Adherence to the CLOSE Protocol and Low Baseline Generator Impedance Are Independent Predictors of Durable Pulmonary Vein Isolation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedural Parameters and Study Endpoints
2.2. Initital PVI Procedure
2.3. Repeat Procedure
2.4. Statistics
3. Results
3.1. Study Population
3.2. Incidence of PVR
3.3. CLOSE vs. Non-CLOSE PVI
3.4. Baseline Generator Impedance
3.5. First-Pass Isolation
3.6. Multivariable Analysis for Predictors of PVR
4. Discussion
4.1. Main Message
4.2. CLOSE Protocol and Repeat Procedure Studies
4.3. First-Pass Isolation
4.4. Higher Power Settings
4.5. Baseline Generator Impedance
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Calkins, H.; Hindricks, G.; Cappato, R.; Kim, Y.H.; Saad, E.B.; Aguinaga, L.; Akar, J.G.; Badhwar, V.; Brugada, J.; Camm, J.; et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. EP Eur. 2018, 20, e1–e160. [Google Scholar] [CrossRef]
- Salló, Z.; Perge, P.; Balogi, B.; Orbán, G.; Piros, K.; Herczeg, S.; Nagy, K.V.; Osztheimer, I.; Ábrahám, P.; Merkely, B.; et al. Impact of High-Power and Very High-Power Short-Duration Radiofrequency Ablation on Procedure Characteristics and First-Pass Isolation during Pulmonary Vein Isolation. Front. Cardiovasc. Med. 2022, 9, 935705. [Google Scholar] [CrossRef] [PubMed]
- El Haddad, M.; Taghji, P.; Phlips, T.; Wolf, M.; Demolder, A.; Choudhury, R.; Knecht, S.; Vandekerckhove, Y.; Tavernier, R.; Nakagawa, H.; et al. Determinants of Acute and Late Pulmonary Vein Reconnection in Contact Force-Guided Pulmonary Vein Isolation: Identifying the Weakest Link in the Ablation Chain. Circ. Arrhythm. Electrophysiol. 2017, 10, e004867. [Google Scholar] [CrossRef] [PubMed]
- Kornej, J.; Hindricks, G.; Shoemaker, M.B.; Husser, D.; Arya, A.; Sommer, P.; Rolf, S.; Saavedra, P.; Kanagasundram, A.; Patrick Whalen, S.; et al. The APPLE score: A novel and simple score for the prediction of rhythm outcomes after catheter ablation of atrial fibrillation. Clin. Res. Cardiol. 2015, 104, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Szegedi, N.; Simon, J.; Szilveszter, B.; Salló, Z.; Herczeg, S.; Száraz, L.; Kolossváry, M.; Orbán, G.; Széplaki, G.; Nagy, K.V.; et al. Abutting Left Atrial Appendage and Left Superior Pulmonary Vein Predicts Recurrence of Atrial Fibrillation after Point-by-Point Pulmonary Vein Isolation. Front. Cardiovasc. Med. 2022, 9, 708298. [Google Scholar] [CrossRef]
- Simon, J.; El Mahdiui, M.; Smit, J.M.; Száraz, L.; van Rosendael, A.R.; Herczeg, S.; Zsarnóczay, E.; Nagy, A.I.; Kolossváry, M.; Szilveszter, B.; et al. Left atrial appendage size is a marker of atrial fibrillation recurrence after radiofrequency catheter ablation in patients with persistent atrial fibrillation. Clin. Cardiol. 2022, 45, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Boussoussou, M.; Szilveszter, B.; Vattay, B.; Kolossváry, M.; Vecsey-Nagy, M.; Salló, Z.; Orbán, G.; Péter, P.; Katalin, P.; Vivien, N.K.; et al. The effect of left atrial wall thickness and pulmonary vein sizes on the acute procedural success of atrial fibrillation ablation. Int. J. Cardiovasc. Imaging 2022, 38, 1601–1611. [Google Scholar] [CrossRef]
