherence in asthma from frustration to opportunity. Pediatr. Pulmonol. 2020, 55, 818–825. [Google Scholar] [CrossRef] [PubMed]
- George, M.; Bender, B. New insights to improve treatment adherence in asthma and COPD. Patient Prefer. Adherence 2019, 13, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, D.; Hanon, S.; Peché, R.V.; Schuermans, D.J.; Degryse, J.M.; De Wulf, I.A.; Elinck, K.; Leys, M.H.; Rummens, P.L.; Derom, E. How to Choose the Right Inhaler Using a Patient-Centric Approach? Adv. Ther. 2022, 39, 1149–1163. [Google Scholar] [CrossRef]
- Vanoverschelde, A.; Van Der Wel, P.; Putman, B.; Lahousse, L. Determinants of poor inhaler technique and poor therapy adherence in obstructive lung diseases: A cross-sectional study in community pharmacies. BMJ Open Respir. Res. 2021, 8, e000823. [Google Scholar] [CrossRef]
- Poplicean, E.; Crișan, A.F.; Tudorache, E.; Hogea, P.; Mladin, R.; Oancea, C. Unlocking Better Asthma Control: A Narrative Review of Adherence to Asthma Therapy and Innovative Monitoring Solutions. J. Clin. Med. 2024, 13, 6699. [Google Scholar] [CrossRef]
- Cvietusa, P.J.; Goodrich, G.K.; Shoup, J.A.; King, D.K.; Bender, B.G. Effect of an Asthma Exacerbation on Medication Adherence. J. Allergy Clin. Immunol. Pract. 2023, 11, 248–254. [Google Scholar] [CrossRef]
- Busse, W.W.; Fang, J.; Marvel, J.; Tian, H.; Altman, P.; Cao, H. Uncontrolled asthma across GINA treatment steps 2–5 in a large US patient cohort. J. Asthma 2022, 59, 1051–1062. [Google Scholar] [CrossRef]
- Shi, T.; Pan, J.; Katikireddi, S.V.; McCowan, C.; Kerr, S.; Agrawal, U.; Shah, S.A.; Simpson, C.R.; Ritchie, L.D.; Robertson, C.; et al. Public Health Scotland and the EAVE II Collaborators. Risk of COVID-19 hospital admission among children aged 5-17 years with asthma in Scotland: A national incident cohort study. Lancet Respir. Med. 2022, 10, 191–198. [Google Scholar] [CrossRef]
- Rabha, A.C.; Fernandes, F.R.; Solé, D.; Bacharier, L.B.; Wandalsen, G.F. Asthma is associated with lower respiratory tract involvement and worse clinical score in children with COVID-19. Pediatr. Allergy Immunol. 2021, 32, 1577–1580. [Google Scholar] [CrossRef]
- Global Initiative for Asthma. Pocket Guide for Asthma Management and Prevention. Available online: https://ginasthma.org/pocket-guide-for-asthma-management-and-prevention/ (accessed on 26 January 2025).
