Shoulder Proprioception: A Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Technology Utilized for Proprioception Measurement
3.1.1. Goniometer
3.1.2. Inclinometer
3.1.3. Isokinetic Dynamometer
3.1.4. Motion Analysis
4. Discussion
4.1. Clinical Applications: Rotator Cuff
4.2. Clinical Applications: Glenohumeral Arthritis
4.3. Clinical Applications: Shoulder Instability
4.4. Clinical Applications: Biceps Tendon
4.5. Clinical Applications: Rehabilitation Protocols
4.6. Future Directions
5. Conclusions
Current Literature Gaps
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sherrington, S.C.S. The Integrative Action of the Nervous System. J. Nerv. Ment. Dis. 1907, 34, 801–802. [Google Scholar] [CrossRef]
- Riemann, B.L.; Lephart, S.M. The sensorimotor system, part I: The physiologic basis of functional joint stability. J. Athl. Train. 2002, 37, 71–79. [Google Scholar] [PubMed]
- Riemann, B.L.; Lephart, S.M. The Sensorimotor System, Part II: The Role of Proprioception in Motor Control and Functional Joint Stability. J. Athl. Train. 2002, 37, 80–84. [Google Scholar] [PubMed]
- Myers, J.B.; Lephart, S.M. The role of the sensorimotor system in the athletic shoulder. J. Athl. Train. 2000, 35, 351–363. [Google Scholar] [PubMed]
- Vangsness, C.T.; Ennis, M.; Taylor, J.G.; Atkinson, R. Neural anatomy of the glenohumeral ligaments, labrum, and subacromial bursa. Arthrosc. J. Arthrosc. Relat. Surg. 1995, 11, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Gohlke, F.; Janssen, E.; Leidel, J.; Heppelmann, B.; Eulert, J. Histopathological findings in the proprioception of the shoulder joint. Orthopade 1998, 27, 510–517. [Google Scholar] [PubMed]
- Guanche, C.A.; Noble, J.; Solomonow, M.; Wink, C.S. Periarticular neural elements in the shoulder joint. Orthopedics 1999, 22, 615–617. [Google Scholar] [CrossRef]
- Soifer, T.B.; Levy, H.J.; Soifer, F.M.; Kleinbart, F.; Vigorita, V.; Bryk, E. Neurohistology of the subacromial space. Arthrosc. J. Arthrosc. Relat. Surg. 1996, 12, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Warner, J.J.; Lephart, S.; Fu, F.H. Role of proprioception in pathoetiology of shoulder instability. Clin. Orthop. 1996, 330, 35–39. [Google Scholar] [CrossRef]
- Bak, K.; Wiesler, E.R.; Poehling, G.G. ISAKOS Upper Extremity Committee. Consensus statement on shoulder instability. Arthrosc. J. Arthrosc. Relat. Surg. 2010, 26, 249–255. [Google Scholar] [CrossRef]
- Han, J.; Waddington, G.; Adams, R.; Anson, J.; Liu, Y. Assessing proprioception: A critical review of methods. J. Sport Health Sci. 2016, 5, 80–90. [Google Scholar] [CrossRef]
- Aydin, T.; Yildiz, Y.; Yanmis, I.; Yildiz, C.; Kalyon, T.A. Shoulder proprioception: A comparison between the shoulder joint in healthy and surgically repaired shoulders. Arch. Orthop. Trauma Surg. 2001, 121, 422–425. [Google Scholar] [CrossRef]
- Fyhr, C.; Gustavsson, L.; Wassinger, C.; Sole, G. The effects of shoulder injury on kinaesthesia: A systematic review and meta-analysis. Man. Ther. 2015, 20, 28–37. [Google Scholar] [CrossRef]
- Marzetti, E.; Rabini, A.; Piccinini, G.; Piazzini, D.B.; Vulpiani, M.C.; Vetrano, M.; Specchia, A.; Ferriero, G.; Bertolini, C.; Saraceni, V.M. Neurocognitive therapeutic exercise improves pain and function in patients with shoulder impingement syndrome: A single-blind randomized controlled clinical trial. Eur. J. Phys. Rehabil. Med. 2014, 50, 255–264. [Google Scholar] [PubMed]
