Updated Estimates of Radiation Risk for Cancer and Cardiovascular Disease: Implications for Cardiology Practice
Abstract
:1. Introduction
2. Historical Perspective: Fluctuations in Radiology Exposure
3. Reevaluation of Radiology Risk
4. The Risk beyond Cancer: Cardiovascular Disease
5. Cumulative Cancer and Cardiovascular Risk from Radiation Exposure
6. Recent, Ongoing, or Upcoming Studies
7. How to Mitigate the Medical Radiation Burden on the Population
8. Implications for Practice and Policy
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berrington de González, A.; Darby, S. Risk of cancer from diagnostic X-rays: Estimates for the UK and 14 other countries. Lancet 2004, 363, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Picano, E. Letter. Risk of cancer from diagnostic X-rays. Lancet 2004, 363, 1909–1910. [Google Scholar] [PubMed]
- Picano, E. Sustainability of medical imaging. BMJ 2004, 328, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Mettler, F.A., Jr.; Bhargavan, M.; Faulkner, K.; Gilley, D.B.; Gray, J.E.; Ibbott, G.S.; Lipoti, J.A.; Mahesh, M.; McCrohan, J.L.; Stabin, M.G.; et al. Radiologic and nuclear medicine studies in the United States and worldwide: Frequency, radiation dose, and comparison with other radiation sources—1950–2007. Radiology 2009, 253, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Rühm, W.; Laurier, D.; Wakeford, R. Cancer risk following low doses of ionising radiation—Current epidemiological evidence and implications for radiological protection. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022, 873, 503436. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.E.; Quinn, E.K.; Rodriguez-Villamizar, L.A.; MacDonald, H.; Villeneuve, P.J. Exposure to low-dose radiation in occupational settings and ischaemic heart disease: A systematic review and meta-analysis. Occup. Environ. Med. 2023, 80, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, M.; Ansari, A.J.; Mettler, F.A., Jr. Patient Exposure from Radiologic and Nuclear Medicine Procedures in the United States and Worldwide: 2009–2018. Radiology 2023, 307, e239006. [Google Scholar] [CrossRef]
- Radiation protection 118. Referral guidelines for imaging. In Conjunction with the UK Royal College of Radiologists; Directorate general for the environment 2000; European Commission: Luxembourg, 2001; Available online: https://op.europa.eu/en/publication-detail/-/publication/ac475fa0-09b6-4430-a3a3-6edef21df2e6 (accessed on 20 February 2024).
- Charles, M. UNSCEAR report 2000: Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. J. Radiol. Prot. Off. J. Soc. Radiol. Prot. 2001, 21, 83–86. [Google Scholar] [CrossRef]
- National Academy of Sciences. Health Risks from Exposure to Low Levels of Ionizing Radiation (BEIR VII Phase 2); National Academy Press: Washington, DC, USA, 2006; Available online: https://nap.nationalacademies.org/catalog/11340/health-risks-from-exposure-to-low-levels-of-ionizing-radiation (accessed on 20 February 2024).
- World Health Organization; UNSCEAR. Sources, Effects and Risks Of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2013 Report to the General Assembly, with Scientific Annexes. Available online: http://www.unscear.org/unscear/en/publications/2013_1.html (accessed on 20 February 2024).
- German Commission on Radiological Protection. Dose- and Dose-Rate-Effectiveness Factor (DDREF), Recommendation by the German Commission on Radiological Protection with Scientific Grounds; SSK: Bonn, Germany, 2014; Available online: http://www.ssk.de/SharedDocs/Beratungsergebnisse_E/2014/DDREF_e.html?nn=2876278 (accessed on 20 February 2024).
- ICRP. Recommendations of the International Commission on Radiological Protection; ICRP Publication 60. Ann. ICRP 21 (1–3); ICRP: Ottawa, ON, Canada, 1991; Available online: https://www.icrp.org/publication.asp?id=ICRP%20Publication%2060990 (accessed on 20 February 2024).
