Delayed Antibody Response in the Acute Phase of Infection Is Associated with a Lower Mental Component of Quality of Life in Survivors of Severe and Critical COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Patients
2.3. Biochemical Analysis
2.4. Statistical Analysis
2.5. Ethics
3. Results
4. Discussion
4.1. Main Findings
4.2. Pathophysiological Background
4.3. Practical Implications
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burn, E.; Tebé, C.; Fernandez-Bertolin, S.; Aragon, M.; Recalde, M.; Roel, E.; Prats-Uribe, A.; Prieto-Alhambra, D.; Duarte-Salles, T. The natural history of symptomatic COVID-19 during the first wave in Catalonia. Nat. Commun. 2021, 12, 777. [Google Scholar] [CrossRef]
- Subramanian, A.; Nirantharakumar, K.; Hughes, S.; Myles, P.; Williams, T.; Gokhale, K.M.; Taverner, T.; Chandan, J.S.; Brown, K.; Simms-Williams, N.; et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022, 28, 1706–1714. [Google Scholar] [CrossRef] [PubMed]
- Daugherty, S.E.; Guo, Y.; Heath, K.; Dasmariñas, M.C.; Jubilo, K.G.; Samranvedhya, J.; Lipsitch, M.; Cohen, K. Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: Retrospective cohort study. BMJ 2021, 373, n1098. [Google Scholar] [CrossRef] [PubMed]
- Lam, I.C.H.; Wong, C.K.H.; Zhang, R.; Chui, C.S.L.; Lai, F.T.T.; Li, X.; Chan, E.W.Y.; Luo, H.; Zhang, Q.; Man, K.K.C.; et al. Long-term post-acute sequelae of COVID-19 infection: A retrospective, multi-database cohort study in Hong Kong and the UK. EClinicalMedicine 2023, 60, 102000. [Google Scholar] [CrossRef]
- Líška, D.; Liptaková, E.; Babičová, A.; Batalik, L.; Baňárová, P.S.; Dobrodenková, S. What is the quality of life in patients with long COVID compared to a healthy control group? Front. Public Health 2022, 10, 975992. [Google Scholar] [CrossRef]
- Todt, B.C.; Szlejf, C.; Duim, E.; Linhares, A.O.; Kogiso, D.; Varela, G.; Campos, B.A.; Fonseca, C.M.B.; Polesso, L.E.; Bordon, I.N.; et al. Clinical outcomes and quality of life of COVID-19 survivors: A follow-up of 3 months post hospital discharge. Respir. Med. 2021, 184, 106453. [Google Scholar] [CrossRef]
- Bugarin, J.D.; Saric, L.; Delic, N.; Dosenovic, S.; Ilic, D.; Saric, I.; Stipic, S.S.; Duplancic, B. Health-Related Quality of Life of COVID-19 Survivors Treated in Intensive Care Unit—Prospective Observational Study. J. Intensiv. Care Med. 2023, 38, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, L.G.; Paleoudis, E.G.; Bari, D.L.-D.; Nyirenda, T.; Friedman, T.; Gupta, A.; Rasouli, L.; Zetkulic, M.; Balani, B.; Ogedegbe, C.; et al. Persistence of symptoms and quality of life at 35 days after hospitalization for COVID-19 infection. PLoS ONE 2020, 15, e0243882. [Google Scholar] [CrossRef] [PubMed]
- McFann, K.; Baxter, B.A.; LaVergne, S.M.; Stromberg, S.; Berry, K.; Tipton, M.; Haberman, J.; Ladd, J.; Webb, T.L.; Dunn, J.A.; et al. Quality of Life (QoL) Is Reduced in Those with Severe COVID-19 Disease, Post-Acute Sequelae of COVID-19, and Hospitalization in United States Adults from Northern Colorado. Int. J. Environ. Res. Public Health 2021, 18, 11048. [Google Scholar] [CrossRef]