- Janwantanakul, P.; Magarey, M.E.; Jones, M.A.; Dansie, B.R. Variation in shoulder position sense at mid and extreme range of motion. Arch. Phys. Med. Rehabil. 2001, 82, 840–844. [Google Scholar] [CrossRef]
- Stokes, D.J.; McCarthy, T.P.; Frank, R.M. Physical Therapy for the Treatment of Shoulder Instability. Phys. Med. Rehabil Clin. N. Am. 2023, 34, 393–408. [Google Scholar] [CrossRef] [PubMed]
- Salles, J.I.; Velasques, B.; Cossich, V.; Nicoliche, E.; Ribeiro, P.; Amaral, M.V.; Motta, G. Strength training and shoulder proprioception. J Athl Train. 2015, 50, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.M.; Choi, J.D. The Effects of Active Shoulder Exercise with a Sling Suspension System on Shoulder Subluxation, Proprioception, and Upper Extremity Function in Patients with Acute Stroke. Med. Sci. Monit. 2019, 25, 4849–4855. [Google Scholar] [CrossRef]
- Brunt, D.; Andersen, J.C.; Huntsman, B.; Reinhert, L.B.; Thorell, A.C.; Sterling, J.C. Postural responses to lateral perturbation in healthy subjects and ankle sprain patients. Med. Sci. Sports Exerc. 1992, 24, 171–176. [Google Scholar] [CrossRef]
- Relph, N.; Herrington, L. The Effect of Conservatively Treated ACL Injury on Knee Joint Position Sense. Int. J. Sports Phys. Ther. 2016, 11, 536–543. [Google Scholar]
- Cuomo, F.; Birdzell, M.G.; Zuckerman, J.D. The effect of degenerative arthritis and prosthetic arthroplasty on shoulder proprioception. J. Shoulder Elb. Surg. 2005, 14, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Fabis, J.; Rzepka, R.; Fabis, A.; Zwierzchowski, J.; Kubiak, G.; Stanula, A.; Polguj, M.; Maciej, R. Shoulder proprioception—Lessons we learned from idiopathic frozen shoulder. BMC Musculoskelet. Disord. 2016, 17, 123. [Google Scholar] [CrossRef] [PubMed]
- Gajdosik, R.L.; Bohannon, R.W. Clinical measurement of range of motion. Review of goniometry emphasizing reliability and validity. Phys. Ther. 1987, 67, 1867–1872. [Google Scholar] [CrossRef] [PubMed]
- Gumina, S.; Camerota, F.; Celletti, C.; Venditto, T.; Candela, V. The effects of rotator cuff tear on shoulder proprioception. Int. Orthop. 2019, 43, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Hetto, P.; Bülhoff, M.; Sowa, B.; Klotz, M.C.; Maier, M.W. How does reverse shoulder replacement change proprioception in patients with cuff tear arthropathy? A prospective optical 3D motion analysis study. J. Orthop. 2017, 14, 577–581. [Google Scholar] [PubMed]
- Hung, Y.J.; Darling, W.G. Shoulder position sense during passive matching and active positioning tasks in individuals with anterior shoulder instability. Phys. Ther. 2012, 92, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Kasten, P.; Maier, M.; Rettig, O.; Raiss, P.; Wolf, S.; Loew, M. Proprioception in total, hemi- and reverse shoulder arthroplasty in 3D motion analyses: A prospective study. Int. Orthop. 2009, 33, 1641–1647. [Google Scholar] [CrossRef] [PubMed]