- Richardson, D.B.; Leuraud, K.; Laurier, D.; Gillies, M.; Haylock, R.; Kelly-Reif, K.; Bertke, S.; Daniels, R.D.; Thierry-Chef, I.; Moissonnier, M.; et al. Cancer mortality after low dose exposure to ionising radiation in workers in France, the United Kingdom, and the United States (INWORKS): Cohort study. BMJ 2023, 382, e074520. [Google Scholar] [CrossRef]
- Khaled, S.; Gupta, K.B.; Kucik, D.F. Ionizing radiation increases adhesiveness of human aortic endothelial cells via a chemokine-dependent mechanism. Radiat. Res. 2012, 177, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Voisard, R.; Wiegmann, D.; Baur, R.; Hombach, V.; Kamenz, J. Low-dose irradiation stimulates TNF-alpha-induced ICAM-1 mRNA expression in human coronary vascular cells. Med. Sci. Monit. 2007, 13, BR107–BR111. [Google Scholar] [PubMed]
- Zheng, X.; Liu, Z.; Bin, Y.; Wang, J.; Rao, X.; Wu, G.; Dong, X.; Tong, F. Ionizing radiation induces vascular smooth muscle cell senescence through activating NF-κB/CTCF/p16 pathway. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 166994. [Google Scholar] [CrossRef]
- Soloviev, A.I.; Kizub, I.V. Mechanisms of vascular dysfunction evoked by ionizing radiation and possible targets for its pharmacological correction. Biochem. Pharmacol. 2019, 159, 121–139. [Google Scholar] [CrossRef] [PubMed]
- Pulliero, A.; Godschalk, R.; Andreassi, M.G.; Curfs, D.; Van Schooten, F.J.; Izzotti, A. Environmental carcinogens and mutational pathways in atherosclerosis. Int. J. Hyg. Environ. Health 2015, 218, 293–312. [Google Scholar] [CrossRef] [PubMed]
- Little, M.P.; Gola, A.; Tzoulaki, I. A model of cardiovascular disease giving a plausible mechanism for the effect of fractionated low-dose ionizing radiation exposure. PLoS Comput. Biol. 2009, 5, e1000539. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.; Raj, K. Premature aging induced by radiation exhibits pro-atherosclerotic effects mediated by epigenetic activation of CD44 expression. Aging Cell 2014, 13, 900–910. [Google Scholar] [CrossRef] [PubMed]
- Rombouts, C.; Aerts, A.; Quintens, R.; Baselet, B.; El-Saghire, H.; Harms-Ringdahl, M.; Haghdoost, S.; Janssen, A.; Michaux, A.; Yentrapalli, R.; et al. Transcriptomic profiling suggests a role for IGFBP5 in premature senescence of endothelial cells after chronic low dose rate irradiation. Int. J. Radiat. Biol. 2014, 90, 560–574. [Google Scholar] [CrossRef] [PubMed]
- Yentrapalli, R.; Azimzadeh, O.; Barjaktarovic, Z.; Sarioglu, H.; Wojcik, A.; Harms-Ringdahl, M.; Atkinson, M.J.; Haghdoost, S.; Tapio, S. Quantitative proteomic analysis reveals induction of premature senescence in human umbilical vein endothelial cells exposed to chronic low-dose rate gamma radiation. Proteomics 2013, 13, 1096–1107. [Google Scholar] [CrossRef] [PubMed]
- Yentrapalli, R.; Azimzadeh, O.; Sriharshan, A.; Malinowsky, K.; Merl, J.; Wojcik, A.; Harms-Ringdahl, M.; Atkinson, M.J.; Becker, K.-F.; Haghdoost, S.; et al. The PI3K/Akt/ mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation. PLoS ONE 2013, 8, e70024. [Google Scholar] [CrossRef] [PubMed]
- Isik, M.; Zulfiqar, S.; Edhaim, F.; Ruipérez, F.; Rothenberger, A.; Mecerreyes, D. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J. Proteome Res. 2015, 14, 1203–1219. [Google Scholar] [CrossRef]
- Andreassi, M.G. Low-doses ionizing radiation exposure: An emerging causal risk factor for cardiovascular disease. Explor. Cardiol. 2023, 1, 141–147. [Google Scholar] [CrossRef]
- Little, M.P.; Azizova, T.V.; Richardson, D.B.; Tapio, S.; Bernier, M.-O.; Kreuzer, M.; A Cucinotta, F.; Bazyka, D.; Chumak, V.; Ivanov, V.K.; et al. Ionising radiation and cardiovascular disease: Systematic review and meta-analysis. BMJ 2023, 380, e072924. [Google Scholar] [CrossRef] [PubMed]
