Association between Blood Lead Levels and Silent Myocardial Infarction in the General Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Covariates
2.3. Ascertainment of SMI
2.4. Lead Exposure Ascertainment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. The Public Health Impact of Chemicals: Knowns and Unknowns—Data Addendum for 2019. Geneva. 2021. Available online: https://www.who.int/publications/i/item/WHO-HEP-ECH-EHD-21.01 (accessed on 25 January 2022).
- WHO. Global Health Estimates: Leading Causes Of Deaths; Cause-Specific Mortality, 2000–2019. Geneva. 2021. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (accessed on 25 February 2022).
- Vaziri, N.D. Mechanisms of lead-induced hypertension and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H454–H465. [Google Scholar] [CrossRef]
- Chen, Z.; Huo, X.; Chen, G.; Luo, X.; Xu, X. Lead (Pb) exposure and heart failure risk. Environ. Sci. Pollut. Res. Int. 2021, 28, 28833–28847. [Google Scholar] [CrossRef] [PubMed]
- Barry, V.; Steenland, K. Lead exposure and mortality among U.S. workers in a surveillance program: Results from 10 additional years of follow-up. Environ. Res. 2019, 177, 108625. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.K.; Zhang, J.; Wei, Y. Blood Lead Levels and Risk of Deaths from Cardiovascular Disease. Am. J. Cardiol. 2022, 173, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Heidari, S.; Mostafaei, S.; Razazian, N.; Rajati, M.; Saeedi, A.; Rajati, F. Correlation between lead exposure and cognitive function in 12-year-old children: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. Int. 2021, 28, 43064–43073. [Google Scholar] [CrossRef] [PubMed]
- Nakhaee, S.; Amirabadizadeh, A.; Brent, J.; Mehrpour, O. Impact of chronic lead exposure on liver and kidney function and haematologic parameters. Basic. Clin. Pharmacol. Toxicol. 2019, 124, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Muntner, P.; Menke, A.; DeSalvo, K.B.; Rabito, F.A.; Batuman, V. Continued decline in blood lead levels among adults in the United States: The National Health and Nutrition Examination Surveys. Arch. Intern. Med. 2005, 165, 2155–2161. [Google Scholar] [CrossRef]
- McFarland, M.J.; Hauer, M.E.; Reuben, A. Half of US population exposed to adverse lead levels in early childhood. Proc. Natl. Acad. Sci. USA 2022, 119, e2118631119. [Google Scholar] [CrossRef]
- Obeng-Gyasi, E. Sources of lead exposure in various countries. Rev. Environ. Health 2019, 34, 25–34. [Google Scholar] [CrossRef]
- Navas-Acien, A.; Martinez-Morata, I.; Hilpert, M.; Rule, A.; Shimbo, D.; LoIacono, N.J. Early Cardiovascular Risk in E-cigarette Users: The Potential Role of Metals. Curr. Environ. Health Rep. 2020, 7, 353–361. [Google Scholar] [CrossRef]
- USCDC. Advisory Committee on Childhood Lead Poisoning Prevention CDC Updates Blood Lead Reference Value to, 3.5 µg/dL Atlanta: US Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/nceh/lead/news/cdc-updates-blood-lead-reference-value.html (accessed on 16 December 2022).
- Gavaghan, H. Lead, unsafe at any level. Bull. World Health Organ. 2002, 80, 82. [Google Scholar]
- Lamas, G.A.; Ujueta, F.; Navas-Acien, A. Lead and Cadmium as Cardiovascular Risk Factors: The Burden of Proof Has Been Met. J. Am. Heart Assoc. 2021, 10, e018692. [Google Scholar] [CrossRef]
- Lanphear, B.P.; Rauch, S.; Auinger, P.; Allen, R.W.; Hornung, R.W. Low-level lead exposure and mortality in US adults: A population-based cohort study. Lancet Public Health 2018, 3, e177–e184. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D.; Liang, K.; Ding, Y. Increased nitric oxide inactivation by reactive oxygen species in lead-induced hypertension. Kidney Int. 1999, 56, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Harrison, D.G. Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circ. Res. 2000, 87, 840–844. [Google Scholar] [CrossRef] [PubMed]
- National Center for Health Statistics (US). Plan and operation of the Third National Health and Nutrition Examination Survey, 1988–1994. Series 1, programs and collection procedures. Vital Health Stat. 1995, 32, 1–407. [Google Scholar]
- Prineas, R.J.; Crow, R.S. Standards and Procedures for Measurement and Classification. In The Minnesota Code Manual of Electrocardiographic Findings; Springer: London, UK, 1982; pp. 226–231. [Google Scholar]
- Gunter, E.W.; Lewis, B.G.; Koncikowski, S.M. Laboratory Procedures Used for the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994. Centers for Disease Control. Available online: https://stacks.cdc.gov/view/cdc/45776 (accessed on 25 February 2022).