- Pötzl, W.; Thorwesten, L.; Götze, C.; Garmann, S.; Steinbeck, J. Proprioception of the shoulder joint after surgical repair for Instability: A long-term follow-up study. Am. J. Sports Med. 2004, 32, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Rokito, A.S.; Birdzell, M.G.; Cuomo, F.; Di Paola, M.J.; Zuckerman, J.D. Recovery of shoulder strength and proprioception after open surgery for recurrent anterior instability: A comparison of two surgical techniques. J. Shoulder Elb. Surg. 2010, 19, 564–569. [Google Scholar] [CrossRef]
- Sahin, E.; Dilek, B.; Baydar, M.; Gundogdu, M.; Ergin, B.; Manisali, M.; Akalin, E.; Gulbahar, S. Shoulder proprioception in patients with subacromial impingement syndrome. J. Back Musculoskelet. Rehabil. 2017, 30, 857–862. [Google Scholar] [CrossRef]
- Walecka, J.; Lubiatowski, P.; Consigliere, P.; Atoun, E.; Levy, O. Shoulder proprioception following reverse total shoulder arthroplasty. Int. Orthop. 2020, 44, 2691–2699. [Google Scholar] [CrossRef]
- Laupattarakasem, W.; Sirichativapee, W.; Kowsuwon, W.; Sribunditkul, S.; Suibnugarn, C. Axial rotation gravity goniometer. A simple design of instrument and a controlled reliability study. Clin. Orthop. 1990, 251, 271–274. [Google Scholar] [CrossRef]
- Ockendon, M.; Gilbert, R.E. Validation of a novel smartphone accelerometer-based knee goniometer. J. Knee Surg. 2012, 25, 341–345. [Google Scholar] [CrossRef]
- Pérez-de la Cruz, S.; de León, Ó.A.; Mallada, N.P.; Rodríguez, A.V. Validity and intra-examiner reliability of the Hawk goniometer versus the universal goniometer for the measurement of range of motion of the glenohumeral joint. Med. Eng. Phys. 2021, 89, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Huberman, C.; Scales, M.; Vallabhajosula, S. Shoulder Range of Motion and Strength Characteristics in Circus Acrobats. Med. Probl. Perform. Art. 2020, 35, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Mullaney, M.J.; McHugh, M.P.; Johnson, C.P.; Tyler, T.F. Reliability of shoulder range of motion comparing a goniometer to a digital level. Physiother. Theory Pract. 2010, 26, 327–333. [Google Scholar] [CrossRef]
- Rigoni, M.; Gill, S.; Babazadeh, S.; Elsewaisy, O.; Gillies, H.; Nguyen, N.; Pathirana, P.N.; Page, R. Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device—A Validation Study. Sensors 2019, 19, 1781. [Google Scholar] [CrossRef]
- Johnson, L.B.; Sumner, S.; Duong, T.; Yan, P.; Bajcsy, R.; Abresch, R.T.; de Bie, E.; Han, J.J. Validity and reliability of smartphone magnetometer-based goniometer evaluation of shoulder abduction—A pilot study. Man. Ther. 2015, 20, 777–782. [Google Scholar] [CrossRef]
- Shin, S.H.; Ro, D.H.; Lee, O.S.; Oh, J.H.; Kim, S.H. Within-day reliability of shoulder range of motion measurement with a smartphone. Man. Ther. 2012, 17, 298–304. [Google Scholar] [CrossRef]
- de Jong, L.D.; Nieuwboer, A.; Aufdemkampe, G. The hemiplegic arm: Interrater reliability and concurrent validity of passive range of motion measurements. Disabil. Rehabil. 2007, 29, 1442–1448. [Google Scholar] [CrossRef]
- Swanik, C.B.; Lephart, S.M.; Giannantonio, F.P.; Fu, F.H. Reestablishing proprioception and neuromuscular control in the ACL-injured athlete. J. Sport Rehabil. 1997, 6, 182–206. [Google Scholar] [CrossRef]
- Cools, A.M.; De Wilde, L.; Van Tongel, A.; Ceyssens, C.; Ryckewaert, R.; Cambier, D.C. Measuring shoulder external and internal rotation strength and range of motion: Comprehensive intra-rater and inter-rater reliability study of several testing protocols. J. Shoulder Elb. Surg. 2014, 23, 1454–1461. [Google Scholar] [CrossRef]