- Gomez, M.B.d.B.; Thierry-Chef, I.; Harbron, R.; Hauptmann, M.; Byrnes, G.; Bernier, M.-O.; Le Cornet, L.; Dabin, J.; Ferro, G.; Istad, T.S.; et al. Risk of hematological malignancies from CT radiation exposure in children, adolescents and young adults. Nat. Med. 2023, 29, 3111–3119. [Google Scholar] [CrossRef] [PubMed]
- Hauptmann, M.; Byrnes, G.; Cardis, E.; Bernier, M.-O.; Blettner, M.; Dabin, J.; Engels, H.; Istad, T.S.; Johansen, C.; Kaijser, M.; et al. Brain cancer after radiation exposure from CT examinations of children and young adults: Results from the EPI-CT cohort study. Lancet Oncol. 2023, 24, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Liu, A.; Gurvitz, M.; Guo, L.; Therrien, J.; Laprise, C.; Kaufman, J.S.; Abrahamowicz, M.; Marelli, A.J. Exposure to Low-Dose Ionizing Radiation From Cardiac Procedures and Malignancy Risk in Adults with Congenital Heart Disease. Circulation 2018, 137, 1334–1345. [Google Scholar] [CrossRef] [PubMed]
- Campolo, J.; Annoni, G.; Giaccardi, M.; Andreassi, M.G. Congenital Heart Disease and the Risk of Cancer: An Update on the Genetic Etiology, Radiation Exposure Damage, and Future Research Strategies. J. Cardiovasc. Dev. Dis. 2022, 9, 245. [Google Scholar] [CrossRef] [PubMed]
- Afroz, S.; Østerås, B.H.; Thevathas, U.S.; Dohlen, G.; Stokke, C.; Robsahm, T.E.; Olerud, H.M. Use of ionizing radiation in a Norwegian cohort of children with congenital heart disease: Imaging frequency and radiation dose for the Health Effects of Cardiac Fluoroscopy and Modern Radiotherapy in Pediatrics (HARMONIC) study. Pediatr. Radiol. 2023, 53, 2502–2514. [Google Scholar] [CrossRef] [PubMed]
- Andreassi, M.G.; Haddy, N.; Harms-Ringdahl, M.; Campolo, J.; Borghini, A.; Chevalier, F.; Schwenk, J.M.; Fresneau, B.; Bolle, S.; Fuentes, M.; et al. A Longitudinal Study of Individual Radiation Responses in Pediatric Patients Treated with Proton and Photon Radiotherapy, and Interventional Cardiology: Rationale and Research Protocol of the HARMONIC Project. Int. J. Mol. Sci. 2023, 24, 8416. [Google Scholar] [CrossRef] [PubMed]
- Andreassi, M.G.; Piccaluga, E.; Gargani, L.; Sabatino, L.; Borghini, A.; Faita, F.; Bruno, R.M.; Padovani, R.; Guagliumi, G.; Picano, E. Subclinical carotid atherosclerosis and early vascular aging from long-term low-dose ionizing radiation exposure: A genetic, telomere, and vascular ultrasound study in cardiac catheterization laboratory staff. JACC Cardiovasc. Interv. 2015, 8, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Borghini, A.; Campolo, J.; Annoni, G.; Giuli, V.; Sicari, R.; Peretti, A.; Mercuri, A.; Picano, E.; Andreassi, M.G. Cancer Risk in Patients With Congenital Heart Disease Exposed to Radiation From Cardiac Procedures. J. Am. Coll. Cardiol. 2023, 81, 1133–1134. [Google Scholar] [CrossRef] [PubMed]
- Carpeggiani, C.; Marraccini, P.; Morales, M.A.; Prediletto, R.; Landi, P.; Picano, E. Inappropriateness of cardiovascular radiological imaging testing; a tertiary care referral center study. PLoS ONE 2013, 8, e81161. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, R.J.; Miller, T.D.; Hodge, D.; Urban, L.; Araoz, P.A.; Pellikka, P.; McCully, R.B. Application of appropriateness criteria to stress single-photon emission computed tomography sestamibi studies and stress echocardiograms in an academic medical center. J. Am. Coll. Cardiol. 2008, 51, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Kline, K.P.; Shaw, L.; Beyth, R.J.; Plumb, J.; Nguyen, L.; Huo, T.; Winchester, D.E. Perceptions of patients and providers on myocardial perfusion imaging for asymptomatic patients, choosing wisely, and professional liability. BMC Health Serv. Res. 2017, 17, 553. [Google Scholar] [CrossRef] [PubMed]
