Accuracy and Reliability of Pelvimetry Measures Obtained by Manual or Automatic Labeling of Three-Dimensional Pelvic Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Three-Dimensional Pelvic Models
2.2. Manual Pelvimetry
2.3. Automatic Labeling
2.4. Statistical Analyses
3. Results
3.1. Landmarks Labeling Accuracy
3.2. Pelvimetry Measures Accuracy and Inter-Radiologist Reliability
3.3. Pelvimetry Measures Reliability across Segmentations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maharaj, D. Assessing cephalopelvic disproportion: Back to the basics. Obstet. Gynecol. Surv. 2010, 65, 387–395. [Google Scholar] [CrossRef]
- WHO. Make Every Mother and Child Count: The World Health Report; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Yang, X.-J.; Sun, S.-S. Comparison of maternal and fetal complications in elective and emergency cesarean section: A systematic review and meta-analysis. Arch. Gynecol. Obstet. 2017, 296, 503–512. [Google Scholar] [CrossRef]
- Ryding, E.L.; Wijma, K.; Wijma, B. Psychological impact of emergency cesarean section in comparison with elective cesarean section, instrumental and normal vaginal delivery. J. Psychosom. Obstet. Gynecol. 1998, 19, 135–144. [Google Scholar] [CrossRef]
- Nishikawa, S.; Miki, M.; Chigusa, Y.; Furuta, M.; Kido, A.; Kawamura, Y.; Ueda, Y.; Mandai, M.; Mogami, H. Obstetric pelvimetry by three-dimensional computed tomography in non-pregnant Japanese women: A retrospective single-center study. J. Matern. Fetal Neonatal Med. 2023, 36, 2190444. [Google Scholar] [CrossRef]
- Bian, X.; Zhuang, J.; Cheng, X. Combination of ultrasound pelvimetry and fetal sonography in predicting cephalopelvic disproportion. Chin. Med. J. 1997, 110, 942–945. [Google Scholar] [PubMed]
- Thubisi, M.; Ebrahim, A.; Moodley, J.; Shweni, P. Vaginal delivery after previous caesarean section: Is X-ray pelvimetry necessary? BJOG Int. J. Obstet. Gynaecol. 1993, 100, 421–424. [Google Scholar] [CrossRef]
- Hong, J.-Y.; Brown, K.; Waller, J.; Young, C.; Solomon, M. The role of MRI pelvimetry in predicting technical difficulty and outcomes of open and minimally invasive total mesorectal excision: A systematic review. Tech. Coloproctol. 2020, 24, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Capelle, C.; Devos, P.; Caudrelier, C.; Verpillat, P.; Fourquet, T.; Puech, P.; Garabedian, C.; Lemaitre, L. How reproducible are classical and new CT-pelvimetry measurements? Diagn. Interv. Imaging 2020, 101, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Fremondiere, P.; Fournie, A. Disproportion fœto-pelvienne et radiopelvimétrie. Gynécologie Obs. Fertil. 2011, 39, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Mengert, W.F. Estimation of pelvic capacity: Chairman’s address. J. Am. Med. Assoc. 1948, 138, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.A.; Thurnau, G.R.; Fishburne Jr, J.I. The fetal-pelvic index as an indicator of fetal-pelvic disproportion: A preliminary report. Am. J. Obstet. Gynecol. 1986, 155, 608–613. [Google Scholar] [CrossRef]
- Abitbol, M.; Taylor, U.; Castillo, I.; Rochelson, B. The cephalopelvic disproportion index. Combined fetal sonography and X-ray pelvimetry for early detection of cephalopelvic disproportion. J. Reprod. Med. 1991, 36, 369–373. [Google Scholar]
- Bian, X.; Zhuang, J.; Cheng, X. Prediction of cephalopelvic disproportion by ultrasonographic cephalopelic. Zhonghua Fu Chan Ke Za Zhi 1998, 33, 533–535. [Google Scholar]
- Morganelli, G.; di Pasquo, E.; Dall’Asta, A.; Volpe, N.; Zegarra, R.R.; Corno, E.; Melandri, E.; Abou-Dakn, M.; Ghi, T. OC14. 01: Prediction of cephalopelvic disproportion by evaluating the ratio between the head circumference and the obstetric conjugate. Ultrasound Obstet. Gynecol. 2021, 58, 40. [Google Scholar] [CrossRef]
- Frémondière, P.; Thollon, L.; Adalian, P.; Delotte, J.; Marchal, F. Which foetal-pelvic variables are useful for predicting caesarean section and instrumental assistance. Med. Princ. Pract. 2017, 26, 359–367. [Google Scholar] [CrossRef]