- Watson, L.; Balster, S.; Finch, C.; Dalziel, R. Measurement of scapula upward rotation: A reliable clinical procedure. Br. J. Sports Med. 2005, 39, 599–603. [Google Scholar] [CrossRef]
- Scibek, J.S.; Carcia, C.R. Validation of a new method for assessing scapular anterior-posterior tilt. Int. J. Sports Phys. Ther. 2014, 9, 644–656. [Google Scholar] [PubMed]
- Vafadar, A.K.; Côté, J.N.; Archambault, P.S. Interrater and Intrarater Reliability and Validity of 3 Measurement Methods for Shoulder-Position Sense. J. Sport Rehabil. 2016, 25. [Google Scholar] [CrossRef] [PubMed]
- Kolber, M.J.; Saltzman, S.B.; Beekhuizen, K.S.; Cheng, M.S.S. Reliability and minimal detectable change of inclinometric shoulder mobility measurements. Physiother. Theory Pract. 2009, 25, 572–581. [Google Scholar] [CrossRef] [PubMed]
- van de Pol, R.J.; van Trijffel, E.; Lucas, C. Inter-rater reliability for measurement of passive physiological range of motion of upper extremity joints is better if instruments are used: A systematic review. J. Physiother. 2010, 56, 7–17. [Google Scholar] [CrossRef]
- Kolber, M.J.; Hanney, W.J. The reliability and concurrent validity of shoulder mobility measurements using a digital inclinometer and goniometer: A technical report. Int. J. Sports Phys. Ther. 2012, 7, 306–313. [Google Scholar]
- Konor, M.M.; Morton, S.; Eckerson, J.M.; Grindstaff, T.L. Reliability of three measures of ankle dorsiflexion range of motion. Int. J. Sports Phys. Ther. 2012, 7, 279–287. [Google Scholar]
- Hancock, G.E.; Hepworth, T.; Wembridge, K. Accuracy and reliability of knee goniometry methods. J. Exp. Orthop. 2018, 5, 46. [Google Scholar] [CrossRef]
- Roach, S.; San Juan, J.G.; Suprak, D.N.; Lyda, M. Concurrent validity of digital inclinometer and universal goniometer in assessing passive hip mobility in healthy subjects. Int. J. Sports Phys. Ther. 2013, 8, 680–688. [Google Scholar] [PubMed]
- Hannah, D.C.; Scibek, J.S. Collecting shoulder kinematics with electromagnetic tracking systems and digital inclinometers: A review. World J. Orthop. 2015, 6, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Johansson, F.R.; Skillgate, E.; Lapauw, M.L.; Clijmans, D.; Deneulin, V.P.; Palmans, T.; Engineer, H.K.; Cools, A.M. Measuring Eccentric Strength of the Shoulder External Rotators Using a Handheld Dynamometer: Reliability and Validity. J. Athl. Train. 2015, 50, 719–725. [Google Scholar] [CrossRef]
- Lephart, S.M.; Henry, T.J. Functional rehabilitation for the upper and lower extremity. Orthop. Clin. N. Am. 1995, 26, 579–592. [Google Scholar] [CrossRef]
- Lephart, S.M.; Jari, R. The role of proprioception in shoulder instability. Oper. Tech. Sports Med. 2002, 10, 2–4. [Google Scholar] [CrossRef]
- Li, R.C.; Jasiewicz, J.M.; Middleton, J.; Condie, P.; Barriskill, A.; Hebnes, H.; Purcell, B. The development, validity, and reliability of a manual muscle testing device with integrated limb position sensors. Arch. Phys. Med. Rehabil. 2006, 87, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Sole, G.; Osborne, H.; Wassinger, C. The effect of experimentally-induced subacromial pain on proprioception. Man. Ther. 2015, 20, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Stratford, P.W.; Balsor, B.E. A comparison of make and break tests using a hand-held dynamometer and the Kin-Com. J. Orthop. Sports Phys. Ther. 1994, 19, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Voight, M.L.; Hardin, J.A.; Blackburn, T.A.; Tippett, S.; Canner, G.C. The effects of muscle fatigue on and the relationship of arm dominance to shoulder proprioception. J. Orthop. Sports Phys. Ther. 1996, 23, 348–352. [Google Scholar] [CrossRef]