- Taghji, P.; El Haddad, M.; Phlips, T.; Wolf, M.; Knecht, S.; Vandekerckhove, Y.; Tavernier, R.; Nakagawa, H.; Duytschaever, M. Evaluation of a Strategy Aiming to Enclose the Pulmonary Veins with Contiguous and Optimized Radiofrequency Lesions in Paroxysmal Atrial Fibrillation: A Pilot Study. JACC Clin. Electrophysiol. 2018, 4, 99–108. [Google Scholar] [CrossRef]
- Duytschaever, M.; De Pooter, J.; Demolder, A.; El Haddad, M.; Phlips, T.; Strisciuglio, T.; Debonnaire, P.; Wolf, M.; Vandekerckhove, Y.; Knecht, S.; et al. Long-term impact of catheter ablation on arrhythmia burden in low-risk patients with paroxysmal atrial fibrillation: The CLOSE to CURE study. Heart Rhythm. 2020, 17, 535–543. [Google Scholar] [CrossRef]
- Duytschaever, M.; Vijgen, J.; De Potter, T.; Scherr, D.; Van Herendael, H.; Knecht, S.; Kobza, R.; Berte, B.; Sandgaard, N.; Albenque, J.-P.; et al. Standardized pulmonary vein isolation workflow to enclose veins with contiguous lesions: The multicentre VISTAX trial. EP Eur. 2020, 22, 1645–1652. [Google Scholar] [CrossRef] [PubMed]
- Phlips, T.; Taghji, P.; El Haddad, M.; Wolf, M.; Knecht, S.; Vandekerckhove, Y.; Tavernier, R.; Duytschaever, M. Improving procedural and one-year outcome after contact force-guided pulmonary vein isolation: The role of interlesion distance, ablation index, and contact force variability in the ‘CLOSE’-protocol. EP Eur. 2018, 20, f419–f427. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, A.; Barry, M.A.; Pouliopoulos, J.; Nalliah, C.; Qian, P.; Chik, W.; Thavapalachandran, S.; Davis, L.; McEwan, A.; Thomas, S.; et al. Circuit Impedance Could Be a Crucial Factor Influencing Radiofrequency Ablation Efficacy and Safety: A Myocardial Phantom Study of the Problem and its Correction. J. Cardiovasc. Electrophysiol. 2016, 27, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Barkagan, M.; Rottmann, M.; Leshem, E.; Shen, C.; Buxton, A.E.; Anter, E. Effect of Baseline Impedance on Ablation Lesion Dimensions: A Multimodality Concept Validation from Physics to Clinical Experience. Circ. Arrhythm. Electrophysiol. 2018, 11, e006690. [Google Scholar] [CrossRef] [PubMed]
- Bourier, F.; Ramirez, F.D.; Martin, C.A.; Vlachos, K.; Frontera, A.; Takigawa, M.; Kitamura, T.; Lam, A.; Duchateau, J.; Pambrun, T.; et al. Impedance, power, and current in radiofrequency ablation: Insights from technical, ex vivo, and clinical studies. J. Cardiovasc. Electrophysiol. 2020, 31, 2836–2845. [Google Scholar] [CrossRef] [PubMed]
- Neuzil, P.; Reddy, V.Y.; Kautzner, J.; Petru, J.; Wichterle, D.; Shah, D.; Lambert, H.; Yulzari, A.; Wissner, E.; Kuck, K.H. Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: Results from the EFFICAS I study. Circ. Arrhythm. Electrophysiol. 2013, 6, 327–333. [Google Scholar] [CrossRef]