- Korhonen, U.; Taipale, P.; Heinonen, S. Fetal pelvic index to predict cephalopelvic disproportion–a retrospective clinical cohort study. Acta Obstet. Et Gynecol. Scand. 2015, 94, 615–621. [Google Scholar] [CrossRef]
- Roux, N.; Korb, D.; Morin, C.; Sibony, O. Trial of labor after cesarean and contribution of pelvimetry in the prognosis of neonatal morbidity. J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101681. [Google Scholar] [CrossRef]
- Lenhard, M.S.; Johnson, T.R.; Weckbach, S.; Nikolaou, K.; Friese, K.; Hasbargen, U. Pelvimetry revisited: Analyzing cephalopelvic disproportion. Eur. J. Radiol. 2010, 74, e107–e111. [Google Scholar] [CrossRef]
- Anderson, N.; Humphries, N.; Wells, J. Measurement error in computed tomography pelvimetry. Australas. Radiol. 2005, 49, 104–107. [Google Scholar] [CrossRef]
- Korhonen, U.; Solja, R.; Laitinen, J.; Heinonen, S.; Taipale, P. MR pelvimetry measurements, analysis of inter-and intra-observer variation. Eur. J. Radiol. 2010, 75, e56–e61. [Google Scholar] [CrossRef]
- Atasoy, G.; Arslan, N.C.; Elibol, F.D.; Sagol, O.; Obuz, F.; Sokmen, S. Magnetic resonance-based pelvimetry and tumor volumetry can predict surgical difficulty and oncologic outcome in locally advanced mid–low rectal cancer. Surg. Today 2018, 48, 1040–1051. [Google Scholar] [CrossRef]
- Onal, S.; Lai-Yuen, S.; Hart, S.; Bao, P.; Weitzenfeld, A. MRI-based semi-automatic pelvimetry measurement for pelvic organ prolapse diagnosis. In Proceedings of the 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), Montreal, QC, Canada, 2–5 July 2012; pp. 804–808. [Google Scholar]
- Gao, Q.; Ali, S.M.; Edwards, P. Automated atlas-based pelvimetry using hybrid registration. In Proceedings of the 2013 IEEE 10th International Symposium on Biomedical Imaging, San Francisco, CA, USA, 7–11 April 2013; pp. 1292–1295. [Google Scholar]
- Yang, D.; Zhang, S.; Yan, Z.; Tan, C.; Li, K.; Metaxas, D. Automated anatomical landmark detection on distal femur surface using convolutional neural network. In Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), Brooklyn, NY, USA, 16–19 April 2015; pp. 17–21. [Google Scholar]
- Kai, S.; Sato, T.; Koga, Y.; Omori, G.; Kobayashi, K.; Sakamoto, M.; Tanabe, Y. Automatic construction of an anatomical coordinate system for three-dimensional bone models of the lower extremities–pelvis, femur, and tibia. J. Biomech. 2014, 47, 1229–1233. [Google Scholar] [CrossRef]
- Pieper, S.; Halle, M.; Kikinis, R. 3D Slicer. In Proceedings of the 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), Arlington, VA, USA, 18 April 2004; pp. 632–635. [Google Scholar]
- Lorensen, W.E.; Cline, H.E. Marching cubes: A high resolution 3D surface construction algorithm. ACM Siggraph Comput. Graph. 1987, 21, 163–169. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Sørensen, T.J. A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on Danish Commons; I kommission hos E. Munksgaard: Copenhagen, Denmark, 1948. [Google Scholar]
- Aspert, N.; Santa-Cruz, D.; Ebrahimi, T. Mesh: Measuring errors between surfaces using the hausdorff distance. In Proceedings of the Proceedings. IEEE International Conference on Multimedia and Expo, Lausanne, Switzerland, 26–29 August 2002; pp. 705–708. [Google Scholar]
- Buli, H.C. Pelvimetry in obstetrics. Postgrad. Med. J. 1949, 25, 310. [Google Scholar] [CrossRef]
- Sako, N.; Kaku, N.; Kubota, Y.; Kitahara, Y.; Tagomori, H.; Tsumura, H. Iliac anatomy in women with developmental dysplasia of the hip: Measurements using three-dimensional computed tomography. J. Orthop. 2021, 25, 1–5. [Google Scholar] [CrossRef]
- Terrier, A.; Parvex, V.; Rüdiger, H.A. Impact of individual anatomy on the benefit of cup medialisation in total hip arthroplasty. Hip Int. 2016, 26, 537–542. [Google Scholar] [CrossRef]
- Bartko, J.J. The intraclass correlation coefficient as a measure of reliability. Psychol. Rep. 1966, 19, 3–11. [Google Scholar] [CrossRef]