- Bloom, C.I.; Drake, T.M.; Docherty, A.B.; Lipworth, B.J.; Johnston, S.L.; Nguyen-Van-Tam, J.S.; Carson, G.; Dunning, J.; Harrison, E.M.; Baillie, J.K.; et al. ISARIC investigators. Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: A national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK. Lancet Respir. Med. 2021, 9, 699–711. [Google Scholar] [CrossRef]
- Nuijsink, M.; Hop, W.C.; Sterk, P.J.; Duiverman, E.J.; de Jongste, J.C. Long-term asthma treatment guided by airway hyperresponsiveness in children: A randomised controlled trial. Eur. Respir. J. 2007, 30, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Nuijsink, M.; Vaessen-Verberne, A.A.; Hop, W.C.; Sterk, P.J.; Duiverman, E.J.; de Jongste, J.C.; CATO Study Group. Long-term follow-up after two years of asthma treatment guided by airway responsiveness in children. Respir. Med. 2013, 107, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Yu, Q.; Zeng, X.; Sun, W.; Sun, Y.; Li, M. The influence of inhaled corticosteroid discontinuation in children with well-controlled asthma. Medicine 2017, 96, e7848. [Google Scholar] [CrossRef] [PubMed]
- Onay, Z.R.; Oksay, S.C.; Mavi Tortop, D.; Bilgin, G.; Ayhan, Y.; Durankus, F.; Girit, S. Impact of Long COVID on Lung Function in Children. Medeni. Med. J. 2024, 39, 74–84. [Google Scholar] [CrossRef]
- Ludvigsson, J.F. Case report and systematic review suggest that children may experience similar long-term effects to adults after clinical COVID-19. Acta Paediatr. 2021, 110, 914–921. [Google Scholar] [CrossRef]
- Cameli, P.; Bargagli, E.; Bergantini, L.; d’Alessandro, M.; Giugno, B.; Gentili, F.; Sestini, P. Alveolar Nitric Oxide as a Biomarker of COVID-19 Lung Sequelae: A Pivotal Study. Antioxidants 2021, 10, 1350. [Google Scholar] [CrossRef]
- Dondi, A.; Calamelli, E.; Piccinno, V.; Ricci, G.; Corsini, I.; Biagi, C.; Lanari, M. Acute Asthma in the Pediatric Emergency Department: Infections Are the Main Triggers of Exacerbations. Biomed. Res. Int. 2017, 2017, 9687061. [Google Scholar] [CrossRef]
- Hasegawa, K.; Mansbach, J.M.; Bochkov, Y.A.; Gern, J.E.; Piedra, P.A.; Bauer, C.S.; Teach, S.J.; Wu, S.; Sullivan, A.F.; Camargo, C.A., Jr. Association of Rhinovirus C Bronchiolitis and Immunoglobulin E Sensitization During Infancy With Development of Recurrent Wheeze. JAMA Pediatr. 2019, 173, 544–552. [Google Scholar] [CrossRef]
- Sharma, S.; Tasnim, N.; Agadi, K.; Asfeen, U.; Kanda, J. Vulnerability for Respiratory Infections in Asthma Patients: A Systematic Review. Cureus 2022, 14, e28839. [Google Scholar] [CrossRef]
- Chen, X.; Han, P.; Kong, Y.; Shen, K. The relationship between changes in peak expiratory flow and asthma exacerbations in asthmatic children. BMC Pediatr. 2024, 24, 284. [Google Scholar] [CrossRef] [PubMed]