- Rass, V.; Ianosi, B.-A.; Zamarian, L.; Beer, R.; Sahanic, S.; Lindner, A.; Kofler, M.; Schiefecker, A.J.; Mahlknecht, P.; Heim, B.; et al. Factors associated with impaired quality of life three months after being diagnosed with COVID-19. Qual. Life Res. 2022, 31, 1401–1414. [Google Scholar] [CrossRef]
- Walia, N.; Lat, J.O.; Tariq, R.; Tyagi, S.; Qazi, A.M.; Salari, S.W.; Jafar, A.; Kousar, T.; Bieniek, S.; Children, T.T.H.F.S. Post-acute sequelae of COVID-19 and the mental health implications. Discoveries 2021, 9, e140. [Google Scholar] [CrossRef]
- De Vito, D.; Di Ciaula, A.; Palmieri, V.O.; Trerotoli, P.; Larocca, A.M.V.; Montagna, M.T.; Portincasa, P. Reduced COVID-19 mortality linked with early antibodies against SARS-CoV-2, irrespective of age. Eur. J. Intern. Med. 2022, 98, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Jurenka, J.; Nagyová, A.; Dababseh, M.; Mihalov, P.; Stankovič, I.; Boža, V.; Kravec, M.; Palkovič, M.; Čaprnda, M.; Sabaka, P. Anti-SARS-CoV-2 Antibody Status at the Time of Hospital Admission and the Prognosis of Patients with COVID-19: A Prospective Observational Study. Infect. Dis. Rep. 2022, 14, 1004–1016. [Google Scholar] [CrossRef] [PubMed]
- Nation Institutes of Health Guidelines Clinical Spectrum of SARS-CoV-2 Infection. Available online: https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/ (accessed on 17 October 2022).
- QualityMetric. The SF-12v2 PRO Health Survey. Available online: https://www.qualitymetric.com/health-surveys/the-sf-12v2-pro-health-survey/ (accessed on 12 October 2023).
- Melville, M.R.; Lari, M.A.; Brown, N.; Young, T.; Gray, D. Quality of life assessment using the short form 12 questionnaire is as reliable and sensitive as the short form 36 in distinguishing symptom severity in myocardial infarction survivors. Heart 2003, 89, 1445–1446. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.J.; Oldridge, N.B.; Eckert, G.J.; Embree, J.L.; Browning, S.; Hou, N.; Chui, M.; Deer, M.; Murray, M.D. Comparison of Quality of Life Measures in Heart Failure. Nurs. Res. 2003, 52, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Wee, C.C.; Davis, R.B.; Hamel, M.B. Comparing the SF-12 and SF-36 health status questionnaires in patients with and without obesity. Health Qual. Life Outcomes 2008, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Giamarellos-Bourboulis, E.J. Complex immune deregulation in severe COVID-19: More than a mechanism of pathogenesis. EBioMedicine 2021, 73, 103673. [Google Scholar] [CrossRef] [PubMed]
- Haunhorst, S.; Bloch, W.; Javelle, F.; Krüger, K.; Baumgart, S.; Drube, S.; Lemhöfer, C.; Reuken, P.; Stallmach, A.; Müller, M.; et al. A scoping review of regulatory T cell dynamics in convalescent COVID-19 patients—Indications for their potential involvement in the development of Long COVID? Front. Immunol. 2022, 13, 1070994. [Google Scholar] [CrossRef] [PubMed]