- Ager, A.L.; Roy, J.-S.; Roos, M.; Belley, A.F.; Cools, A.; Hébert, L.J. Shoulder proprioception: How is it measured and is it reliable? A systematic review. J. Hand Ther. 2017, 30, 221–231. [Google Scholar] [CrossRef]
- Bohannon, R. Knee Extension Torque in Stroke Patients: Comparison of Measurements Obtained with a Handheld and a Cybex Dynamometer. Phys. Ther. 1990, 42, 284–287. [Google Scholar]
- Stark, T.; Walker, B.; Phillips, J.K.; Fejer, R.; Beck, R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: A systematic review. PM R 2011, 3, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, C.; Arancibia, M.; Trigo, B.; Arias-Poblete, L.; Jerez-Mayorga, D. Absolute Reliability and Concurrent Validity of Hand-Held Dynamometry in Shoulder Rotator Strength Assessment: Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health. 2021, 18, 9293. [Google Scholar] [CrossRef] [PubMed]
- Cools, A.M.J.; Vanderstukken, F.; Vereecken, F.; Duprez, M.; Heyman, K.; Goethals, N.; Johansson, F. Eccentric and isometric shoulder rotator cuff strength testing using a hand-held dynamometer: Reference values for overhead athletes. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 3838–3847. [Google Scholar] [CrossRef] [PubMed]
- Anderson, V.B.; Wee, E. Impaired joint proprioception at higher shoulder elevations in chronic rotator cuff pathology. Arch. Phys. Med. Rehabil. 2011, 92, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Bradley, T.; Baldwick, C.; Fischer, D.; Murrell, G.A.C. Effect of taping on the shoulders of Australian football players. Br. J. Sports Med. 2009, 43, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Suprak, D.N.; Osternig, L.R.; van Donkelaar, P.; Karduna, A.R. Shoulder joint position sense improves with elevation angle in a novel, unconstrained task. J. Orthop. Res. 2006, 24, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Zanca, G.G.; Mattiello, S.M.; Karduna, A.R. Kinesio taping of the deltoid does not reduce fatigue induced deficits in shoulder joint position sense. Clin. Biomech. 2015, 30, 903–907. [Google Scholar] [CrossRef] [PubMed]
- Hayes, K.; Walton, J.R.; Szomor, Z.L.; Murrell, G.A.C. Reliability of 3 methods for assessing shoulder strength. J. Shoulder Elb. Surg. 2002, 11, 33–39. [Google Scholar] [CrossRef]
- Byram, I.R.; Bushnell, B.D.; Dugger, K.; Charron, K.; Harrell, F.E.; Noonan, T.J. Preseason shoulder strength measurements in professional baseball pitchers: Identifying players at risk for injury. Am. J. Sports Med. 2010, 38, 1375–1382. [Google Scholar] [CrossRef]
- de Castro Pochini, A.; Ejnisman, B.; de Seixas Alves, M.T.; Uyeda, L.F.; Nouailhetas, V.L.A.; Han, S.W.; Cohen, M.; Albertoni, W.M. Overuse of training increases mechanoreceptors in supraspinatus tendon of rats SHR. J. Orthop. Res. 2011, 29, 1771–1774. [Google Scholar] [CrossRef] [PubMed]
