Clinical Outcomes of Cardiac Transplantation in Heart Failure Patients with Previous Mechanical Cardiocirculatory Support
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Patient Population
2.3. Endpoints and Definitions
2.4. Data Collection and Follow-Up Protocols
- –
- Baseline before HT: physical characteristics, assessment of clinical, history, heart failure etiology, echocardiographic, hemodynamic, and biochemical data of patients at the time of heart transplantation.
- –
- LVAD-related complications between device implantation and heart transplantation (only for BTT group).
- –
- Surgical data, early mortality (at 30-day), and morbidity during hospitalization, for heart transplantation.
- –
- Evaluation of transplant-related complications by phone interview or direct clinical examination, at the last FU.
2.5. Statistical Analysis
3. Results
3.1. LVAD Population
3.2. Heart Transplantation Hospitalization
3.3. Primary Endpoint
3.4. Secondary Endpoints
4. Discussion
- (I)
- At the time of heart transplantation, the use of an LVAD introduces technical challenges that result in longer cardiopulmonary bypass and cross-clamping times in the BTT (bridge to transplant) group; nevertheless, the increase in surgical complexity does not affect 30-day mortality.
- (II)
- The overall survival at 1 year was comparable between the two groups, with no significant difference between the BTT and DTT (direct-to-transplant) patients.
- (III)
- At 7 years, survival rates and comorbidities, including post-transplant complications such as cardiac allograft vasculopathy (CAV) and organ rejection, were similar between both groups.
- (IV)
- Adverse neurological events (composite of TIA/stroke) occurred in 39.6% of patients during the BTT phase, indicating a concern on neurological risk mechanical support.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dunlay, S.M.; Roger, V.L.; Killian, J.M.; Weston, S.A.; Schulte, P.J.; Subramaniam, A.V.; Blecker, S.B.; Redfield, M.M. Advanced Heart Failure Epidemiology and Outcomes. JACC Heart Fail. 2021, 9, 722–732. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar] [PubMed]
- Han, J.J.; Elzayn, H.; Duda, M.M.; Iyengar, A.; Acker, A.M.; Patrick, W.L.; Helmers, M.; Birati, E.Y.; Atluri, P. Heart transplant waiting list implications of increased ventricular assist device use as a bridge strategy: A national analysis. Artif. Organs 2021, 45, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.W.; Pagani, F.D.; Russell, S.D.; John, R.; Boyle, A.J.; Aaronson, K.D.; Conte, J.V.; Naka, Y.; Mancini, D.; Delgado, R.M.; et al. Use of a Continuous-Flow Device in Patients Awaiting Heart Transplantation. N. Engl. J. Med. 2007, 357, 885–896. [Google Scholar] [CrossRef]
- Tedford, R.J.; Leacche, M.; Lorts, A.; Drakos, S.G.; Pagani, F.D.; Cowger, J. Durable Mechanical Circulatory Support. J. Am. Coll. Cardiol. 2023, 82, 1464–1481. [Google Scholar] [CrossRef]
- Immohr, M.B.; Boeken, U.; Mueller, F.; Prashovikj, E.; Morshuis, M.; Böttger, C.; Aubin, H.; Gummert, J.; Akhyari, P.; Lichtenberg, A.; et al. Complications of left ventricular assist devices causing high urgency status on waiting list: Impact on outcome after heart transplantation. ESC Heart Fail. 2021, 8, 1253–1262. [Google Scholar] [CrossRef]
- Rose, E.A.; Gelijns, A.C.; Moskowitz, A.J.; Heitjan, D.F.; Stevenson, L.W.; Dembitsky, W.; Long, J.W.; Ascheim, D.D.; Tierney, A.R.; Levitan, R.G.; et al. Long-Term Use of a Left Ventricular Assist Device for End-Stage Heart Failure. N. Engl. J. Med. 2001, 345, 1435–1443. [Google Scholar] [CrossRef]