- Dispinseri, S.; Secchi, M.; Pirillo, M.F.; Tolazzi, M.; Borghi, M.; Brigatti, C.; De Angelis, M.L.; Baratella, M.; Bazzigaluppi, E.; Venturi, G.; et al. Neutralizing antibody responses to SARS-CoV-2 in symptomatic COVID-19 is persistent and critical for survival. Nat. Commun. 2021, 12, 2670. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.J.A.; Ribeiro, L.R.; Gouveia, M.I.M.; Marcelino, B.d.R.; dos Santos, C.S.; Lima, K.V.B.; Lima, L.N.G.C. Hyperinflammatory Response in COVID-19: A Systematic Review. Viruses 2023, 15, 553. [Google Scholar] [CrossRef] [PubMed]
- Hansen, N. Psychiatric Symptoms in Acute and Persisting Forms of COVID-19 Associated with Neural Autoantibodies. Antibodies 2023, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Franke, C.; Boesl, F.; Goereci, Y.; Gerhard, A.; Schweitzer, F.; Schroeder, M.; Foverskov-Rasmussen, H.; Heine, J.; Quitschau, A.; Kandil, F.I.; et al. Association of cerebrospinal fluid brain-binding autoantibodies with cognitive impairment in post-COVID-19 syndrome. Brain. Behav. Immun. 2023, 109, 139–143. [Google Scholar] [CrossRef]
- Mobasheri, L.; Nasirpour, M.H.; Masoumi, E.; Azarnaminy, A.F.; Jafari, M.; Esmaeili, S.-A. SARS-CoV-2 triggering autoimmune diseases. Cytokine 2022, 154, 155873. [Google Scholar] [CrossRef] [PubMed]
- Reiss, A.B.; Greene, C.; Dayaramani, C.; Rauchman, S.H.; Stecker, M.M.; De Leon, J.; Pinkhasov, A. Long COVID, the Brain, Nerves, and Cognitive Function. Neurol. Int. 2023, 15, 821–841. [Google Scholar] [CrossRef] [PubMed]
- Motta, C.S.; Torices, S.; da Rosa, B.G.; Marcos, A.C.; Alvarez-Rosa, L.; Siqueira, M.; Moreno-Rodriguez, T.; Matos, A.d.R.; Caetano, B.C.; Martins, J.S.C.d.C.; et al. Human Brain Microvascular Endothelial Cells Exposure to SARS-CoV-2 Leads to Inflammatory Activation through NF-κB Non-Canonical Pathway and Mitochondrial Remodeling. Viruses 2023, 15, 745. [Google Scholar] [CrossRef]
- Jeong, G.U.; Lyu, J.; Kim, K.-D.; Chung, Y.C.; Yoon, G.Y.; Lee, S.; Hwang, I.; Shin, W.-H.; Ko, J.; Lee, J.-Y.; et al. SARS-CoV-2 Infection of Microglia Elicits Proinflammatory Activation and Apoptotic Cell Death. Microbiol. Spectr. 2022, 10, e0109122. [Google Scholar] [CrossRef]
- Frontera, J.A.; Simon, N.M. Bridging Knowledge Gaps in the Diagnosis and Management of Neuropsychiatric Sequelae of COVID-19. JAMA Psychiatry 2022, 79, 811–817. [Google Scholar] [CrossRef]
- Shirbhate, E.; Pandey, J.; Patel, V.K.; Kamal, M.; Jawaid, T.; Gorain, B.; Kesharwani, P.; Rajak, H. Understanding the role of ACE-2 receptor in pathogenesis of COVID-19 disease: A potential approach for therapeutic intervention. Pharmacol. Rep. 2021, 73, 1539–1550. [Google Scholar] [CrossRef] [PubMed]