- Stratford, P.W.; Goldsmith, C.H. Use of the standard error as a reliability index of interest: An applied example using elbow flexor strength data. Phys. Ther. 1997, 77, 745–750. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Castellani, U.; Bartoli, A. 3d shape registration. In 3D Imaging, Analysis and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 353–411. [Google Scholar]
- Meller, S.; Kalender, W.A. Building a statistical shape model of the pelvis. In International Congress Series; Elsevier: Amsterdam, The Netherlands, 2004; pp. 561–566. [Google Scholar]
- Woolson, R.F. Wilcoxon Signed-Rank Test. In Wiley Encyclopedia of Clinical Trials; Wiley: Hoboken, NJ, USA, 2007; pp. 1–3. [Google Scholar]
- D’Agostino, R.B. Tests for the normal distribution. In Goodness-of-Fit Techniques; Routledge: Abingdon, UK, 2017; pp. 367–420. [Google Scholar]
- Mujugira, A.; Osoti, A.; Deya, R.; Hawes, S.E.; Phipps, A.I. Fetal head circumference, operative delivery, and fetal outcomes: A multi-ethnic population-based cohort study. BMC Pregnancy Childbirth 2013, 13, 106. [Google Scholar] [CrossRef]
- Lorenzon, L.; Bini, F.; Landolfi, F.; Quinzi, S.; Balducci, G.; Marinozzi, F.; Biondi, A.; Persiani, R.; D’Ugo, D.; Tirelli, F. 3D pelvimetry and biometric measurements: A surgical perspective for colorectal resections. Int. J. Color. Dis. 2021, 36, 977–986. [Google Scholar] [CrossRef]
- Dandachli, W.; Ul Islam, S.; Tippett, R.; Hall-Craggs, M.A.; Witt, J.D. Analysis of acetabular version in the native hip: Comparison between 2D axial CT and 3D CT measurements. Skelet. Radiol. 2011, 40, 877–883. [Google Scholar] [CrossRef]
- Wang, R.; Xu, W.; Kong, X.; Yang, L.; Yang, S. Measurement of acetabular inclination and anteversion via CT generated 3D pelvic model. BMC Musculoskelet. Disord. 2017, 18, 373. [Google Scholar] [CrossRef]
- Seim, H.; Kainmueller, D.; Heller, M.; Lamecker, H.; Zachow, S.; Hege, H.-C. Automatic Segmentation of the Pelvic Bones from CT Data Based on a Statistical Shape Model. VCBM 2008, 8, 93–100. [Google Scholar]
- Hemke, R.; Buckless, C.G.; Tsao, A.; Wang, B.; Torriani, M. Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment. Skelet. Radiol. 2020, 49, 387–395. [Google Scholar] [CrossRef]
- Barratt, D.C.; Chan, C.S.; Edwards, P.J.; Penney, G.P.; Slomczykowski, M.; Carter, T.J.; Hawkes, D.J. Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging. Med. Image Anal. 2008, 12, 358–374. [Google Scholar] [CrossRef]
- Prevost, R.; Salehi, M.; Jagoda, S.; Kumar, N.; Sprung, J.; Ladikos, A.; Bauer, R.; Zettinig, O.; Wein, W. 3D freehand ultrasound without external tracking using deep learning. Med. Image Anal. 2018, 48, 187–202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hêches, J.; Marcadent, S.; Fernandez, A.; Adjahou, S.; Meuwly, J.-Y.; Thiran, J.-P.; Desseauve, D.; Favre, J. Accuracy and Reliability of Pelvimetry Measures Obtained by Manual or Automatic Labeling of Three-Dimensional Pelvic Models. J. Clin. Med. 2024, 13, 689. https://doi.org/10.3390/jcm13030689
Hêches J, Marcadent S, Fernandez A, Adjahou S, Meuwly J-Y, Thiran J-P, Desseauve D, Favre J. Accuracy and Reliability of Pelvimetry Measures Obtained by Manual or Automatic Labeling of Three-Dimensional Pelvic Models. Journal of Clinical Medicine. 2024; 13(3):689. https://doi.org/10.3390/jcm13030689
Chicago/Turabian StyleHêches, Johann, Sandra Marcadent, Anna Fernandez, Stephen Adjahou, Jean-Yves Meuwly, Jean-Philippe Thiran, David Desseauve, and Julien Favre. 2024. "Accuracy and Reliability of Pelvimetry Measures Obtained by Manual or Automatic Labeling of Three-Dimensional Pelvic Models" Journal of Clinical Medicine 13, no. 3: 689. https://doi.org/10.3390/jcm13030689
APA StyleHêches, J., Marcadent, S., Fernandez, A., Adjahou, S., Meuwly, J. -Y., Thiran, J. -P., Desseauve, D., & Favre, J. (2024). Accuracy and Reliability of Pelvimetry Measures Obtained by Manual or Automatic Labeling of Three-Dimensional Pelvic Models. Journal of Clinical Medicine, 13(3), 689. https://doi.org/10.3390/jcm13030689