- Majumder, K.; Spratt, J.R.; Holley, C.T.; Roy, S.S.; Cogswell, R.J.; Liao, K.; John, R. Impact of Postoperative Liver Dysfunction on Survival After Left Ventricular Assist Device Implantation. Ann. Thorac. Surg. 2017, 104, 1556–1562. [Google Scholar] [CrossRef]
- El Nihum, L.I.; Manian, N.; Arunachalam, P.; Al Abri, Q.; Guha, A. Renal Dysfunction in Patients with Left Ventricular Assist Device. Methodist DeBakey Cardiovasc. J. 2022, 18, 19–26. [Google Scholar] [CrossRef]
- Patlolla, V.; Patten, R.D.; DeNofrio, D.; Konstam, M.A.; Krishnamani, R. The Effect of Ventricular Assist Devices on Post-Transplant Mortality. J. Am. Coll. Cardiol. 2009, 53, 264–271. [Google Scholar] [CrossRef]
- Bull, D.A.; Reid, B.B.; Selzman, C.H.; Mesley, R.; Drakos, S.; Clayson, S.; Stoddard, G.; Gilbert, E.; Stehlik, J.; Bader, F.; et al. The impact of bridge-to-transplant ventricular assist device support on survival after cardiac transplantation. J. Thorac. Cardiovasc. Surg. 2010, 140, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Bartfay, S.; Bobbio, E.; Esmaily, S.; Bergh, N.; Holgersson, J.; Dellgren, G.; Bollano, E.; Karason, K. Heart transplantation in patients bridged with mechanical circulatory support: Outcome comparison with matched controls. ESC Heart Fail. 2023, 10, 2621–2629. [Google Scholar] [CrossRef]
- Urban, M.; Pirk, J.; Dorazilova, Z.; Netuka, I. How does successful bridging with ventricular assist device affect cardiac transplantation outcome? Interact. CardioVascular Thorac. Surg. 2011, 13, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.L.; Etchill, E.W.; Shou, B.L.; Whitbread, J.J.; Barbur, I.; Giuliano, K.A.; Kilic, A. Outcomes after heart transplantation in patients who have undergone a bridge-to-bridge strategy. JTCVS Open 2022, 12, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.Y.; Wever-Pinzon, O.; Mehra, M.R.; Selzman, C.H.; Toll, A.E.; Cherikh, W.S.; Nativi-Nicolau, J.; Fang, J.C.; Kfoury, A.G.; Gilbert, E.M.; et al. Post-transplant outcome in patients bridged to transplant with temporary mechanical circulatory support devices. J. Heart Lung Transplant. 2019, 38, 858–869. [Google Scholar] [CrossRef]
- Grimm, J.C.; Magruder, J.T.; Crawford, T.C.; Fraser, C.D.; Plum, W.G.; Sciortino, C.M.; Higgins, R.S.; Whitman, G.J.R.; Shah, A.S. Duration of Left Ventricular Assist Device Support Does Not Impact Survival After US Heart Transplantation. Ann. Thorac. Surg. 2016, 102, 1206–1212. [Google Scholar] [CrossRef]
- Stewart, S.; Winters, G.L.; Fishbein, M.C.; Tazelaar, H.D.; Kobashigawa, J.; Abrams, J.; Andersen, C.B.; Angelini, A.; Berry, G.J.; Burke, M.M.; et al. Revision of the 1990 Working Formulation for the Standardization of Nomenclature in the Diagnosis of Heart Rejection. J. Heart Lung Transplant. 2005, 24, 1710–1720. [Google Scholar] [CrossRef]
- Mehra, M.R.; Crespo-Leiro, M.G.; Dipchand, A.; Ensminger, S.M.; Hiemann, N.E.; Kobashigawa, J.A.; Madsen, J.; Parameshwar, J.; Starling, R.C.; Uber, P.A. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy—2010. J. Heart Lung Transplant. 2010, 29, 717–727. [Google Scholar] [CrossRef]
- Kirklin, J.K.; Naftel, D.C.; Pagani, F.D.; Kormos, R.L.; Stevenson, L.W.; Blume, E.D.; Myers, S.L.; Miller, M.A.; Baldwin, J.T.; Young, J.B. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transplant. 2015, 34, 1495–1504. [Google Scholar] [CrossRef]
- Moeller, C.M.; Valledor, A.F.; Oren, D.; Rubinstein, G.; Sayer, G.T.; Uriel, N. Evolution of Mechanical Circulatory Support for advanced heart failure. Prog. Cardiovasc. Dis. 2024, 82, 135–146. [Google Scholar] [CrossRef]
- Fukuhara, S.; Takeda, K.; Polanco, A.R.; Takayama, H.; Naka, Y. Prolonged continuous-flow left ventricular assist device support and posttransplantation outcomes: A new challenge. J. Thorac. Cardiovasc. Surg. 2016, 151, 872–880.e5. [Google Scholar] [CrossRef] [PubMed]