- Pang, N.Y.-L.; Pang, A.S.-R.; Chow, V.T.; Wang, D.-Y. Understanding neutralising antibodies against SARS-CoV-2 and their implications in clinical practice. Mil. Med. Res. 2021, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Tsuboi, H. Depressive symptoms predict antibody titers after a second dose of the SARS-CoV-2 BNT162b2 vaccine among hospital workers in Japan. Brain Behav. Immun. 2023, 107, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, A.F.; Zachariae, R.; Bovbjerg, D.H. Psychological stress and antibody response to influenza vaccination: A meta-analysis. Brain Behav. Immun. 2009, 23, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.S.; Chandler, P.A. Mood and Cognitive Changes During Systemic Corticosteroid Therapy. Prim. Care Companion J. Clin. Psychiatry 2001, 3, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Guo, L.; Yuan, J.; Xu, Z.; Gu, Y.; Zhang, J.; Guan, Y.; Liang, J.; Lu, H.; Liu, Y. Viral and antibody dynamics of acute infection with SARS-CoV-2 omicron variant (B.1.1.529): A prospective cohort study from Shenzhen, China [published correction appears in Lancet Microbe. 2023 Aug;4, e576]. Lancet Microbe 2023, 4, e632–e641. [Google Scholar] [CrossRef]
- Hoffman, T.; Kolstad, L.; Rönnberg, B.; Lundkvist, Å. Evaluation of Production Lots of a Rapid Point-of-Care Lateral Flow Serological Test Intended for Identification of IgM and IgG against the N-Terminal Part of the Spike Protein (S1) of SARS-CoV-2. Viruses 2021, 13, 1043. [Google Scholar] [CrossRef]
- Shabnam, S.; Razieh, C.; Dambha-Miller, H.; Yates, T.; Gillies, C.; Chudasama, Y.V.; Pareek, M.; Banerjee, A.; Kawachi, I.; Lacey, B.; et al. Socioeconomic inequalities of Long COVID: A retrospective population-based cohort study in the United Kingdom. J. R. Soc. Med. 2023, 116, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.; Siles, N.; Kelley, M.; Wylie, D.; Melamed, E.; Brode, W.M. Clinical characteristics of Long COVID patients presenting to a dedicated academic post-COVID-19 clinic in Central Texas. Sci. Rep. 2023, 13, 21971. [Google Scholar] [CrossRef] [PubMed]
Continuous Variables | Anti-Spike SARS-CoV-2 IgG Negative (n = 144) | Anti-Spike SARS-CoV-2 IgG Positive (n = 130) | p-Value | |
---|---|---|---|---|
Age | years | 54 (45, 65) | 59 (51, 67) | 0.094 |
CCI | 2 (2, 2) | 2 (1, 2) | 0.572 | |
BMI | kg/m2 | 29 (26, 34) | 29 (26, 33) | 0.918 |
Duration of symptoms | days | 7 (6, 9) | 10 (7, 11) | 0.0001 |
CRP | mg/L | 58 (23, 112) | 118 (58, 165) | 0.0001 |
GFR | mL/min | 113 (85, 140) | 102 (80, 136) | 0.022 |
N/L ratio | 4 (3, 7) | 6 (4, 9) | 0.0001 | |
Fasting glucose | mmol/L | 6 (6, 8) | 7 (6, 8) | 0.087 |
Length of hospital stay | days | 10 (7, 13) | 8 (6, 13) | 0.254 |
Categorical variables | anti-spikeARS-CoV-2 IgG positive, n/n-total (%) | anti-spikeARS-CoV-2 IgG negative, n (%) | p-value (chi-square) | |
Gender | Male | 77 (53.47%) | 77 (59.23%) | 0.338 |
Female | 67 (46.53%) | 53 (40.77%) | ||
ICU admission | Yes | 25 (17.36%) | 15 (11.54%) | 0.230 |
No | 119 (82.64%) | 115 (88.46%) | ||
Critical disease | Yes | 23 (15.97%) | 17 (13.08%) | 0.278 |
No | 121 (84.03%) | 113 (86.62%) |
Variable | Anti-Spikepike SARS-CoV-2 IgG Negative | Anti-Spikepike SARS-CoV-2 IgG Positive | p-Value |
---|---|---|---|