- Minaki, Y.; Yamashita, T.; Takebayashi, T.; Ishii, S. Mechanosensitive afferent units in the shoulder and adjacent tissues. Clin. Orthop. 1999, 369, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Maenhout, A.G.; Palmans, T.; De Muynck, M.; De Wilde, L.F.; Cools, A.M. The impact of rotator cuff tendinopathy on proprioception, measuring force sensation. J Shoulder Elb. Surg. 2012, 21, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Barrett, D.S.; Cobb, A.G.; Bentley, G. Joint proprioception in normal, osteoarthritic and replaced knees. J. Bone Jt. Surg. Br. 1991, 73, 53–56. [Google Scholar] [CrossRef]
- Maier, M.W.; Niklasch, M.; Dreher, T.; Wolf, S.I.; Zeifang, F.; Loew, M.; Kasten, P. Proprioception 3 years after shoulder arthroplasty in 3D motion analysis: A prospective study. Arch. Orthop. Trauma Surg. 2012, 132, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Coscia, A.C.; Matar, R.N.; Espinal, E.E.; Shah, N.S.; Grawe, B.M. Does preoperative diagnosis impact patient outcomes following reverse total shoulder arthroplasty? A systematic review. J. Shoulder Elb. Surg. 2021, 30, 1458–1470. [Google Scholar] [CrossRef]
- Harris, J.D.; Gupta, A.K.; Mall, N.A.; Abrams, G.D.; McCormick, F.M.; Cole, B.J.; Bach, B.R.; Romeo, A.A.; Verma, N.N. Long-Term Outcomes After Bankart Shoulder Stabilization. Arthrosc. J. Arthrosc. Relat. Surg. 2013, 29, 920–933. [Google Scholar] [CrossRef] [PubMed]
- Lubiatowski, P.; Ogrodowicz, P.; Wojtaszek, M.; Romanowski, L. Bilateral shoulder proprioception deficit in unilateral anterior shoulder instability. J. Shoulder Elb. Surg. 2019, 28, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Machner, A.; Wissel, H.; Heitmann, D.; Pap, G. Changes in proprioceptive capacities of the shoulder joint in ventral shoulder instability. A comparative study before and after arthroscopic labrum refixation. Sportverletz. Sportschaden Organ Ges. Orthop. Traumatol. Sportmed. 1998, 12, 138–141. [Google Scholar] [CrossRef]
- Lucas, D.B. Biomechanics of the shoulder joint. Arch. Surg. 1973, 107, 425–432. [Google Scholar] [CrossRef]
- Itoi, E.; Kuechle, D.K.; Newman, S.R.; Morrey, B.F.; An, K.N. Stabilising function of the biceps in stable and unstable shoulders. J. Bone Jt. Surg. Br. 1993, 75, 546–550. [Google Scholar] [CrossRef]
- Glousman, R.; Jobe, F.; Tibone, J.; Moynes, D.; Antonelli, D.; Perry, J. Dynamic electromyographic analysis of the throwing shoulder with glenohumeral instability. J. Bone Jt. Surg. 1988, 70, 220–226. [Google Scholar] [CrossRef]
- Kim, S.H.; Ha, K.I.; Kim, H.S.; Kim, S.W. Electromyographic activity of the biceps brachii muscle in shoulders with anterior instability. Arthrosc. J. Arthrosc. Relat. Surg. 2001, 17, 864–868. [Google Scholar] [CrossRef]
- Levy, A.S.; Kelly, B.T.; Lintner, S.A.; Osbahr, D.C.; Speer, K.P. Function of the long head of the biceps at the shoulder: Electromyographic analysis. J. Shoulder Elb. Surg. 2001, 10, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Ghalayini, S.R.A.; Board, T.N.; Srinivasan, M.S. Anatomic Variations in the Long Head of Biceps: Contribution to Shoulder Dysfunction. Arthrosc. J. Arthrosc. Relat. Surg. 2007, 23, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Ager, A.L.; Borms, D.; Bernaert, M.; Brusselle, V.; Claessens, M.; Roy, J.S.; Cools, A. Can a Conservative Rehabilitation Strategy Improve Shoulder Proprioception? A Systematic Review. J. Sport Rehabil. 2020, 30, 136–151. [Google Scholar] [CrossRef]