- Magruder, J.T.; Grimm, J.C.; Crawford, T.C.; Tedford, R.J.; Russell, S.D.; Sciortino, C.M.; Whitman, G.J.R.; Shah, A.S. Survival After Orthotopic Heart Transplantation in Patients Undergoing Bridge to Transplantation With the HeartWare HVAD Versus the Heartmate II. Ann. Thorac. Surg. 2017, 103, 1505–1511. [Google Scholar] [CrossRef] [PubMed]
- Noly, P.-E.; Hébert, M.; Lamarche, Y.; Cortes, J.R.; Mauduit, M.; Verhoye, J.-P.; Voisine, P.; Flécher, E.; Carrier, M. Use of extracorporeal membrane oxygenation for heart graft dysfunction in adults: Incidence, risk factors and outcomes in a multicentric study. Can. J. Surg. 2021, 64, E567–E577. [Google Scholar] [CrossRef] [PubMed]
- Sohn, S.H.; Kang, Y.; Hwang, H.Y.; Chee, H.K. Optimal timing of heart transplantation in patients with an implantable left ventricular assist device. Korean J. Transpl. 2023, 37, 79–84. [Google Scholar] [CrossRef]
- Petroni, T.; D’Alessandro, C.; Combes, A.; Golmard, J.-L.; Brechot, N.; Barreda, E.; Laali, M.; Farahmand, P.; Varnous, S.; Weber, P.; et al. Long-term outcome of heart transplantation performed after ventricular assist device compared with standard heart transplantation. Arch. Cardiovasc. Dis. 2019, 112, 485–493. [Google Scholar] [CrossRef]
- Truby, L.K.; Farr, M.A.; Garan, A.R.; Givens, R.; Restaino, S.W.; Latif, F.; Takayama, H.; Naka, Y.; Takeda, K.; Topkara, V.K. Impact of Bridge to Transplantation with Continuous-Flow Left Ventricular Assist Devices on Posttransplantation Mortality: A Propensity-Matched Analysis of the United Network of Organ Sharing Database. Circulation 2019, 140, 459–469. [Google Scholar] [CrossRef]
- Chiu, P.; Schaffer, J.M.; Oyer, P.E.; Pham, M.; Banerjee, D.; Joseph Woo, Y.; Ha, R. Influence of durable mechanical circulatory support and allosensitization on mortality after heart transplantation. J. Heart Lung Transplant. 2016, 35, 731–742. [Google Scholar] [CrossRef]
- Arnaoutakis, G.J.; George, T.J.; Kilic, A.; Weiss, E.S.; Russell, S.D.; Conte, J.V.; Shah, A.S. Effect of sensitization in US heart transplant recipients bridged with a ventricular assist device: Update in a modern cohort. J. Thorac. Cardiovasc. Surg. 2011, 142, 1236–1245.e1. [Google Scholar] [CrossRef]
- Long, B.; Robertson, J.; Koyfman, A.; Brady, W. Left ventricular assist devices and their complications: A review for emergency clinicians. Am. J. Emerg. Med. 2019, 37, 1562–1570. [Google Scholar] [CrossRef]
- Yuzefpolskaya, M.; Schroeder, S.E.; Houston, B.A.; Robinson, M.R.; Gosev, I.; Reyentovich, A.; Koehl, D.; Cantor, R.; Jorde, U.P.; Kirklin, J.K.; et al. The Society of Thoracic Surgeons Intermacs 2022 Annual Report: Focus on the 2018 Heart Transplant Allocation System. Ann. Thorac. Surg. 2023, 115, 311–327. [Google Scholar] [CrossRef]
- Goldstein, D.J.; Meyns, B.; Xie, R.; Cowger, J.; Pettit, S.; Nakatani, T.; Netuka, I.; Shaw, S.; Yanase, M.; Kirklin, J.K. Third Annual Report From the ISHLT Mechanically Assisted Circulatory Support Registry: A comparison of centrifugal and axial continuous-flow left ventricular assist devices. J. Heart Lung Transplant. 2019, 38, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Tsukui, H.; Abla, A.; Teuteberg, J.J.; McNamara, D.M.; Mathier, M.A.; Cadaret, L.M.; Kormos, R.L. Cerebrovascular accidents in patients with a ventricular assist device. J. Thorac. Cardiovasc. Surg. 2007, 134, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Kadakkal, A.; Najjar, S.S. Neurologic Events in Continuous-Flow Left Ventricular Assist Devices. Cardiol. Clin. 2018, 36, 531–539. [Google Scholar] [CrossRef] [PubMed]