PCS-12 | 39.62 (31.36, 54.61) | 41.92 (31.42, 51.56) | 0.397 |
MCS-12 | 53.37 (45.01, 57.09) | 57.10 (50.96, 58.87) | 0.0003 |
Categorical variables | anti-spike SARS-CoV-2 IgG positive, n/n-total (%) | anti-spike SARS-CoV-2 IgG negative, n (%) | p-value (chi-square) |
PCS-12 below 50 | 94 (65.27%) | 85 (65.38%) | 1.000 |
MCS-12 below 50 | 58 (40.28%) | 29 (22.31%) | 0.002 |
Variable | p | B | ηp2 | 95% CI |
---|---|---|---|---|
Anti-spike SARS-CoV-2 IgG positive | 0.006 | 3.609 | 0.035 | 1.069–6.150 |
Age | 0.076 | −0.101 | 0.014 | −0.213–0.011 |
CRP | 0.480 | −0.006 | 0.002 | −0.023–0.011 |
GFR | 0.689 | −0.007 | 0.001 | −0.042–0.028 |
N/L ratio | 0.256 | 0.125 | 0.006 | −0.091–0.340 |
Fasting glucose | 0.813 | −0.048 | 0.0001 | −0.451–0.335 |
Duration of symptoms | 0.750 | 0.046 | 0.000 | −0.241–0.334 |
Variable | p | B | OR | 95% CI |
---|---|---|---|---|
Anti-spike SARS-CoV-2 IgG positive | 0.001 | 1.092 | 2.979 | 1.554–5.711 |
age | 0.414 | 0.012 | 1.012 | 0.984–1.041 |
CRP | 0.920 | 0.000 | 1.000 | 0.996–1.005 |
GFR | 0.381 | −0.004 | 0.996 | 0.987–1.005 |
N/L ratio | 0.878 | −0.004 | 0.996 | 0.944–1.145 |
Fasting glucose | 0.813 | −0.048 | 1.037 | 0.939–1.145 |
Duration of symptoms | 0.627 | −0.21 | 0.979 | 0.900–1.065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dababseh, M.M.O.; Sabaka, P.; Duraníková, O.; Horváthová, S.; Valkovič, P.; Straka, I.; Nagyová, A.; Boža, V.; Kravec, M.; Jurenka, J.; et al. Delayed Antibody Response in the Acute Phase of Infection Is Associated with a Lower Mental Component of Quality of Life in Survivors of Severe and Critical COVID-19. J. Clin. Med. 2024, 13, 1938. https://doi.org/10.3390/jcm13071938
Dababseh MMO, Sabaka P, Duraníková O, Horváthová S, Valkovič P, Straka I, Nagyová A, Boža V, Kravec M, Jurenka J, et al. Delayed Antibody Response in the Acute Phase of Infection Is Associated with a Lower Mental Component of Quality of Life in Survivors of Severe and Critical COVID-19. Journal of Clinical Medicine. 2024; 13(7):1938. https://doi.org/10.3390/jcm13071938
Chicago/Turabian StyleDababseh, Mohammad Mahmud Otman, Peter Sabaka, Oľga Duraníková, Simona Horváthová, Peter Valkovič, Igor Straka, Anna Nagyová, Vladimír Boža, Marián Kravec, Ján Jurenka, and et al. 2024. "Delayed Antibody Response in the Acute Phase of Infection Is Associated with a Lower Mental Component of Quality of Life in Survivors of Severe and Critical COVID-19" Journal of Clinical Medicine 13, no. 7: 1938. https://doi.org/10.3390/jcm13071938
APA StyleDababseh, M. M. O., Sabaka, P., Duraníková, O., Horváthová, S., Valkovič, P., Straka, I., Nagyová, A., Boža, V., Kravec, M., Jurenka, J., Koščálová, A., Mihalov, P., Marešová, E., Bendžala, M., Kušnírová, A., & Stankovič, I. (2024). Delayed Antibody Response in the Acute Phase of Infection Is Associated with a Lower Mental Component of Quality of Life in Survivors of Severe and Critical COVID-19. Journal of Clinical Medicine, 13(7), 1938. https://doi.org/10.3390/jcm13071938