- Kautzner, J.; Neuzil, P.; Lambert, H.; Peichl, P.; Petru, J.; Cihak, R.; Skoda, J.; Wichterle, D.; Wissner, E.; Yulzari, A.; et al. EFFICAS II: Optimization of catheter contact force improves outcome of pulmonary vein isolation for paroxysmal atrial fibrillation. EP Eur. 2015, 17, 1229–1235. [Google Scholar] [CrossRef]
- Berte, B.; Hilfiker, G.; Moccetti, F.; Schefer, T.; Weberndörfer, V.; Cuculi, F.; Toggweiler, S.; Ruschitzka, F.; Kobza, R. Pulmonary vein isolation using ablation index vs. CLOSE protocol with a surround flow ablation catheter. EP Eur. 2020, 22, 84–89. [Google Scholar] [CrossRef] [PubMed]
- De Pooter, J.; Strisciuglio, T.; El Haddad, M.; Wolf, M.; Phlips, T.; Vandekerckhove, Y.; Tavernier, R.; Knecht, S.; Duytschaever, M. Pulmonary Vein Reconnection No Longer Occurs in the Majority of Patients after a Single Pulmonary Vein Isolation Procedure. JACC Clin. Electrophysiol. 2019, 5, 295–305. [Google Scholar] [CrossRef]
- Pedrote, A.; Acosta, J.; Frutos-López, M.; Jáuregui-Garrido, B.; Alarcón, F.; Arana-Rueda, E. Analysis of late reconnections after pulmonary vein isolation: Impact of interlesion contiguity and ablation index. Pacing Clin. Electrophysiol. 2019, 42, 678–685. [Google Scholar] [CrossRef]
- Sandorfi, G.; Rodriguez-Mañero, M.; Saenen, J.; Baluja, A.; Bories, W.; Huybrechts, W.; Miljoen, H.; Vandaele, L.; Heidbuchel, H.; Sarkozy, A. Less Pulmonary Vein Reconnection at Redo Procedures Following Radiofrequency Point-by-Point Antral Pulmonary Vein Isolation with the Use of Contemporary Catheter Ablation Technologies. JACC Clin. Electrophysiol. 2018, 4, 1556–1565. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.; Hunter, T.D.; Rajendra, A.; Zei, P.; Silverstein, J.; Morales, G. Predictors of clinical success after paroxysmal atrial fibrillation catheter ablation. J. Cardiovasc. Electrophysiol. 2021, 32, 1814–1821. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Inoue, K.; Tanaka, N.; Okada, M.; Tanaka, K.; Onishi, T.; Hirao, Y.; Oka, T.; Inoue, H.; Takayasu, K.; et al. Absence of first-pass isolation is associated with poor pulmonary vein isolation durability and atrial fibrillation ablation outcomes. J. Arrhythm. 2021, 37, 1468–1476. [Google Scholar] [CrossRef] [PubMed]
- Wielandts, J.Y.; Kyriakopoulou, M.; Almorad, A.; Hilfiker, G.; Strisciuglio, T.; Phlips, T.; El Haddad, M.; Lycke, M.; Unger, P.; Le Polain de Waroux, J.B.; et al. Prospective Randomized Evaluation of High Power during CLOSE-Guided Pulmonary Vein Isolation: The POWER-AF Study. Circ. Arrhythm. Electrophysiol. 2021, 14, e009112. [Google Scholar] [CrossRef] [PubMed]
- Berte, B.; Hilfiker, G.; Russi, I.; Moccetti, F.; Cuculi, F.; Toggweiler, S.; Ruschitzka, F.; Kobza, R. Pulmonary vein isolation using a higher power shorter duration CLOSE protocol with a surround flow ablation catheter. J. Cardiovasc. Electrophysiol. 2019, 30, 2199–2204. [Google Scholar] [CrossRef]