- Rayner, D.G.; Ferri, D.M.; Guyatt, G.H.; O’Byrne, P.M.; Brignardello-Petersen, R.; Foroutan, F.; Chipps, B.; Sumino, K.; Perry, T.T.; Nyenhuis, S.; et al. Inhaled Reliever Therapies for Asthma: A Systematic Review and Meta-Analysis. JAMA 2025, 333, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Israel, E.; Cardet, J.C.; Carroll, J.K.; Fuhlbrigge, A.L.; She, L.; Rockhold, F.W.; Maher, N.E.; Fagan, M.; Forth, V.E.; Yawn, B.P.; et al. Reliever-triggered inhaled glucocorticoid in Black and Latinx adults with asthma. N. Engl. J. Med. 2022, 386, 1505–1518. [Google Scholar] [CrossRef]
- O’Byrne, P.M.; FitzGerald, J.M.; Bateman, E.D.; Barnes, P.J.; Zhong, N.; Keen, C.; Jorup, C.; Lamarca, R.; Ivanov, S.; Reddel, H.K. Inhaled combined budesonide-formoterol as needed in mild asthma. N. Engl. J. Med. 2018, 378, 1865–1876. [Google Scholar] [CrossRef]
- Takeyama, K.; Kondo, M.; Tagaya, E.; Kirishi, S.; Ishii, M.; Ochiai, K.; Isono, K.; Tamaoki, J. Budesonide/formoterol maintenance and reliever therapy in moderate-to-severe asthma: Effects on eosinophilic airway inflammation. Allergy Asthma Proc. 2014, 35, 141–147. [Google Scholar] [CrossRef]
- Di Cicco, M.E.; Peroni, D.; Marseglia, G.L.; Licari, A. Unveiling the Complexities of Pediatric Asthma Treatment: Evidence, Controversies, and Emerging Approaches. Pediatr. Drugs 2025. [Google Scholar] [CrossRef]
Parameter | Gender | Residence | Age groups (Years Old) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | M | p * | Urban | Rural | p * | <6 | 6–11 | 12–17 | p ** | |||
BEFORE | FeNO | Median values | 22.00 | 23.00 | 0.875 | 23.00 | 22.00 | 0.378 | 21.00 | 23.00 | 31.00 | 0.001 # |
FVC | 0.94 | 0.90 | 0.209 | 0.900 | 0.930 | 0.208 | 0.900 | 0.920 | 0.970 | 0.999 | ||
FEV1 | 0.845 | 0.835 | 0.554 | 0.835 | 0.860 | 0.134 | 0.830 | 0.840 | 0.900 | 0.318 | ||
PEF | 0.745 | 0.730 | 0.797 | 0.720 | 0.755 | 0.133 | 0.735 | 0.690 | 0.890 | 0.018 # | ||
FEF25–75 | 0.785 | 0.790 | 0.449 | 0.775 | 0.805 | 0.267 | 0.790 | 0.780 | 0.870 | 0.065 |
Parameter | Step | ||||||
---|---|---|---|---|---|---|---|
Step 1 | Step 2 | Step 3 | Steps 4–5 | p * | |||
BEFORE | FeNO | Median values | 22.00 | 24.00 | 21.00 | 20.50 | 0.793 |
FVC | 0.930 | 0.910 | 0.900 | 0.970 | 0.753 | ||
FEV1 | 0.850 | 0.840 | 0.810 | 0.890 | 0.675 | ||
PEF | 0.760 | 0.720 | 0.730 | 0.710 | 0.715 | ||
FEF25–75 | 0.840 | 0.780 | 0.795 | 0.870 | 0.398 |
Parameter | Gender | Residence | Age Groups (Years Old) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | M | p * | Urban | Rural | p * | < 6 | 6–11 | 12–17 | p ** | |||
AFTER | FeNO | Median values | 26.50 | 25.00 | 0.581 | 25.00 | 25.50 | 0.497 | 4.00 | 23.50 | 31.00 | 0.010 # |
FVC | 0.940 | 0.915 | 0.370 | 0.910 | 0.945 | 0.449 | 0.9 | 0.93 | 0.93 | 0.947 | ||
FEV1 | 0.830 | 0.845 | 0.770 | 0.820 | 0.865 | 0.316 | 0.825 | 0.82 | 0.875 | 0.386 | ||
PEF | 0.700 | 0.700 | 0.776 | 0.685 | 0.715 | 0.288 | 1.025 | 0.68 | 0.73 | 0.014 # | ||
FEF25–75 | 0.755 | 0.765 | 0.781 | 0.750 | 0.775 | 0.521 | 0.78 | 0.74 | 0.83 | 0.033 |
Parameter | Self-Management of Medication Doses Evolution (by Parents) | Self-Management of Medication Adjustments (by Parents) | |||||||
---|---|---|---|---|---|---|---|---|---|