- Centers for Disease Control and Prevention. Very high blood lead levels among adults—United States, 2002–2011. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 967–971. [Google Scholar]
- Mahaffey, K.R.; Annest, J.L.; Roberts, J.; Murphy, R.S. National estimates of blood lead levels: United States, 1976–1980, association with selected demographic and socioeconomic factors. N. Engl. J. Med. 1982, 307, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Egan, K.B.; Cornwell, C.R.; Courtney, J.G.; Ettinger, A.S. Blood Lead Levels in U.S. Children Ages 1–11 Years, 1976–2016. Environ. Health Perspect. 2021, 129, 37003. [Google Scholar] [CrossRef]
- Valensi, P.; Lorgis, L.; Cottin, Y. Prevalence, incidence, predictive factors and prognosis of silent myocardial infarction: A review of the literature. Arch. Cardiovasc. Dis. 2011, 104, 178–188. [Google Scholar] [CrossRef]
- Lundblad, D.; Eliasson, M. Silent myocardial infarction in women with impaired glucose tolerance: The Northern Sweden MONICA study. Cardiovasc. Diabetol. 2003, 2, 9. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Jia, Y.H.; Yao, F.J.; Mei, W.Y.; Zhai, Y.S.; Zhang, M.; Wu, S.H. Association Between Silent Myocardial Infarction and Long-Term Risk of Sudden Cardiac Death. J. Am. Heart Assoc. 2021, 10, e017044. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, W.T.; Zhang, Z.M.; Chang, P.P.; Rosamond, W.D.; Kitzman, D.W.; Wagenknecht, L.E.; Soliman, E.Z. Silent Myocardial Infarction and Long-Term Risk of Heart Failure: The ARIC Study. J. Am. Coll. Cardiol. 2018, 71, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Check, L.; Marteel-Parrish, A. The fate and behavior of persistent, bioaccumulative, and toxic (PBT) chemicals: Examining lead (Pb) as a PBT metal. Rev. Environ. Health 2013, 28, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Kaziród-Wolski, K.; Sielski, J.; Jóźwiak, M.; Wolska, M.; Bernardi, M.; Spadafora, L.; Biondi-Zoccai, G.; Siudak, Z.; Versaci, F. Does PM 2.5 and PM 10-associated heavy metals affect short-term and long-term survival after out-of-hospital cardiac arrest? Four-year study based on regional registry. Minerva Med. 2023. published online. [Google Scholar] [CrossRef] [PubMed]
- Afridi, H.I.; Kazi, T.G.; Kazi, N.; Kandhro, G.A.; Baig, J.A.; Shah, A.Q.; Jamali, M.K.; Arain, M.B. Evaluation of toxic elements in scalp hair samples of myocardial infarction patients at different stages as related to controls. Biol. Trace Elem. Res. 2010, 134, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Ramond, A.; O’Keeffe, L.M.; Shahzad, S.; Kunutsor, S.K.; Muka, T.; Gregson, J.; Willeit, P.; Warnakula, S.; Khan, H.; et al. Environmental toxic metal contaminants and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2018, 362, k3310. [Google Scholar] [CrossRef] [PubMed]
- Camici, P.G.; Pagani, M. Cardiac nociception. Circulation 2006, 114, 2309–2312. [Google Scholar] [CrossRef]