- Boga, M.; Suhai, F.I.; Orbán, G.; Salló, Z.; Nagy, K.V.; Szegedi, L.; Jokkel, Z.; Csőre, J.; Osztheimer, I.; Perge, P.; et al. Incidence and Predictors of Stroke and Silent Cerebral Embolism Following Very High-Power Short-Duration Atrial Fibrillation Ablation. EP Eur. 2023, 25, euad327. [Google Scholar] [CrossRef]
All Patients (n = 100) | CLOSE (n = 38) | No CLOSE (n = 62) | p-Value | ||
---|---|---|---|---|---|
Age, years | 60 ± 12 | 60 ± 12 | 61 ± 12 | 0.8334 | |
Sex, female (%) | 36 (36) | 16 (42) | 20 (32) | 0.3919 | |
BMI, kg/m2 | 28.9 ± 5 | 28.5 ± 5 | 29.1 ± 5.2 | 0.5847 | |
Persistent AF, n (%) | 44 (44) | 17 (45) | 27 (44) | >0.9999 | |
Hypertension, n (%) | 70 (70) | 28 (74) | 42 (68) | 0.6541 | |
Diabetes, n (%) | 18 (18) | 6 (16) | 12 (19) | 0.7908 | |
CAD, n (%) | 16 (16) | 5 (13) | 11 (18) | 0.5892 | |
Prior stroke/TIA, n (%) | 8 (8) | 2 (5) | 6 (10) | 0.7066 | |
LVEF, % | initial PVI rePVI | 55.9 ± 9.3 53.8 ± 7.9 | 57.9 ± 5.8 54.5 ± 5.4 | 54.6 ± 11 53.4 ± 9.1 | 0.1281 0.6833 |
LAD, mm | initial PVI rePVI | 49.1 ± 6.5 50.5 ± 6.7 | 49.4 ± 7.6 50.7 ± 7 | 48.9 ± 5.9 50.3 ± 6.6 | 0.7935 0.8339 |
All Veins Isolated (n = 17) | At Least 1 PVR (n = 83) | Comparative Analysis | |||
---|---|---|---|---|---|
p-Value | OR | ||||
CLOSE protocol, n (%) | 15 (88) | 23 (28) | <0.0001 | 0.0511 | |
Catheter, n (%) | ST QDOT | 12 (71) 5 (29) | 70 (86) 11 (14) | 0.1454 | 0.3771 |
Power setting, W | 37.5 (30–50) | 30 (30–40) | 0.0276 | ||
FPI, n (%) | 15 (88.2) | 21 (40.4) | 0.0007 | 0.0903 | |
Mean PV-pair perimeter, cm | 12.18 (11.38–12.9) | 12.7 (11.35–13.55) | 0.2582 | ||
Baseline generator impedance, Ω | 127.6 (115.8–134.1) | 136.6 (131.1–144.8) | 0.0027 | ||
Time to first recurrence after initial PVI, months | 17.8 (6.2–37.3) | 15.5 (5.6–27.8) | 0.3042 | ||
Time to repeated procedure, months | 23.8 (6.9–44.5) | 18.3 (11.2–32.5) | 0.4378 | ||
Age, years | 66 (54–75) | 62 (52–70) | 0.4001 | ||
Sex, female (%) | 6 (35) | 47 (56) | 0.1198 | 2.394 | |
BMI, kg/m2 | 27.8 | 29.1 | 0.3330 | ||
Persistent AF, n (%) | 8 (47) | 36 (44) | 0.7948 | 1.160 |
CLOSE (n = 38) | No CLOSE (n = 62) | p-Value | OR | ||
---|---|---|---|---|---|
Number of PVRs | 39/149 (26.1%) | 153/224 (68.3%) | <0.0001 | 0.16 | |
Patients with all PVs isolated | 15/38 (39.5%) | 2/62 (3.2%) | <0.0001 | 19.57 | |
Procedure time (min) | 81 (70–100.8) | 85 (70–105) | 0.8258 | ||
Left atrial dwell time (min) | 60 (53.25–73.25) | 58 (41–67) | 0.0844 | ||
Fluoroscopy time (min) | 4.7 (2.5–8.6) | 5.8 (3.9–13) | 0.0467 | ||
Dose area product (uGym2) | 152.6 (95–320) | 232 (160–460) | 0.0334 | ||
Catheter, n (%) | ST QDOT | 31 (82) 7 (18) | 51 (85) 9 (15) | 0.7804 | |
Power, W | 30 (30–45) | 30 (30–40) | 0.2368 | ||
Number of RF applications, n | 72 (64–80) | 82 (67–116) | 0.0202 | ||
FPI, n (%) | 28 (73.7) | 8 (25) | <0.0001 | ||