Step-Down | Same | Step-Up | p * | Yes | No | p ** | |||
AFTER | FeNO | Median values | 39.50 | 20.50 | 19.50 | <0.0005 # | 29.50 | 19.50 | 0.001 # |
FVC | 0.880 | 0.945 | 0.935 | 0.121 | 0.925 | 0.935 | 0.633 | ||
FEV1 | 0.780 | 0.870 | 0.850 | 0.025 # | 0.825 | 0.850 | 0.399 | ||
PEF | 0.655 | 0.715 | 0.710 | 0.157 | 0.695 | 0.710 | 0.714 | ||
FEF25–75 | 0.705 | 0.805 | 0.770 | 0.123 | 0.755 | 0.770 | 0.463 |
Study Variable | Category | Treatment Step Evolution (by Physician) | Total | p * | |
---|---|---|---|---|---|
One Step-Down | Same Step or One Step-Up | ||||
10 (6.85%) | 136 (93.15%) | 146 (100%) | - | ||
Parents self-management of doses | Step-down | 0 (0%) | 42 (100%) | 42 (100%) | 0.019 |
0% | 30.9% | ||||
Same | 4 (6.1%) | 62 (93.9%) | 66 (100%) | ||
40% | 45.6% | ||||
Step-up | 6 (15.8%) | 32 (84.2%) | 38 (100%) | ||
60% | 23.5% |
Study Variable | Category | GINA Asthma Control Levels | Total | p * | |
---|---|---|---|---|---|
Well-Controlled | Partially Controlled | ||||
72 (49.30%) | 74 (50.70%) | 146 (100%) | - | ||
Parents self-management of doses | Step-down | 8 (19.05%) | 34 (80.95%) | 42 (100%) | <0.0005 * |
11.11% | 45.95% | ||||
Same | 45 (68.18%) | 21 (31.82%) | 66 (100%) | ||
62.50% | 28.37% | ||||
Step-up | 19 (50%) | 19 (50%) | 38 (100%) | ||
26.39% | 25.68% |
Parameter | GINA Asthma Control Levels | ||||
---|---|---|---|---|---|
Well-Controlled | Partially Controlled | p * | |||
AFTER | FeNO | Median values | 13.50 | 36.00 | <0.0005 # |
FVC | 0.930 | 0.930 | 0.507 | ||
FEV1 | 0.850 | 0.825 | 0.185 | ||
PEF | 0.720 | 0.690 | 0.201 | ||
FEF25–75 | 0.770 | 0.750 | 0.627 |
Parameter | Treatment Step Evolution | ||||
---|---|---|---|---|---|
One Step-Down | Same Step or One Step-Up | p * | |||
AFTER | FeNO | Median values | 9.00 | 26.00 | 0.008 # |
FVC | 0.990 | 0.925 | 0.093 | ||
FEV1 | 0.915 | 0.820 | 0.004 # | ||
PEF | 0.780 | 0.690 | 0.055 | ||
FEF25–75 | 0.880 | 0.750 | 0.075 |
Parameter | Exacerbations | ||||||
---|---|---|---|---|---|---|---|
None | 1/Year | 2/Year | 3/Year | p * | |||
AFTER | FeNO | Median values | 11.00 | 29.50 | 37.00 | 37.00 | <0.0005 # |
FVC | 0.940 | 0.930 | 0.930 | 0.870 | 0.815 | ||
FEV1 | 0.850 | 0.830 | 0.840 | 0.730 | 0.286 | ||
PEF | 0.700 | 0.670 | 0.730 | 0.640 | 0.429 | ||
FEF25–75 | 0.770 | 0.710 | 0.790 | 0.665 | 0.190 |
Study Variable | Category | Exacerbations | Total | p * | |||
---|---|---|---|---|---|---|---|
None | 1/Year | 2/Year | 3/Year | ||||
Parents self-management of doses | Step-down | 1 (2.38%) | 20 (47.62%) | 16 (38.1%) | 5 (11.9%) | 42 (100%) | |
1.96% | 35.72% | 51.61% | 62.5% | <0.0005 # | |||
Same | 33 (50%) | 18 (27.27%) | 12 (18.18%) | 3 (4.55%) | 66 (100%) | ||
64.71% | 32.14% | 38.71% | 37.5% | ||||
Step-up | 17 (44.74%) | 18 (47.37%) | 3 (7.89%) | 0 (0%) | 38 (100%) | ||
33.33% | 32.14% | 9.68% | 0% | ||||
Treatment step evolution by physician | One step-down | 6 (60%) | 4 (40%) | 0 (0%) | 0 (0%) | 10 (100%) | 0.187 |