BTT (n = 28) | DTT (n = 77) | p Value | |
---|---|---|---|
Age, years | 54 (43–58) | 53 (42–49) | 0.954 |
Gender, male | 25 (89.3) | 65 (84.4) | 0.528 |
BMI, Kg/m2 | 26.4 ± 5.0 | 23.1 ± 3.9 | 0.001 |
Etiology | 0.953 | ||
ICM | 14 (50.0) | 39 (50.6) | |
DCM | 14 (50.0) | 38 (49.4) | |
Atrial fibrillation | 1 (3.6) | 20 (26.0) | 0.004 |
Chronic dialysis | 1 (3.6) | 2 (2.6) | 0.999 |
Hemodynamic status | |||
LVEF, % | 24 (20–26) | 20 (18–25) | 0.137 |
sPAP, mmHg | 41.8 ± 18.4 | 40.2 ± 15.4 | 0.686 |
Wedge, mmHg | 18.5 ± 8.8 | 19.8 ± 9.3 | 0.561 |
CO, L | 4.1 ± 1.0 | 3.5 ± 1.1 | 0.031 |
CI, L/m2 | 2.0 (1.8–2.6) | 1.9 (1.6–2.1) | 0.128 |
PVR, WU | 2.2 (1.4–2.9) | 2.4 (1.5–3.3) | 0.291 |
Laboratory | |||
Creatinine, mg/dL | 1.1 ± 0.3 | 1.2 ± 0.4 | 0.392 |
Total bilirubin, mg/dL | 1.1 ± 0.8 | 1.4 ± 1.8 | 0.349 |
BTT (n = 28) | |
---|---|
Age at LVAD implant, years | 48.5 ± 11.4 |
Implantable device | |
HeartMate II | 3 (10.7) |
HeartMate III | 4 (14.3) |
HeartWare | 21 (75.0) |
Period of bridge, days (mean ± SD) | 554 ± 346 |
Period of bridge, days (range) | (26–1559) |
Complications | |
Readmission for HF, n (%) | 5 (17.9) |
GI bleeding, n (%) | 8 (28.6) |
Cerebrovascular events, n (%) | 11 (39.3) |
Arrhythmias, n (%) | 6 (21.4) |
LVAD-related infection, n (%) | 17 (60.7) |
BTT (n = 28) | DTT (n = 77) | p Value | |
---|---|---|---|
CPB time, minutes | 217.7 ± 58.3 | 146.2 ± 53.3 | 0.001 |
CC time, minutes | 113.9 ± 29.4 | 79.3 ± 15.6 | 0.001 |
Bleeding requiring SR | 4 (14.3) | 7 (9.1) | 0.442 |
Cerebrovascular events, n (%) | 3 (10.7) | 1 (1.3) | 0.057 |
Hemodialysis, n (%) | 13 (46.4) | 39 (50.6) | 0.702 |
Acute rejection, n (%) | 2 (7.1) | 9 (11.7) | 0.723 |
ECMO, n (%) | 7 (25.0) | 22 (28.6) | 0.717 |
Length of hospital stay, days | 23 (20–28) | 22 (20–27) | 0.875 |
Hospital mortality, n (%) | 1 (3.6) | 4 (5.2) | 0.999 |
BTT (n = 28) | DTT (n = 77) | p Value | |
---|---|---|---|
Permanent AF/PM/ICD | 3 (10.7) | 8 (10.4) | 0.999 |
Cerebrovascular events * | 3 (10.7) | 2 (2.6) | 0.117 |
CAV | 4 (14.2) | 14 (18.2) | 0.775 |
Grade I | 2 | 10 | |
Grade II | 0 | 3 | |
Grade III | 2 | 1 | |
eGFR < 30 mL/min | 4 (14.2) | 18 (23.4) | 0.420 |
Permanent dialysis | 1 (3.6) | 11 (14.3) | 0.175 |
Organ rejection | 21 (75.0) | 61 (79.2) | 0.644 |
Grade 1R | 16 | 57 | |
Grade 2R | 4 | 3 | |
Grade 3R | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Alonzo, M.; Terzi, A.; Baudo, M.; Ronzoni, M.; Uricchio, N.; Muneretto, C.; Di Bacco, L. Clinical Outcomes of Cardiac Transplantation in Heart Failure Patients with Previous Mechanical Cardiocirculatory Support. J. Clin. Med. 2025, 14, 275. https://doi.org/10.3390/jcm14010275
D’Alonzo M, Terzi A, Baudo M, Ronzoni M, Uricchio N, Muneretto C, Di Bacco L. Clinical Outcomes of Cardiac Transplantation in Heart Failure Patients with Previous Mechanical Cardiocirculatory Support. Journal of Clinical Medicine. 2025; 14(1):275. https://doi.org/10.3390/jcm14010275
Chicago/Turabian StyleD’Alonzo, Michele, Amedeo Terzi, Massimo Baudo, Mauro Ronzoni, Nicola Uricchio, Claudio Muneretto, and Lorenzo Di Bacco. 2025. "Clinical Outcomes of Cardiac Transplantation in Heart Failure Patients with Previous Mechanical Cardiocirculatory Support" Journal of Clinical Medicine 14, no. 1: 275. https://doi.org/10.3390/jcm14010275
APA StyleD’Alonzo, M., Terzi, A., Baudo, M., Ronzoni, M., Uricchio, N., Muneretto, C., & Di Bacco, L. (2025). Clinical Outcomes of Cardiac Transplantation in Heart Failure Patients with Previous Mechanical Cardiocirculatory Support. Journal of Clinical Medicine, 14(1), 275. https://doi.org/10.3390/jcm14010275