- Serhiyenko, V.A.; Serhiyenko, A.A. Cardiac autonomic neuropathy: Risk factors, diagnosis and treatment. World J. Diabetes. 2018, 9, 1–24. [Google Scholar] [CrossRef]
- Sheps, D.S.; McMahon, R.P.; Light, K.C.; Maixner, W.; Pepine, C.J.; Cohen, J.D.; Goldberg, A.; Bonsall, R.; Carney, R.; Stone, P.H.; et al. Low hot pain threshold predicts shorter time to exercise-induced angina: Results from the psychophysiological investigations of myocardial ischemia (PIMI) study. J. Am. Coll. Cardiol. 1999, 33, 1855–1862. [Google Scholar] [CrossRef]
- Rosen, S.D. From heart to brain: The genesis and processing of cardiac pain. Can. J. Cardiol. 2012, 28, S7–S19. [Google Scholar] [CrossRef]
- Kaji, T.; Suzuki, M.; Yamamoto, C.; Mishima, A.; Sakamoto, M.; Kozuka, H. Severe damage of cultured vascular endothelial cell monolayer after simultaneous exposure to cadmium and lead. Arch. Environ. Contam. Toxicol. 1995, 28, 168–172. [Google Scholar] [CrossRef]
- Revis, N.W.; Zinsmeister, A.R.; Bull, R. Atherosclerosis and hypertension induction by lead and cadmium ions: An effect prevented by calcium ion. Proc. Natl. Acad. Sci. USA 1981, 78, 6494–6498. [Google Scholar] [CrossRef]
- Yamamoto, C.; Miyamoto, A.; Sakamoto, M.; Kaji, T.; Kozuka, H. Lead perturbs the regulation of spontaneous release of tissue plasminogen activator and plasminogen activator inhibitor-1 from vascular smooth muscle cells and fibroblasts in culture. Toxicology 1997, 117, 153–161. [Google Scholar] [CrossRef]
- Sanders, T.; Liu, Y.; Buchner, V.; Tchounwou, P.B. Neurotoxic effects and biomarkers of lead exposure: A review. Rev. Environ. Health 2009, 24, 15–45. [Google Scholar] [CrossRef] [PubMed]
- Rosen, S.D.; Paulesu, E.; Nihoyannopoulos, P.; Tousoulis, D.; Frackowiak, R.S.; Frith, C.D.; Jones, T.; Camici, P.G. Silent ischemia as a central problem: Regional brain activation compared in silent and painful myocardial ischemia. Ann. Intern. Med. 1996, 124, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, J.D. Factors affecting decision making in Hispanics experiencing myocardial infarction. J. Transcult. Nurs. 2013, 24, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Bekkouche, N.S.; Wawrzyniak, A.J.; Whittaker, K.S.; Ketterer, M.W.; Krantz, D.S. Psychological and physiological predictors of angina during exercise-induced ischemia in patients with coronary artery disease. Psychosom. Med. 2013, 75, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mukherjee, B.; Park, S.K. Does Information on Blood Heavy Metals Improve Cardiovascular Mortality Prediction? J. Am. Heart Assoc. 2019, 8, e013571. [Google Scholar] [CrossRef] [PubMed]
Characteristics * | Blood Lead Levels Tertiles | p-Value ! | ||
---|---|---|---|---|
1st Tertile n = 2369 | 2nd Tertile n = 2451 | 3rd Tertile n = 2463 | ||
Age (years) | 53.3 ± 0.45 | 56.8 ± 0.45 | 58.4 ± 0.52 | <0.0001 |
Men | 638 (30.4%) | 1166 (47.0%) | 1641 (64.4%) | <0.0001 |