11.76% | 7.14% | 0% | 0% | ||||
Same step or one step-up | 45 (33.09%) | 52 (38.24%) | 31 (22.79%) | 8 (5.88%) | 136 (100%) | ||
88.24% | 92.86% | 100% | 100% |
Parameter | Median | Evolution (BEFORE Values–AFTER Values) Number of Children | ||||||
---|---|---|---|---|---|---|---|---|
BEFORE | AFTER | Increased | Decrease | Tie | z | p * | ||
COVID-19 | FeNO | 22.00 | 30.00 | 72 | 4 | 3 | 8.144 | <0.0005 # |
FVC | 0.94 | 0.90 | 8 | 61 | 10 | −6.260 | <0.0005 # | |
FEV1 | 0.82 | 0.78 | 4 | 74 | 1 | −7.813 | <0.0005 # | |
PEF | 0.75 | 0.70 | 1 | 76 | 2 | −8.433 | <0.0005 # | |
FEF25–75 | 0.78 | 0.70 | 2 | 73 | 4 | −8.083 | <0.0005 # | |
Non-COVID-19 | FeNO | 23.00 | 15.00 | 10 | 52 | 5 | −5.207 | <0.0005 # |
FVC | 0.90 | 0.94 | 58 | 7 | 2 | 6.202 | <0.0005 # | |
FEV1 | 0.85 | 0.88 | 56 | 8 | 3 | 5.875 | <0.0005 # | |
PEF | 0.69 | 0.70 | 46 | 19 | 2 | 3.225 | 0.001 # | |
FEF25–75 | 0.80 | 0.82 | 51 | 14 | 2 | 4.465 | <0.0005 # |
Parameter | Parents Self-Management of Doses | p * | ||||
---|---|---|---|---|---|---|
Step-Down | Same | Step-Up | ||||
COVID-19 | FeNO | Median values | 38.00 | 29.50 | 25.00 | 0.001 # |
FVC | 0.890 | 0.875 | 0.990 | 0.059 | ||
FEV1 | 0.780 | 0.730 | 0.840 | 0.077 | ||
PEF | 0.690 | 0.630 | 0.750 | 0.069 | ||
FEF25–75 | 0.690 | 0.690 | 0.800 | 0.130 | ||
Non-COVID-19 | FeNO | Median values | 46.50 | 13.00 | 13.00 | 0.005 # |
FVC | 0.880 | 0.980 | 0.940 | 0.140 | ||
FEV1 | 0.835 | 0.890 | 0.880 | 0.382 | ||
PEF | 0.595 | 0.720 | 0.700 | 0.094 | ||
FEF25–75 | 0.785 | 0.870 | 0.810 | 0.797 |
Parameter | GINA Asthma Control Levels | ||||
---|---|---|---|---|---|
Well-Controlled | Partially Controlled | p * | |||
COVID-19 | FeNO | Median values | 23.50 | 36.00 | 0.001 # |
FVC | 0.900 | 0.900 | 0.886 | ||
FEV1 | 0.800 | 0.780 | 0.810 | ||
PEF | 0.725 | 0.680 | 0.124 | ||
FEF25–75 | 0.755 | 0.700 | 0.224 | ||
Non-COVID-19 | FeNO | Median values | 9.50 | 36.00 | <0.0005 # |
FVC | 0.945 | 0.940 | 0.926 | ||
FEV1 | 0.895 | 0.880 | 0.687 | ||
PEF | 0.700 | 0.700 | 0.932 | ||
FEF25–75 | 0.790 | 0.870 | 0.042 # |
Parameter | Treatment Step Evolution | ||||
---|---|---|---|---|---|
One Step-Down | Same Step or One Step-Up | p * | |||
COVID-19 | FeNO | Median values | 8.00 | 30.50 | 0.203 |
FVC | 0.960 | 0.900 | 0.759 | ||
FEV1 | 0.850 | 0.780 | 0.658 | ||
PEF | 0.800 | 0.695 | 0.405 | ||
FEF25–75 | 0.760 | 0.700 | 0.785 | ||
Non-COVID-19 | FeNO | Median values | 9.00 | 15.00 | 0.224 |
FVC | 1.000 | 0.940 | 0.198 | ||
FEV1 | 0.920 | 0.870 | 0.067 | ||
PEF | 0.760 | 0.680 | 0.098 | ||
FEF25–75 | 0.890 | 0.805 | 0.225 |
Parameter | Category | FeNO (Median Variation) | Pulmonary Function Test Parameters (Median Variation) | |||
---|---|---|---|---|---|---|
FVC | FEV1 | PEF | FEF25–75 | |||
Gender | F | 2.00 | 0.00 | −0.03 | −0.05 | −0.03 |
M | 2.00 | 0.00 | −0.02 | −0.03 | −0.01 | |
p | 0.655 * | 0.795 * | 0.473 * | 0.413 * | 0.51 * | |
Residence | Urban | 2.00 | 0.00 | −0.02 | −0.03 | −0.01 |
Rural | 2.00 | 0.00 | −0.02 | −0.05 | −0.03 | |