Baseline generator impedance, Ω | 131.7 (125.8–142) | 136.3 (127.9–1145) | 0.2454 |
Univariate Logistic Regression Analysis for Predictors of at Least One PVR vs. All PVs Isolated per Patient | |||
---|---|---|---|
OR | 95% CI | p-Value | |
Adherence to CLOSE protocol | 0.0548 | 0.0082–0.2141 | 0.0002 * |
Catheter (QDOT) | 0.3478 | 0.1029–1.274 | 0.0941 * |
Power (HPSD) | 0.4000 | 0.1296–1.225 | 0.0988 * |
Bilateral FPI | 0.0933 | 0.0138–0.3765 | 0.0032 * |
Baseline generator impedance ≥ 130 Ω | 7.386 | 2.293–26.96 | 0.0012 * |
Mean PV perimeter, cm | 1.184 | 0.8193–1.747 | 0.3635 |
Time to recurrence, month | 0.9778 | 0.9443–1.013 | 0.2027 |
Time to repeat, month | 0.9820 | 0.9520–1.014 | 0.2555 |
Age, year | 0.9814 | 0.9339–1.026 | 0.4286 |
Sex (female) | 1.007 | 0.3440–3.189 | 0.9907 |
Persistent AF | 0.8949 | 0.3108–2.613 | 0.8359 |
BMI, kg/m2 | 1.049 | 0.9449–1.170 | 0.3756 |
LVEF, % | 1.059 | 0.9857–1.141 | 0.1169 |
LAD, mm | 0.9844 | 0.8990–1.074 | 0.7242 |
Multivariable Logistic Regression for Predictors of at Least One PVR vs. All PVs Isolated per Patient | |||
---|---|---|---|
OR | 95% CI | p-Value | |
Adherence to CLOSE protocol | 0.0546 | 0.005–0.614 | 0.0187 |
Catheter (QDOT) | 0.2335 | 0.177–103.110 | 0.3705 |
Power (HPSD) | 0.4477 | 0.054–3.744 | 0.4576 |
Bilateral FPI | 0.1159 | 0.010–1.354 | 0.0862 |
Baseline generator impedance ≥ 130 Ω | 16.09 | 1.688–153.684 | 0.0157 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boga, M.; Orbán, G.; Perge, P.; Salló, Z.; Tanai, E.; Ferencz, A.B.; Tóth, P.; Komlósi, F.; Osztheimer, I.; Nagy, K.V.; et al. Adherence to the CLOSE Protocol and Low Baseline Generator Impedance Are Independent Predictors of Durable Pulmonary Vein Isolation. J. Clin. Med. 2024, 13, 1960. https://doi.org/10.3390/jcm13071960
Boga M, Orbán G, Perge P, Salló Z, Tanai E, Ferencz AB, Tóth P, Komlósi F, Osztheimer I, Nagy KV, et al. Adherence to the CLOSE Protocol and Low Baseline Generator Impedance Are Independent Predictors of Durable Pulmonary Vein Isolation. Journal of Clinical Medicine. 2024; 13(7):1960. https://doi.org/10.3390/jcm13071960
Chicago/Turabian StyleBoga, Márton, Gábor Orbán, Péter Perge, Zoltán Salló, Edit Tanai, Arnold Béla Ferencz, Patrik Tóth, Ferenc Komlósi, István Osztheimer, Klaudia Vivien Nagy, and et al. 2024. "Adherence to the CLOSE Protocol and Low Baseline Generator Impedance Are Independent Predictors of Durable Pulmonary Vein Isolation" Journal of Clinical Medicine 13, no. 7: 1960. https://doi.org/10.3390/jcm13071960
APA StyleBoga, M., Orbán, G., Perge, P., Salló, Z., Tanai, E., Ferencz, A. B., Tóth, P., Komlósi, F., Osztheimer, I., Nagy, K. V., Merkely, B., Gellér, L., & Szegedi, N. (2024). Adherence to the CLOSE Protocol and Low Baseline Generator Impedance Are Independent Predictors of Durable Pulmonary Vein Isolation. Journal of Clinical Medicine, 13(7), 1960. https://doi.org/10.3390/jcm13071960