White | 1293 (84.0%) | 1267 (81.7%) | 1070 (77.7%) | <0.0001 |
Income level <20K | 900 (23.6%) | 1053 (26.9%) | 1308 (38.2%) | <0.0001 |
Systolic Blood Pressure (mmHg) | 124.8 ± 0.61 | 128.9 ± 0.66 | 131.6 ± 0.67 | <0.0001 |
Diastolic Blood Pressure (mm Hg) | 75.2 ± 0.28 | 76.7 ± 0.38 | 77.1 ± 0.36 | <0.0001 |
Antihypertensive Medications | 475 (15.8%) | 551 (20.1%) | 513 (17.3%) | 0.01 |
Diabetes | 315 (8.3%) | 300 (8.1%) | 277 (8.4%) | 0.94 |
Current smoker | 278 (12.7%) | 513 (23.0%) | 855 (36.1%) | <0.0001 |
Obesity | 769 (28.3%) | 708 (24.6%) | 558 (22.5%) | 0.009 |
Total cholesterol | 212.5 ± 1.3 | 219.9 ± 1.4 | 219.2 ± 1.3 | 0.01 |
Lipid-lowering medications | 74 (3.4%) | 75(3.3%) | 59(3.4%) | 0.99 |
Silent MI | 20 (0.4%) | 32(0.9%) | 68 (2.4%) | <0.0001 |
Blood Lead Levels | Events/Participants n (%) | Model 1 OR (95% CI) | p-Value | Model 2 OR (95% CI) | p-Value |
---|---|---|---|---|---|
First Tertile (0.70–2.60 µg/dL) | 20/2369 (0.4%) | Ref | - | Ref | - |
Second Tertile (2.70–4.60 µg/dL) | 32/2451 (0.9%) | 1.51 (0.69, 3.34) | 0.43 | 1.44 (0.64, 3.25) | 0.42 |
Third Tertile (4.70–16.4 µg/dL) | 68/2463 (2.4%) | 3.73 (1.95, 7.11) | <0.0001 | 3.42 (1.76, 6.63) | <0.0001 |
Per 1 µg/dL | 120/7283 (1.2%) | 1.10 (1.06, 1.15) | <0.0001 | 1.09 (1.05, 1.14) | <0.0001 |
Subgroups | BLL Tertiles * | Silent MI n (%) | OR (95% CI) † | Interaction p-Value |
---|---|---|---|---|
Men | 2nd Tertile | 15 (1.2%) | 2.83 (0.52, 15.1) | 0.50 |
3rd Tertile | 49 (2.9%) | 7.68 (1.83, 32.1) | ||
Women | 2nd Tertile | 17 (1.3%) | 1.05 (0.43, 2.54) | |
3rd Tertile | 19 (2.3%) | 2.25 (0.96, 5.29) | ||
White | 2nd Tertile | 17 (1.3%) | 1.37 (0.55, 3.38) | 0.40 |
3rd Tertile | 35 (3.2%) | 3.78 (1.83, 7.83) | ||
Non-White | 2nd Tertile | 15 (1.2%) | 1.91 (0.43, 8.54) | |
3rd Tertile | 33 (2.3%) | 1.74 (0.51, 5.90) | ||
<65 years | 2nd Tertile | 13 (0.8%) | 1.29 (0.44, 3.77) | 0.75 |
3rd Tertile | 21 (1.3%) | 2.39 (0.90, 6.36) | ||
≥65 years | 2nd Tertile | 19 (2.2%) | 1.86 (0.65, 5.33) | |
3rd Tertile | 47 (5.1%) | 5.83 (2.12, 15.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, M.A.; Abueissa, M.A.; Soliman, M.Z.; Ahmad, M.I.; Soliman, E.Z. Association between Blood Lead Levels and Silent Myocardial Infarction in the General Population. J. Clin. Med. 2024, 13, 1582. https://doi.org/10.3390/jcm13061582
Mostafa MA, Abueissa MA, Soliman MZ, Ahmad MI, Soliman EZ. Association between Blood Lead Levels and Silent Myocardial Infarction in the General Population. Journal of Clinical Medicine. 2024; 13(6):1582. https://doi.org/10.3390/jcm13061582
Chicago/Turabian StyleMostafa, Mohamed A., Mohammed A. Abueissa, Mai Z. Soliman, Muhammad Imtiaz Ahmad, and Elsayed Z. Soliman. 2024. "Association between Blood Lead Levels and Silent Myocardial Infarction in the General Population" Journal of Clinical Medicine 13, no. 6: 1582. https://doi.org/10.3390/jcm13061582