p | 0.764 * | 0.551 * | 0.897 * | 0.355 * | 0.578 * | |
Age groups | < 6 | 0.00 | −0.03 | −0.01 | 0.12 | −0.03 |
6–11 | 2.00 | 0.00 | −0.02 | −0.04 | −0.02 | |
12–17 | 1.00 | 0.01 | −0.01 | −0.03 | −0.01 | |
p | 0.595 ** | 0.633 ** | 0.872 ** | 0.457 ** | 0.174 ** | |
Parent self-management of doses | Step-down | 8.00 | −0.03 | −0.04 | −0.06 | −0.05 |
Same step | −0.50 | 0.02 | 0.02 | −0.01 | 0.00 | |
Step-up | 0.00 | 0.01 | 0.01 | −0.02 | −0.01 | |
p | <0.0005 **,# | <0.0005 **,# | <0.0005 **,# | <0.0005 **,# | 0.001 **,# | |
Treatment step evolution | One step down | −3.50 | 0.04 | 0.04 | 0.02 | 0.03 |
Same step or one step up | 2.50 | −0.01 | −0.03 | −0.04 | −0.02 | |
p | 0.05 *,# | 0.003 *,# | 0.005 *,# | 0.008 *,# | 0.021 *,# | |
Exacerbations | None | −4.00 | 0.02 | 0.02 | 0.01 | 0.01 |
1/year | 4.50 | −0.02 | −0.04 | −0.05 | −0.04 | |
2/year | 4.00 | 0.00 | −0.03 | −0.04 | −0.01 | |
3/year | 6.00 | −0.04 | −0.05 | −0.04 | −0.05 | |
p | <0.0005 **,# | <0.0005 **,# | <0.0005 **,# | <0.0005 **,# | <0.0005 **,# | |
COVID-19 disease | Yes | 6.00 | −0.03 | −0.05 | −0.07 | −0.05 |
No | −4.00 | 0.03 | 0.04 | 0.02 | 0.03 | |
p | <0.0005 *,# | <0.0005 *,# | <0.0005 *,# | <0.0005 *,# | <0.0005 *,# | |
GINA asthma control levels | Well-controlled | −1.00 | 0.01 | 0.01 | −0.01 | 0 |
Partially controlled | 5.00 | −0.01 | −0.03 | −0.04 | −0.03 | |
p | <0.0005 *,# | 0.002 *,# | 0.010 *,# | 0.001 *,# | 0.027 *,# |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul-Razzak, J.; Ionescu, M.; Diaconu, R.; Popescu, A.D.; Niculescu, E.C.; Petrescu, I.O.; Singer, C.E.; Coșoveanu, C.S.; Anghelina, L.; Gheonea, C. Impact of the COVID-19 Pandemic on Lung Function and Treatment Decisions in Children with Asthma: A Retrospective Study. J. Clin. Med. 2025, 14, 3289. https://doi.org/10.3390/jcm14103289
Abdul-Razzak J, Ionescu M, Diaconu R, Popescu AD, Niculescu EC, Petrescu IO, Singer CE, Coșoveanu CS, Anghelina L, Gheonea C. Impact of the COVID-19 Pandemic on Lung Function and Treatment Decisions in Children with Asthma: A Retrospective Study. Journal of Clinical Medicine. 2025; 14(10):3289. https://doi.org/10.3390/jcm14103289
Chicago/Turabian StyleAbdul-Razzak, Jaqueline, Mihaela Ionescu, Radu Diaconu, Alexandru Dan Popescu, Elena Carmen Niculescu, Ileana Octavia Petrescu, Cristina Elena Singer, Carmen Simona Coșoveanu, Liliana Anghelina, and Cristian Gheonea. 2025. "Impact of the COVID-19 Pandemic on Lung Function and Treatment Decisions in Children with Asthma: A Retrospective Study" Journal of Clinical Medicine 14, no. 10: 3289. https://doi.org/10.3390/jcm14103289
APA StyleAbdul-Razzak, J., Ionescu, M., Diaconu, R., Popescu, A. D., Niculescu, E. C., Petrescu, I. O., Singer, C. E., Coșoveanu, C. S., Anghelina, L., & Gheonea, C. (2025). Impact of the COVID-19 Pandemic on Lung Function and Treatment Decisions in Children with Asthma: A Retrospective Study. Journal of Clinical Medicine, 14(10), 3289. https://doi.org/10.3390/jcm14103289