- Madder, R.D.; Seth, M.; Frazier, K.; Dixon, S.; Karve, M.; Collins, J.; Miller, R.V.; Pielsticker, E.; Sharma, M.; Sukul, D.; et al. Statewide Initiative to Reduce Patient Radiation Doses During Percutaneous Coronary Intervention. Circulation. Cardiovasc. Interv. 2024, 17, e013502. [Google Scholar] [CrossRef]
- Khambhati, J.; Leopold, J.A. Shielding for Radiation Safety in the Cardiac Catheterization Laboratory. Circ. Cardiovasc. Interv. 2023, 16, e013647. [Google Scholar] [CrossRef] [PubMed]
- Bergonti, M.; Russo, A.D.; Sicuso, R.; Ribatti, V.; Compagnucci, P.; Catto, V.; Gasperetti, A.; Zucchetti, M.; Cellucci, S.; Vettor, G.; et al. Long-Term Outcomes of Near-Zero Radiation Ablation of Paroxysmal Supraventricular Tachycardia: A Comparison With Fluoroscopy-Guided Approach. JACC Clin. Electrophysiol. 2021, 7, 1108–1117. [Google Scholar] [CrossRef] [PubMed]
- Lell, M.; Kachelrieß, M. Computed Tomography 2.0: New Detector Technology, AI, and Other Developments. Investig. Radiol. 2023, 58, 587–601. [Google Scholar] [CrossRef] [PubMed]
- Iyad, N.; S Ahmad, M.; Alkhatib, S.G.; Hjouj, M. Gadolinium contrast agents- challenges and opportunities of a multidisciplinary approach: Literature review. Eur. J. Radiol. Open 2023, 11, 100503. [Google Scholar] [CrossRef] [PubMed]
- Picano, E.; Vañó, E.; Rehani, M.M.; Cuocolo, A.; Mont, L.; Bodi, V.; Bar, O.; Maccia, C.; Pierard, L.; Sicari, R.; et al. The appropriate and justified use of medical radiation in cardiovascular imaging: A position document of the ESC Associations of Cardiovascular Imaging, Percutaneous Cardiovascular Interventions and Electrophysiology. Eur. Heart J. 2014, 35, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Writing Committee Members; Hirshfeld, J.W.; Ferrari, V.A.; Bengel, F.M.; Bergersen, L.; Chambers, C.E.; Einstein, A.J.; Eisenberg, M.J.; Fogel, M.A.; Gerber, T.C.; et al. 2018 ACC/HRS/NASCI/SCAI/SCCT Expert Consensus Document on Optimal Use of Ionizing Radiation in Cardiovascular Imaging: Best Practices for Safety and Effectiveness. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2018, 92, E35–E97. [Google Scholar] [CrossRef] [PubMed]
- Klein, L.W.; Goldstein, J.A.; Haines, D.; Chambers, C.; Mehran, R.; Kort, S.; Valentine, C.M.; Cox, D. SCAI multi-society position statement on occupational health hazards of the catheterization laboratory: Shifting the paradigm for Healthcare Workers’ Protection. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2020, 95, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Picano, E. Economic, ethical, and environmental sustainability of cardiac imaging. Eur. Heart J. 2023, 44, 4748–4751. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picano, E.; Vano, E. Updated Estimates of Radiation Risk for Cancer and Cardiovascular Disease: Implications for Cardiology Practice. J. Clin. Med. 2024, 13, 2066. https://doi.org/10.3390/jcm13072066
Picano E, Vano E. Updated Estimates of Radiation Risk for Cancer and Cardiovascular Disease: Implications for Cardiology Practice. Journal of Clinical Medicine. 2024; 13(7):2066. https://doi.org/10.3390/jcm13072066
Chicago/Turabian StylePicano, Eugenio, and Eliseo Vano. 2024. "Updated Estimates of Radiation Risk for Cancer and Cardiovascular Disease: Implications for Cardiology Practice" Journal of Clinical Medicine 13, no. 7: 2066. https://doi.org/10.3390/jcm13072066
APA StylePicano, E., & Vano, E. (2024). Updated Estimates of Radiation Risk for Cancer and Cardiovascular Disease: Implications for Cardiology Practice. Journal of Clinical Medicine, 13(7), 2066. https://doi.org/10.3390/jcm13072066