- Dilek, B.; Gulbahar, S.; Gundogdu, M.; Ergin, B.; Manisali, M.; Ozkan, M.; Akalin, E. Efficacy of Proprioceptive Exercises in Patients with Subacromial Impingement Syndrome: A Single-Blinded Randomized Controlled Study. Am. J. Phys. Med. Rehabil. 2016, 95, 169. [Google Scholar] [CrossRef] [PubMed]
- Atya, A.M. Efficacy of Microcurrent Electrical Stimulation on Pain, Proprioception Accuracy and Functional Disability in Subacromial Impingement: RCT. Indian J. Physiother. Occup. Ther. 2012, 6, 15–18. [Google Scholar]
- Chu, J.C.; Kane, E.J.; Arnold, B.L.; Gansneder, B.M. The Effect of a Neoprene Shoulder Stabilizer on Active Joint-Reposition Sense in Subjects With Stable and Unstable Shoulders. J. Athl. Train. 2002, 37, 141–145. [Google Scholar]
- de Oliveira, F.C.L.; Pairot de Fontenay, B.; Bouyer, L.J.; Roy, J.S. Immediate effects of kinesiotaping on acromiohumeral distance and shoulder proprioception in individuals with symptomatic rotator cuff tendinopathy. Clin. Biomech. 2019, 61, 16–21. [Google Scholar] [CrossRef]
- Keenan, K.A.; Akins, J.S.; Varnell, M.; Abt, J.; Lovalekar, M.; Lephart, S.; Sell, T.C. Kinesiology taping does not alter shoulder strength, shoulder proprioception, or scapular kinematics in healthy, physically active subjects and subjects with Subacromial Impingement Syndrome. Phys. Ther. Sport 2017, 24, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Pontillo, M.; Sennett, B. Repeatability of Sway Measures in Upper Extremity Weight-Bearing. Int. J. Sports Phys. Ther. 2020, 15, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Scano, A.; Spagnuolo, G.; Caimmi, M.; Chiavenna, A.; Malosio, M.; Legnani, G.; Tosatti, L.M. Static and dynamic characterization of the LIGHTarm exoskeleton for rehabilitation. In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August 2015; pp. 428–433. [Google Scholar]
- Merchant, R.; Cruz-Ortiz, D.; Ballesteros-Escamilla, M.; Chairez, I. Integrated wearable and self-carrying active upper limb orthosis. Proc. Inst. Mech. Eng. 2018, 232, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Kurita, K.; Kuang, J.; Gao, A. Real-Time Limb Motion Tracking with a Single IMU Sensor for Physical Therapy Exercises. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico, 1–5 November 2021; pp. 7152–7157. [Google Scholar]
- Dong, M.; Fang, B.; Li, J.; Sun, F.; Liu, H. Wearable sensing devices for upper limbs: A systematic review. Proc. Inst. Mech. Eng. 2021, 235, 117–130. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fox, J.A.; Luther, L.; Epner, E.; LeClere, L. Shoulder Proprioception: A Review. J. Clin. Med. 2024, 13, 2077. https://doi.org/10.3390/jcm13072077
Fox JA, Luther L, Epner E, LeClere L. Shoulder Proprioception: A Review. Journal of Clinical Medicine. 2024; 13(7):2077. https://doi.org/10.3390/jcm13072077
Chicago/Turabian StyleFox, Jake A., Lauren Luther, Eden Epner, and Lance LeClere. 2024. "Shoulder Proprioception: A Review" Journal of Clinical Medicine 13, no. 7: 2077. https://doi.org/10.3390/jcm13072077
APA StyleFox, J. A., Luther, L., Epner, E., & LeClere, L. (2024). Shoulder Proprioception: A Review. Journal of Clinical Medicine, 13(7), 2077. https://doi.org/10.3390/jcm13072077